全等三角形模型 教案

全等三角形模型 教案
全等三角形模型 教案

教学过程

一、课堂导入

【问题】如图,你能感觉到哪两个三角形全等吗?

【思考】△ABD≌△ACE

二、复习预习

【问题】工人师傅常用角尺平分一个任意角,作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON.移动角尺,使角尺两边相同的刻度分别与M、N重合.则过角尺顶点P的射线OP便是∠AOB的角平分线,为什么?请你说明理由.

【解答】OP平分∠AOB

理由如下:

∵OM=ON,PM=PN,OP=OP

∴△MOP≌△NOP(SSS)

∴∠MOP=∠NOP

∴OP平分∠MON

(即OP是∠AOB的角平分线)

三、知识讲解

考点1

全等三角形性质:

全等三角形的对应边相等,对应角相等,对应边上的高、中线相等,对应角的平分线相等。

考点2

全等三角形的判定:

所有三角形SAS、ASA、AAS、SSS;直角三角形HL

四、例题精析

【例题1】

【题干】如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.

【答案】证明:∵正方形ABCD,∴∠ABC=∠C=90°,AB=BC.

∵AE⊥BF,∴∠AGB=∠BAG+∠ABG=90°,∵∠ABG+∠CBF=90°,∴∠BAG=∠CBF.

在△ABE和△BCF中,

BAE CBF AB CB

ABE BCF

∠=∠

?

?

=

?

?∠=∠

?

∴△ABE≌△BCF(ASA),∴AE=BF.

【解析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案.

【例题2】

【题干】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;

(2)求证:AE⊥CF.

【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,

∵BE⊥BF,∴∠FBE=90°,

∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,

在△AEB和△CFB中,

AB BC

ABE CBF BE BF

=

?

?

∠=∠

?

?=

?

∴△AEB≌△CFB(SAS),∴AE=CF.(2)延长AE交BC于O,交CF于H,

∵△AEB≌△CFB,∴∠BAE=∠BCF,

∵∠ABC=90°,∴∠BAE+∠AOB=90°,

∵∠AOB=∠COH,∴∠BCF+∠COH=90°,∴∠CHO=90°,∴AE⊥CF

【解析】(1)利用△AEB≌△CFB来求证AE=CF.

(2)利用全等三角形对应角相等、对顶角相等、等量代换即可证明.

【例题3】

【题干】(2014?顺义区一模)已知:如图1,△MNQ中,MQ≠NQ.

(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:

如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D.求证:CD=AB.

【答案】:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.

主要根据“SSS”判定三角形的全等.

(2)如图3,

延长DA至E,使得AE=CB,连结CE.

∵∠ACB+∠CAD=180°,∠DAC DAC +∠EAC=180°∴∠BAC BCA =∠EAC

在△EAC和△BAC中,

AE CE

AC CA

EAC BCN

=

?

?

=

?

?∠=∠

?

∴△AECEAC≌△BCA (SAS),∴∠B=∠E,AB=CE

∵∠B=∠D,∴∠D=∠E,∴CD=CE,∴CD=AB.

【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.

(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.

【例题4】

【题干】问题背景:

如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

探索延伸:

∠BAD,上述结论如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=1

2

是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

【答案】问题背景:EF=BE+DF;

探索延伸:EF=BE+DF仍然成立.

证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,

在△ABE和△ADG中,

DG BE

B ADG

AB AD

=

?

?

∠=∠

?

?=

?

,∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,∵∠EAF=1

2

∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,

五、课堂运用

【基础】

1.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.

(2)BH⊥DE.

全等三角形 优秀教学设计

全等三角形 【教材的地位与作用】 从本课开始,将向学生重点渗透图形变换的数学思想,使学生初步掌握推理论证的方法,有利于培养学生逻辑推理能力。教材通过一个思考活动,使学生体会将一个三角形进行变换后形成的新图形与原图形是全等形。我将此内容进行了加深和拓展 【教学目标】 知识与技能:了解全等三角形的相关概念,性质,能够准确地辨认全等三角形中的对应元素,提高学生的识图能力。 过程与方法:经历图形的平移,翻折,旋转等变换的过程,体会探索问题的方法。 情感态度与价值观:通过合作交流,增强团队意识,体验成功的喜悦。 【教学重难点】 重点:全等三角形相关概念,性质及全等三角形对应元素的寻找。 难点:能够准确地辨认全等三角形中的对应元素 【教学方法】 本节课主要采用探究体验式创新教学法。 教学手段:采用多媒体辅助教学,促进学生自主学习,提高效率。 【教学过程】 环节一激情引趣 拼图游戏: 通过动手拼图,学生能够发现这几组图形能够完全重合,从而得到全等形的定义。 此环节的设计,利用学生原有知识经验,展开数学教学,激发了学生的学习兴趣,提高了学生观察,分析,抽象,概括的能力。 环节二实践感悟 活动一 打开你手中的材料袋,找出其中的全等形,并说明理由。 要求同桌合作完成 学生亲身体验两个图形完全重合的过程,能够发现①与⑩,②与⑥,⑦与⒁⑿与⒀分别能够完全重合,而对于④与⑥,⑧与⒀教师留给学生充分的时间验证,通过再次验证,能够发现④与⑥,⑧与⒀是分别不能完全重合。

