分子标记技术的种类

分子标记技术的种类
分子标记技术的种类

分子标记技术的种类-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;

②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;

⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们

均具有各自的优点和不足。其特点比较见表一。

1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将 DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。进行 RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。目前RFLP的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。其缺点是:①操作繁琐,费时;②酶切后的DNA质量要求高;③使用放射性同位素进行分子杂交,有危险性等。

2随机扩增多态性DNA标记 (Random Amplified Polymorphic DNA,RAPD)

20世纪80年代,基于PCR技术的第二代分子标记技术诞生并迅速发展起来。1990年,Williams 等发表了一种不需预先知道DNA序列信息的检测核苷酸序列多态性的方法,即随机扩增多态性DNA标记(RAPD)。其原理是以碱基顺序随机排列的寡核苷酸单链(8-10bp)为引物,以组织中分离出来的基因组DNA为模板进行扩增。随机引物在基因组DNA序列上有其特定结合位点,一旦基因组在这些区域发生DNA片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。用琼脂糖凝胶电泳分离扩增产物,溴化乙锭染色后可在紫外光下显现出基因组相应区域DNA的多态性。与RFLP相比,RAPD方便易行,DNA用量少,设备要求简单,不需DNA探针,设计引物也不需要预先进行序列分析,不依赖于种属特异性和基因组的结构;合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,并且不需使用同位素,安全性好。但因为引物较短导致退火温度较低,易产生错配,故实验的稳定性和重复性差,且为显性标记,不能区分纯合子和杂合子。

RAPD 标记技术利用单引物扩增多个基因位点使其在一定程度上对反应条件敏感,这会限制其应用。将RAPD-PCR变成经典的PCR可克服此限制,即设计更长的引物。1993年,Paran提出的序列特征化扩增区域标记(Sequenced Characterized Amplified Region,SCAR)即为以经典PCR为基础的分子标记技术[1]。SCAR标记技术通过对产生的RAPD片段克隆和测序,设计一对互补于原

来RAPD片段两端序列的24聚体的引物,扩增原来模板DNA,产生SCAR-DNA片段。相对于 RAPD,SCAR由于使用更长的引物和更高的退火温度而具有更高的可靠性和可重复性,对反应条件不敏感,且可以将显性RAPD标记转变为共显性的SCAR标记,从而提高遗传作图效率。此外,还有任意引物PCR标记(Arbitary primer,AP-PCR)技术和 DNA扩增指纹(DNA Amplified fingerprinting,DAF)技术,前者使用20或30bp的任意引物随机扩增基因组DNA,后者用5或8bp的任意引物随机扩增基因组DNA。这些技术彼此相似,都能提供DNA的多态性信息,用于遗传图谱构建或基因定位等。当然RAPD标记技术使用最广泛。

3 简单重复序列标记 (Simple Sequence Repeat,SSR)

1982年,Hamade等人发现了简单重复序列标记(SSR)技术,或称微卫星序列标记(Microsatellite sequence,MS),或短串联重复标记( Short Tandem Repeat,STR)。真核生物基因组中存在大量重复频率极高而顺序复杂性极低的串联重复序列[5]。按重复基序的长度可将串联重复序列分为卫星DNA(基序100-300bp)、小卫星DNA(基序10-60bp)、微卫星DNA(基序1-6bp)。和中卫星DNA(由不同大小串联重复组成)等。微卫星是由DNA复制或修复过程中DNA滑动和错配或者有丝分裂、减数分裂期姐妹染色单体不均等交换引起的。微卫星的突变率在不同物种、同一物种的不同位点或同一位点的不同等位基因间存在很大差异。尽管微卫星 DNA分布于整个基因组的不同位置,但其两端序列多是保守的单拷贝序列,根据这两端的序列设计一对特异引物,通过PCR技术将期间的核心微卫星DNA序列扩增出来,利用电泳分析技术就可以得到其长度的多态性,此即 SSR标记的原理。SSR 标记具有高度重复性、丰富的多态性、共显性、高度可靠性等优点,但由于其需要对所研究物种的一系列微卫星位点进行克隆和测序分析,以便设计相应的引物,这是非常费时、费力和代价昂贵的工作,没有足够的投资、人力和时间,是不可能实现的,因而给它的利用带来了一定困难。