通过动手实践,使学生更加明确了全等形的判别条件,培养了学生严谨求实的学习态度。 在此基础上,自然引出全等三角形,从而引出课题。 并通过观察两个三角形的变换过程,了解全等三角形的对应元素,并由教师介绍全等三角形的表示方法。 进一步提出:这两个全等三角形的对应边和对应角分别存在怎样的数量关系呢 由此得到全等三角形的性质,接着由师生共同得出全等三角形性质的符号语言: ∵△ABC≌△DEF ∴ AB= DE, BC=EF, AC= DF ∠A=∠D,∠B=∠E ,∠C=∠F 此问题的设计,让学生在做中发现,做中感悟,做中理解,做中解决,使学生经历,感受,体验知识的形成过程,培养了学生乐于动手,勤于动手的意识和习惯,切实提高了学生的动手能力 实践能力。 环节三探究说理 活动二 利用两个全等三角形学具,先保持完全重合状态,再使一个三角形不动,将另一个三角形进行平移,翻折,旋转,探究以下图形的形成过程。 要求四人为一小组合作交流的形式进行。 在讨论过程中,教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并给予适当点拨。 各个小组在黑板上演示图形的形成过程。 有以下几种: 个别学生发现第三个图形有另一种形成过程,此时教师尊重学生的富有个性的学习表现,及时捕捉问题的症结所在,进行巧妙地引导,鼓励,问疑,由此教学变得更加生动与鲜活,获得了更大的教学生成效果。 学生在汇报的过程中,展示不同的形成过程。 接着用微机再现图形形成的过程,并使学生了解利用两个全等三角形学具还可以形成一些其他的图形: 拓拓宽学生的视野,有利于学生认识数学的本质与作用,并从中体会到数学的美。 这样设计,学生能够体验和感悟图形之间的联系和运动变换的过程中所体现的美,并为寻找全等三角形的对应元素作好准备。

“全等三角形”教学设计

“全等三角形”教学设计 一、内容和内容解析 本节内容是人教版数学教材八年级上册第十一章第一节的教学内容,属于《义务教育数学课程标准》中第三学段“图形与几何”的领域.本节内容主要介绍全等三角形的概念和性质,全等三角形属于概念性知识,全等三角形的性质属于事实性知识. 本节内容是学生在七年级学习了线(直线、射线、线段)和角以及相交线与平行线和三角形的有关知识之后来学习的.从知识的发展过程看,线和角是最基本的几何图形,学习了这些基本几何图形后,继而研究了两条线(相交线与平行线)及两角的问题。那么,三角形也是最基本的几何图形,当然,在研究了三角形有关知识后,自然要研究两个三角形的问题;从知识的地位作用看,全等三角形概念及性质不仅是本章学习三角形全等的判定的预备知识,而且也是后续学习其他图形与几何知识的必备基础,同时,全等三角形的性质是今后证明角相等、线段相等的重要工具,许多几何问题,也大都转化为三角形问题并利用全等三角形加以解决,所以本节内容具有非常重要的地位和作用. 本节要研究的是形状、大小相同的两个图形“全等形”.全等形概念的核心本质是“重合”,因为形状、大小相同的两个图形放在一起能够完全重合,能够完全重合的两个图形其形状、大小一定相同.另外,“重合”是一种现象,反映出的数学本质特征是图形的“形状、大小”相同,这既是由形象思维向抽象思维的过渡,同时,也揭示了“物体的形状、大小和位置关系是几何研究的内容”,这对学生的数学学习和加深理解学习数学都是有益的.再有,图形的平移、翻折、旋转是两个图形重合的过程和途径,反过来,一个图形经过平移、翻折、旋转前后的图形全等,在“重合”的意义下,其思维过程反映出正、反两个方面,体现着思维的深刻性,并且蕴含着运动变化与对应的思想,这对学生在某些情况下确定全等三角形的对应元素,对学生以后学习图形变换知识都有着重要的意义. 全等形与全等三角形概念属于类属关系.全等形概念的外延包含有多种全等图形,全等三角形仅是其中的一种.特别给出全等三角形的概念,并把它作为主要的学习内容,是因为全等三角形是一种重要而基本的全等图形,是学习后续图形与几何以及其他数学知识的必备基础,并且有着广泛的应用.明确全等形与全等三角形概念间的关系,可以帮助学生弄清概念之间的联系和区别,可以使知识系统化,可以促进学生逻辑思维的发展,并能进行特殊与一般的辩证唯物主义教育. 基于以上分析,可以确定本课的教学重点是:全等形、全等三角形的概念;全等三角形的性质. 二、目标和目标解析 1.教学目标 (1)理解全等形、全等三角形的概念,能举全等形、全等三角形实例. (2)掌握全等三角形的性质,能运用全等三角形的性质解决简单的问题. (3)感悟“变化与对应”的思想,能准确地辨认全等三角形中的对应元素. 2.目标解析 (1)学生知道形状、大小相同的图形能够完全重合,能够完全重合的两个图形形状、大小相同.

全等三角形的判定教学设计人教版(精美教案)

《全等三角形的判定》教学设计 松江区民乐学校征丽 一、内容和内容辨析: 三角形全等的判定是初中平面几何学习中的基础和核心内容,是今后研究线段相等、角相等的重要方法,是今后研究几何图形不可或缺的工具与方法,因此,熟练掌握三角形的判定方法及其应用非常重要。本单元共安排了六课时,其中三课时讲述四种判定方法,另三课时讲述如何根据题目给出的条件,正确选择适当的判定方法说明全等,甚至以此达到证明边或角的相等。 本节课内容是七年级下册第十四章第四节“全等三角形的判定”中的第一课时。在学习这节之前,学生已掌握了全等三角形的概念和性质,以及利用三角形的三元素画三角形(即两角及其夹边、两边及其夹角、三边、两角及其对边)。借此,学生已知道如何确定三角形的 形状和大小,事实上,如果两个三角形的形状和大小都相同,则这两个三角形就是全等的,所以,通过四种画已知三角形的全等三角形的过程,可以总结判定两个三角形全等的四种判定方法。本节课的主要内容一是了解全等三角形的四种判定方法;二是重点学习“边角边” 的判定方法,掌握这一判定方法说明全等的规范书写格式,并由简至难,了解这种判定方法的应用。 二、目标及目标解析 教学目标: 、了解全等三角形判定的四种方法。 、熟练掌握边角边判定方法,熟悉有关基本图形,初步掌握这一判定方法的应用。 、掌握边角边判定方法说明两个三角形全等的规范书写格式,体会说理表达的严密性。目标解析:通过操作、看书和阅读,将全等概念与画三角形概念整合在一起,引导学生得出判定三角形全等的四种判定方法。了解四种判定方法自身的特征和相互间的联系与区别。 对于“边角边”判定方法的学习,学生需要知道“边”、“角”、“边”是如何先后确定三 角形三个顶点的相对位置的,进而掌握这种判定方法的应用一一证明三角形全等。要求学生,其一,会规范书写这一判定方法说明全等,要有严谨的逻辑思维能力和严密的表达能力;其二,在基本图形中找到需要的条件,初步掌握这一判定方法的应用,这也是我们学习判定方法的目的,为今后解决更复杂的几何问题打好基础。 本节课的教学重点,是在学习前面知识的基础上,让学生多欣赏和观察一些基本图形,结合给定条件,发掘基本图形中隐含的等量关系,找到证明全等的三大条件,从而说明全等。 为了拓展学生的思维,加强学生思维的活跃性,很多问题的解答是不唯一的,且有些题目是

新人教版八年级全等三角形教案

11.1全等三角形 教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质 3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生 的几何直觉, 4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形 的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣 重点:探究全等三角形的性质 难点:掌握两个全等三角形的对应边,对应角 教学过程: 观察下列图案,指出这些图案中中形状与大小相同的图形 问题:你还能举出生活中一些实际例子吗? 这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形 思考: 一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。 “全等”用 表示,读作“全等于” 两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如

DEF ABC ??和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ??? 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角 思考:如上图,13。1-1DEF ABC ???,对应边有什么关系?对应角呢? 全等三角形性质: 全等三角形的对应边相等; 全等三角形的对应角相等。 思考: (1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角 D A D B D (2)将ABC ?沿直线BC 平移,得到DEF ?,说出你得到的结论,说明理由? B E (3)如图,,A C D A B E ???AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠ B A ,求AD C ∠的大小。 B C