简单重复序列间区标记(Inter-Simple Sequence Repeat,ISSR)可以克服以上提到的 SSR标记的缺点,或称锚定简单重复序列标记(Anchored Simple Sequence Repeat,ASSR)。在SSR序列的3’端或5’端加上一个2-4bp的随机核苷酸,形成微卫星DNA的锚定引物,在PCR反应中,锚定引物可引起特定位点退火,导致与锚定引物互补的间隔不太大的重复序列间DNA片段进行扩增。所扩增的inter SSR区域的多个条带通过电泳可分辨,呈现出扩增带的多态性。该方法不需知道DNA序列即可用锚定引物扩增。

4 扩增片段长度多态性标记(Amplified Fragment Length Polymorphism,AFLP)

1993年,荷兰科学家Zbaeau和Vos发现了一种检测DNA多态性的新方法,即扩增片段长度多态性标记(AFLP)。AFLP是RFLP 与PCR相结合的产物,其原理是先用两种限制性内切酶(低频剪切酶和高频剪切酶,前者识别为点为6bp,后者为4bp)双酶切基因组DNA产生不同大小的DNA片段,酶切产物玉双链人工接头连接,作为扩增反应的模板DNA,然后以人工接头的互补链为引物进行预扩增,最后在接头互补链的基础上添加 1-3bp选择性核苷酸作引物对模板DNA 再进行选择性扩增,电泳分离获得的DNA 扩增片段,根据扩增片段长度的不同检测出多态性。引物由三部分组成:与人工接头互补的核心碱基序列、限制性内切酶识别位点序列、引物3’端的选择碱基序列(1-10bp)。接头与接头相邻的酶切片段的几个碱基序列为结合位点。该技术的独特之处在于所用的专用引物在不知道DNA信息的前提下就可对酶切片段进行PCR扩增。AFLP结合了 RFLP和RAPD两种技术的优势,具有分辨率高、稳定性好、效率高的优点。但它的技术费用昂贵,对DNA的纯度和内切酶的质量要求很高。尽管 AFLP技术诞生时间较短,但可称之为分子标记技术的又一次重大突破,被认为是目前一种十分理想、有效的分子标记。

5 表达序列标签标记(Expressed Sequence Tag,EST)

1991年,Adams等人用EST对表达序列进行了研究,他们从人脑cDNA文库中随机挑取600个克隆,测序合成EST,从而发现了一系列在脑部表达的新基因并由此建立了表达序列标签标记(EST)技术。其原理是将mRNA反转录成cDNA并克隆到载体构建成cDNA文库后,大规模随机挑取cDNA克隆,对其3’端或5’端进行序列,得到的序列与数据库中已知序列比对,从而获得对生物体生长发育、繁殖分化、遗传变异、衰老死亡等生命过程的认识。EST即是通过从cDNA文库中随机挑取的克隆进行测序后所得的部分cDNA的3’端或5’端序列,一般长为300-500bp。每一个EST代表一个表达基因的部分转录片段。EST 标记分为两类:一是以分子杂交为基础,用EST本身作为探针和经过酶切后的基因组DNA杂交而产生;二是以PCR为基础,按照EST的序列设计引物对植物基因组特殊区域进行 PCR扩增而产生。利用EST标记,对EST序列进行分析可得到大量的基因表达信息。与其他分子标记相比,EST 标记的优越性在于直接与一个表达基因相关,且大量的 EST可累积建立一个新的数据库,为表达基因的鉴别等研究提供大量信息。由于 EST来源于cDNA克隆,因此它部分反映了基因组的结构及不同组织中基因的表达模式。通常EST还可在Gen Bank及PIR(Protein Information Resource,PIR)等数据库中进行比较分析,以获得其可能的功能、表达模式等信息。但EST标记所获得的基因组信息不完整,因为如调控序列、内含子等序列并不在 EST序列中。且EST标记需要进行大批量的测序,实验费用较高。