初中数学八年级《全等三角形》优秀教学设计

《全等三角形》 一、教材分析 本节课的教学内容是人教版数学八年级上册第十一章《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用. 教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质. 二、教学目标分析 知识与技能 1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主 要方法. 2.能准确确定全等三角形的对应元素. 3.掌握全等三角形的性质. 通过找出全等三角形的对应元素,培养学生的识图能力. 2.能利用全等三角形的概念、性质解决简单的数学问题. 出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度. 三、教学重点、难点 重点:全等三角形的概念、性质及对应元素的确定. 难点:全等三角形对应元素的确定. 四、学情分析 学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识. 五、教法与学法 本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.

全等三角形复习1 优秀教学设计

全等三角形复习课 【教学目标】: (1)知识与技能目标:灵活运用三角形全等的判定、性质和角的平分线性质解决问题;体会构建知识框架。 (2)过程与方法目标:让学生建立整章框架的过程,领会分析、总结的方法。 (3)情感与态度目标:在掌握知识的同时,关注学生在观察、思考、探究、交流中主动参与的程度以及交流的意识,从而启迪思维,提高创新能力,培养团队合作精神。 【教学重点】:把全等三角形全章系统化和全等三角形开放性问题。 【教学难点】:全等三角形开放性问题 【教学突破点】:提出问题让学生回忆已学知识,并通过相应练习进行巩固,最后学生用图表小结来构建知识框架。 【教法、学法设计】:合作探究式分层次教学,教师引导归纳,学生以练习巩固为主。 【课前准备】:课件 【教学过程设计】

巩固练习: A 组 1、如图,已知AB=AD ,要使△ABC ≌△ADC ,可增加条件BC=DC , 理由是 SSS 定理。或∠BAC=∠DAC ,SAS 或∠B= ∠D=90°,HL. 2、如图,△ABC 中,∠C=90o,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E , 且CD=6cm ,则DE 的长为( B ) A 、4cm B 、6cm C 、8cm D 、10cm 第1题 A 第2题 A 3、下列说法中正确的是( D ) A 、两个直角三角形全等 B 、两个等腰三角形全等 C 、两个等边三角形全等 D 、两条直角边对应相等的直角三角形全等 4、三角形内到三条边的距离相等的点是(A ) A 、三角形的三条角平分线的交点 B 、三角形的三条高的交点 C 、三角形的三条中线的交点 D 、三角形的三边的垂直平分线的交点 5、在△ABC 中,∠A=70o,∠B=40o,则△ABC 是( B ) A 、钝角三角形 B 、等腰三角形 C 、等边三角形 D 、等腰直角三角形 B 组 6、如图,AE=BE ,∠C=∠D ,求证:△ABC ≌△BAD 。 证明△ACE ≌△BDE (AAS ),那么AC=BD ,CE=DE ,因为AE=BE ,所以AE+DE=BE+CE ,即AD=BC ,所以△ABC ≌△BAD (AAS ) (第7题)

初中数学三角形全等常用几何模型及构造方法大全(初二)

初二数学三角形全等 常用几何模型及构造方法大全 掌握它轻松搞定全等题! 全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~ 全等变换类型: (一)平移全等:平行等线段(平行四边形) (二)对称全等模型:角平分线或垂直或半角 1:角平分线模型; 2:对称半角模型; (三)旋转全等模型:相邻等线段绕公共顶点旋转 1. 旋转半角模型 2. 自旋转模型 3. 共旋转模型 4. 中点旋转

如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE 分析:将△ACE平移使EC与BD重合。B\D,上方交点,左右两个三角形,两边和大于第三边!

1:角平分线模型: 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 2:对称半角模型 说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折) 翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1. 半角:有一个角含1/2角及相邻线段 2. 自旋转:有一对相邻等线段,需要构造旋转全等 3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点) 4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七) 1、旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 2、自旋转模型 构造方法: 遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称

全等三角形教案

《全等三角形》教案 教学内容:《全等三角形》的复习 课程目标:1、回顾全等三角形的定义、性质和判定 2、会按照规定书写全等三角形的证明过程 3、了解中考中全等三角形的相关例题,并学会用辅助线合理构造全等三角形。 教学重点:全等三角形证明的书写格式,合理构造全等三角形。 教学难点:通过条件寻找全等关系,或构造全等关系。 教学准备:ppt课件 / 学情分析:该部分内容为初三中考前的复习,学生对内容已经比较了解,只需要加强记 忆和巩固复习。同时也需要学生把握中考动态,了解全等三角形在中考中的出题类型。 教学过程: 前面我们已经对三角形的性质和特点进行了专门的复习,那么今天我们要对两个三角形的关系——三角形的全等关系进行复习。我们都知道两个三角形能都完全重合我们就说这两个三角形全等,而在实际应用中全等的三角形往往是通过平移或旋转得到。既然能够重合,那么我们也就得到三角形的性质是对应边相等,对应角也相等。而在这六个关系中我们只需要得到指定的三种等量关系就可以判定两个三角形全等。那我们一起来看看书上57页,一起完成知识梳理的内容。 一、知识梳理:(该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。时间为3分钟) 1、全等三角形:能够完全重合的三角形叫全等三角形。 2、三角形全等的判定方法:SSS 、SAS 、ASA 、AAS 。直角三角形全等的判定除以上的方法还有HL 。 3、全等三角形的性质:全等三角形对应边相等、对应角也相等。 4、全等三角形的面积相等、周长相等、对应高、对应边的中线、对应角的角平分线相等。 { 二、预习自测:(该部分内容由学生自行完成,时间为2分钟) 1、如图下列条件中,不能证明△ABD △ACD的是( D ) =DC,AB=AC B.∠ADB=∠ADC,BD=DC C.∠B=∠C, ∠BAD=∠CAD D. ∠B=∠C,BD=DC [ 2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是 A D C O D C B A

全等三角形的经典模型(一)

作弊? 漫画释义 三角形9级 全等三角形的经典模型(二) 三角形8级 全等三角形的经典模型(一) 三角形7级 倍长中线与截长补短 满分晋级 3 全等三角形的 经典模型(一)

D C B A 45°45° C B A 等腰直角三角形数学模型思路: ⑴利用特殊边特殊角证题(AC=BC 或904545??°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4. 图1 图2 图3 图4 思路导航 知识互联网 题型一:等腰直角三角形模型

A B C O M N A B C O M N 【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点, ⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要 求证明) ⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC ⑵连接OA , ∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO ∴ON =OM ∴∠=∠NOA MOC ∴90∠+∠=∠+∠=?NOA BON MOC BON ∴90∠=?NOM ∴△OMN 是等腰直角三角形 ⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC , ∵在△ANO 和△CMO 中, AN CM BAO C AO CO =?? ∠=∠??=? ∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形. 【例2】 两个全等的含30,60角的三角板ADE 和三角板ABC ,如 图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的 中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由. 【解析】EMC △是等腰直角三角形. 典题精练 A B C O M N M E D C B A

初中数学全等三角形教学设计

初中数学全等三角形教学设计 一、教学设计: 1、学习方式: 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。 2 、学习任务分析: 充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

3、学生的认知起点分析: 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。 4、教学目标: (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。 (2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。 (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。 5 、教学的重点与难点: 重点:三角形全等条件的探索过程是本节课的重点。 从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

全等三角形教学设计与反思

全等三角形教学设计与反思 一、教学设计: 1、学习方式: 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。 2、学习任务分析: 充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。 3、学生的认知起点分析: 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。 4、教学目标: (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。 (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。 5、教学的重点与难点: 重点:三角形全等条件的探索过程是本节课的重点。 从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。 难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种 情况进行讨论,对初一学生有一定的难度。 根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。 6、教学过程(略) 教学步骤教师活动学生活动教学媒体(资源)和教学方式 7、反思小结 提炼规律 电脑显示,带领学生复习全等三角定义及其性质。 电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这

中考数学全等三角形的复习课教学设计

全等三角形的复习(第1课时) 一、教材分析: 本节课是全等三角形的全章复习课,首先协助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和使用;其次对学生所学的全等三角形知识实行查缺补漏,再次通过拓展延伸以的习题训练,提升学生综合使用全等三角形解决问题的水平,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯. 二、学情分析 在知识上,学生经历全等三角形全章的学习,对全等三角形性质、判定以及应用基本掌握,初步具有整体理解,但因为间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。对全等三角形的综合应用以及全章知识脉络的形成正是以上各种水平的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理水平、发散思维水平和概括归纳水平将有所提升. 三、教学目标 1.进一步了解全等三角形的概念,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定解决相关问题. 2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的水平,使学生体会数形结合思想、转化思想

在解决问题中的作用. 3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。 四、教学重难点 重点:全等三角形性质与判定的应用. 难点:能理解使用三角形全等解题的基本过程。 五、教法与学法 以“自助探究”为主,以小组合作、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的. 六、教具准备 多媒体课件, 七、课时安排 2课时 八、教学过程 本节课是全等三角形全章的复习课,本节课我主要采用学生“练后思”的模式,协助学生搜整《全等三角形》全章知识脉络,建构知识网络,通过基础训练、概念变式练习、典例探究、拓展应用等活动实行查缺补漏和拓展延伸;借助“基础了题目-变式题目-典型题目-拓展题目”五个梯次递进的教学活动达成教学目标,使用多媒体课件

全等三角形常见的几何模型

1绕点型(手拉手模型) 遇600旋60°,造等边三角形 遇90°旋90°,造等腰直角遇等腰旋 顶角,造旋转全等遇中点旋1800,造中 心对称 (2)共旋转(典型的手拉手模型) 例1、在直线ABC的同一侧作两个等边三角形△ (1)△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△ AGB ◎△ DFB (5)△ EGB ◎△ CFB (6)BH 平分/ AHC (7)GF // AC 变式练习2、如果两个等边三角形△ ABD和厶BCE,连接AE与CD,证明: ("△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH平分/ AHC [D山3 Vi壮-U (I) ? 变式练习1、如果两个等边三角形△ABD和厶BCE,连接AE与CD,证明 (1) △ ABE ◎△ DBC (2) AE=DC (3) AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH 平分/ AHC (1自旋转:自旋转构造方法 ABD和厶BCE,连接AE与CD,证明:

3、(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM和厶CBN ,连接AN , BM .分别取BM, AN的中点E, F,连接CE, CF, EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1)中的“以AC , BC为边作等边△ ACM和厶CBN”改为“以AC, BC为腰在AB的同侧作等腰△ ACM和△ CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. B 例4、例题讲解: 1.已知△ ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使/ DAF=60 ° ,连接CF. (1)如图1,当点D在边BC上时,求证:① BD=CF 宓AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、 CD之间存在的数量关系,并说明理由; ⑶如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。 D A D A M x N rt B D 例1、如图,正方形ABCD的边长为1, AB,AD上各存在一点P、0,若厶APQ的周长为2, A P

初中数学优质课《全等三角形》教学设计及反思

初中数学优质课《全等三角形》教学设 计及反思 教学目标 1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 教学重点 全等三角形的性质. 教学难点 找全等三角形的对应边、对应角. 教学过程 Ⅰ.提出问题,创设情境 1、问题:你能发现这两个三角形有什么美妙的关系吗? 这两个三角形是完全重合的. 2.学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 3.获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应

顶点、对应角、对应边,以及有关的数学符号. 形状与大小都完全相同的两个图形就是全等形. 要是把两个图形放在一起,能够完全重合,?就可以说明这两个图形的形状、大小相同. 概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求. Ⅱ.导入新课 将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED. 议一议:各图中的两个三角形全等吗? 不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED. (注意强调书写时对应顶点字母写在对应的位置上) 启示:一个图形经过平移、翻折、旋转后,位置变化了,?但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考: 寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系) 得到全等三角形的性质:全等三角形的对应边相等. 全

全等三角形的复习课教学设计

全等三角形的复习课教学设计

课题:第十一章全等三角形的复习(第1课时) 格朗和乡中学太禄媛 一、教材分析: 本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以及展望中考的习题训练,提高学生综合运用全等三角形解决问题的能力,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯. 二、学情分析 在知识上,学生经历全等三角形全章的学习,对全等三角形和角平分线的概念、性质、判定以及应用基本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高. 三、教学目标 1.进一步了解全等三角形的概念及角平分线的性质,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定及角平线的性质解决有关问题.

问题与情境师生互动媒体使用与 设计意图 活动1 创设情境,引出课题(2分钟). 某同学把一块三角形玻璃打碎成三片,现在他只需带上第块就可配到与原来一样的三角形玻璃. 师:上述问题实质是判断三角形全等需要什么条件的问题. 今天我们这节课来复习全等三角形.(引出课题)【教师活动】 1.创设情境, 引出课题. 2.板书课题. 【学生活动】 独立思考,并 小组交流意 见. 【设计意图】 让学生在情 境中明白这 节课学习的 重点. 【媒体应用】 出示课题. 活动2 反思回顾,检索要点(2分钟).请同学们对本章学过的基础知识进行梳理:【教师活动】 教师引导学 生回顾知识. 【学生活动】 回顾知识,阅 读知识结构 图. 【设计意图】 让学生明确 本章知识结 构、知道课程 标准对本章 学习的要求; 还应该有自 己的认识;学 习章知识总 结梳理的方 法.重视注意 部分. 【媒体应用】 展示知识结 构图. 1 2 3

12.1全等三角形教案

人教版数学八年级上册12.1全等三角形教学设计 课题12.1全等三角形单元第十二单元学科数学年级八年级 学习目标1.知识与技能 (1)了解全等形和全等三角形的概念,掌握全等三角形的性质。 (2)能正确表示两个全等三角形,能找出全等三角形的对应元素。 2.过程与方法 通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质 3.情感态度和价值观 通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。 重点理解并掌握全等三角形的对应边相等,对应角相等 难点正确寻找全等三角形的对应元素 教学过程 教学环节教师活动学生活动设计意图 导入新课课件展示:问题引入。 【过渡】在日常生活中,我们总能看到这样的情景: 上边的图片,相信大家都不陌生,两只米奇有什么 一样或者不一样的地方吗?我们经常看到的剪纸, 大家观察一下,又有什么特点?它们的大小和形状 一样吗?观察图片,通 过提示的问 题,从形状和 大小两个方面 对其进行分析 回答,从而对 全等图形有一 个初步的概 念。 通过现实生活中 大量的形状、大 小相同的图形, 注重从一般到特 殊并运用贴近学 生生活的图案, 激发学生探究的 兴趣,由此说明 数学来源于生 活。

(学生回答) 这两种图形形状一样吗?大小一样吗? 【过渡】除了这个之外,我们再来看一下这两个五 角星。 【过渡】和刚刚的问题一样,你能说出这两个图形 的大小和形状一样吗? (学生回答) 【过渡】其实,大家的答案都是一样的,它们的大 小和形状都是一样的,这就是我们今天要学习到的 全等图形。 讲授新课1.全等三角形 【过渡】刚刚我们看了几个不同的全等图形,谁能 来总结一下什么样的图形是全等图形呢? 全等图形的概念: 能完全重合的图形称为全等图形。 现在我们来思考一个问题,如果两个图形全等,它 们的形状大小一定都相同吗? 课件展示动画。 【过渡】通过刚刚的动画,我们看到,这两个五角 星是可以完全重合的,结合日常生活,大家对重合 是如何理解的呢? (学生回答) 【过渡】重合就意味着这两个图形的大小和形状是 完全一样的。因此,我们知道,全等图形的特点 1、通过动画展 示,让学生体 会变化前后的 两个三角形全 等的问题,从 而起到巩固新 概念的作用。 2、学生动手对 全等三角形的 性质进行探 究,通过实践 得到结论,更 清晰的对性质 认识。 通过动画演示全 等变换的过程及 学生动手实践, 让学生形成直观 感觉,从而分析 总结出图形变换 的本质,进一步 加深对图形变换 的理解,培养学 生动态研究几何 图形的意识。

全等三角形之手拉手模型专题

全等三角形之手拉手模型专题 基本图形1、图(1)中,C点为线段AB上一点,△ ACM △ CBN是等边三角形,AN 与BM相等吗说明理由; 如图(2)C点为线段AB上一点,等边三角形ACM和等边三角形CBN在 AB的异侧,此时AN与BM相等吗说明理由; 如图(3)C点为线段AB外一点,△ ACM △ CBN是等边三角形,AN与BM 相等吗 说明理由. 分析:题中三问均是对等边三角形性质的考查以及全等三角形的证明,由已知条件,利用等边三角形的性质可找出对应边及夹角相等,证明全等,即可得到线段相等. 解:(1)相等. 证明如下:???△ ACM △ CBN是等边三角形, ??? AC=CM CN=BC 又/ ACN=/ MCN+60 / MCB M MCN+60 , ???/ ACN=/ MCB ?△ ACNm MCB ?- AN=BM (2)相等. 证明如下:???△ ACM △ CBN是等边三角形, ?AC=CM CN=BC 又/ ACN=/ MCB ?△ ACNm MCB ?AN=BM (3)相等. 证明如下:???△ ACM △ CBN是等边三角形, ?AC=CM CN=BC 又/ ACN=/ MCN+60 / MCB M MCN+60 , ?/ ACN=/ MCB ?△ ACNm MCB ?AN=BM 点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键. 图(1) 图(3)

变形 2、( 1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM 和厶CBN连接AN, BM分别取BM AN的中点E,F,连接CE CF,EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1 )中的“以AC, AC BC为 腰在AB的同侧作等腰△ 那么(1)中的 结论还成立吗若成立,由. 得出AN=BM, / ANC=Z MBA ,再证 △ NFC^^ BEC得出CE=CF / BCE=/ NCF利用等边三 角形的角度60 , 得出/ ECF=60 ,证得结论成立; (2)证明过程如上(1)中的结论只有CE=CF而/ ECF只等于等腰三角形的顶角工60°,得出结论不成立. 解:(1)如图1 , △ CEF是等边三角形, 理由:???等边△人。皿和厶CBN ??? AC=MC BC=NC / ACN=/ MCB 在厶ACN和厶MCB中 NC= BC / ACN=Z MCB AC= MC ?△ ACNm MCB( SAS , ?AN=MB / ANC=/ MBA 在厶NFC和厶BEC中, NC= BC / FNC=Z EBC NF= BE ?△ NFC^A BEC( SAS , ?EC=CF ???/ BCE+Z ECN=60 , / BCE2 NCF, ?/ ECF=60 , ?△ CEF是等边三角形; (2)如图2,不成立,首先/ ACN^Z MCB ?△ ACN与厶MCB不全等. 如果有两个等腰三角形的顶角相等,那么结论也不成立, 证明方法与上面类似,只能得到CE=CF而Z ECF只等于等腰三角形的顶角工60° 点评:此题综合考查等边三角形的性质与判定,三角形全等的判定与性 质,等腰三角形的性质等知识点. BC为边作等边△ ACM和厶CBN改为“以 ACM和厶CBN”如图2,其他条件不变,加以证 明;若不成立,请说明理

《全等三角形》教学设计

新人教版八年级数学上册第12章《全等三角形》 -----12.2三角形全等的判定(第一课时)教学设计 一、教学内容解析: 中学阶段重点研究的两个平面图形的关系是全等和相似。本章以三角形为例研究全等。对全等三角形研究的问题和研究方法将为后面相似的学习提供思路。而且全等是一种特殊的相似。全等三角形的内容是学生学习相似三角形的重要基础。本章还借助全等三角形进一步培养学生的推理能力,主要包括用分析法--分析条件与结论的关系,用综合法书写证明格式。以及掌握几何证明题的一般过程。由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章内容也是后面将学习的等腰三角形、平行四边形、圆等内容的基础。 二、教学目标设置: 【学习目标】: 经历探索三角形全等条件的过程,掌握三角形全等的“边边边”判定的方法;体会利用操作、归纳获得数学结论的过程,在探索过程中,培养有条理的思考和表达能力,形成良好的合作意识. 【学习重点】:探索三角形全等的条件,会用“边边边”判定两个三角形全等。【学习难点】:三角形全等的“边边边”判定方法的应用 三、学生学情分析: 在七年级的几何学习中,学生学习了线段、角等基本几何元素,研究了相交线与平行线、三角形等基本几何图形,积累了一些几何研究的经验。在七年级学习的“平行线的性质与判定”的关系有利于学生理解全等三角形的性质与判定,对于研究几何图形的思想和方法形成了一定的认识。因此在教学中充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿教学,从而通过本章的学习进一步强化这些经验。另外经过一

年的师生相处,师生彼此相当熟悉,配合默契,对于一些问题的处理和教学活动的安排已然形成了一定的做法,对于一些固有的规则和要求学生也心里很明确,也为教学活动的开展顺利进行奠定了良好的基础。 三、教学策略分析: 三角形全等的判定是全等三角形中重要内容之一,在教学中主要通过分析“性质与判定”的关系,猜测将性质中的条件选取部分能否更简捷方便判断两个三角形全等入手。通过作图,剪图、放图、比较图、画图等活动得到三角形全等的判定条件----三个基本事实的归纳,然后能运用基本事实证明相等的线段或相等的角的应用。教学中要引导学生真正通过动手操作、相互比较、逐渐发现结论,概括结论,让学生在经历知识发生发展的过程中,发现内容的本质特征,书写严谨的证明格式,用精准的数学语言概括其特征,得到三角形全等的判定方法。 四、教学过程分析: 【课前准备】: 1、平行线的性质与判定有什么关系?试着通过举例说明。 2、 满足什么条件的两个三角形全等?________________________________________ 3、 已知△ABC ≌△ DEF ,找出其中相等的边与角 一、情境创设: 为了庆祝国庆节,老师要求同学们每人回家制作一面三角形彩旗,那么,老师应提供多少个数据,才能保证同学们制作出来的三角形彩旗全等呢? 一定要知道所有的边长和所 有的角度吗?

相关文档
最新文档