6 单核苷酸多态性标记(Single Nucleotide Polymorphism,SNP)

1998年,在人类基因组计划的实施过程中产生了单核苷酸多态性标记(SNP)技术。SNP是指在基因组中同一位点的不同等位基因之间仅有个别核苷酸的差异或只有小的插入、缺失产生的DNA序列多态性。以这样的DNA序列多态性特征作标记即可区分两个个体遗传物质的差异,此即SNP标记的原理。SNP标记的优点在于多态性数量很丰富;广泛分布于植物基因组中;与串联重复的微卫星位点相比,SNP是高度稳定的。结合基因芯片技术后可快速、规模化的筛查不同个体的遗传多样性。但其在应用中还存在一些问题,如SNP作图时需要大量的有代表性的个体,因此需要进行大量的单个扩增反应,且得到大量的SNP信息后,难以确定用哪个SNP解决错误的遗传问题。

7 相关序列扩增多态性标记( Sequence Related Amplified Polymorphism,SRAP)和目标区域扩增多态性标记(Target Region Amplified Polymorphism,TRAP)

2001年,美国加州大学蔬菜作物系的 Li与Quiros博士提出了一种基于PCR 的新型分子标记技术,即相关序列扩增多态性标记(SRAP)技术。其原理是通过设计一对特异的引物对基因组的外显子、内含子和启动子区域进行PCR扩增,扩增产物通过电泳分析后可显现出因个体不同及物种的内含子、启动子和间隔序列不同而产生DNA多态性。SRAP上游引物长17bp,其中5’端的前10bp是一段没有任何特异性的填充序列和紧接着它的CCGG序列共同组成核心序列,在3’端有3个选择碱基。下游引物长

18bp,其中核心序列包括11bp的填充序列和AATT特异性序列,在3’端同样有3个选择碱基。上游引物中的CCGG序列可与开放阅读框区域中的外显子特异性结合,下游引物中的AATT序列特异结合于富含AT区的内含子和启动子。这样的上下游引物可以同时对外显子、内含子和启动子区域进行特异性扩增。SRAP 作为一种新型的分子标记,其优点是多态性高;具有高频率的共显性;相对于类似 RAPD、ISSR的显性标记,SRAP能提供更多的遗传信息;DNA需要量少,仅需20-30ng,并且对DNA纯度要求低;更简单,检测方法多样化;与AFLP相比,不用酶切、连接、预扩等步骤;同时SRAP扩增产物检测可以用变性聚丙烯酰胺凝胶,也可以用非变性聚丙烯酰胺凝胶和琼脂糖凝胶;花费少,改变 SRAP引物3’端的3个选择性碱基可设计大量的引物序列,同时上游引物与下游引物可以自由组合,因此,大大减少了合成引物的费用,同时也提高了引物的使用率。

2003年,美国农业部北方作物科学实验室的 Hu和Vick又提出了基于 PCR技术和EST的目标区域扩增多态性标记(TRAP)技术。TRAP标记即是以 EST的序列设计引物,对基因组特殊区域进行PCR扩增而产生的分子标记技术。其原理是利用两个长度为16-20bp的固定引物和一个随机引物进行组合,固定引物主要是根据从EST数据库中选择的所需序列来设计,随机引物的设计与SRAP引物设计方法相似,可与内含子或外显子进行配对。以目标区域为模板,可扩增出围绕目标候选基因的序列,产生TRAP多态性。TRAP与RAPD、ISSR、AFLP及SRAP等标记的不同主要在于TRAP的固定引物设计时需要知道所研究植物的EST序列信息,但相对于RAPD、AFLP等标记,TRAP标记具有操作简单、重复性好、多态性高、效率高等优点。

注:表中“-”指未找到数据或不需使用。

分子标记技术的种类

分子标记技术的种类-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性; ②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速; ⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们 均具有各自的优点和不足。其特点比较见表一。 1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将 DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。进行 RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。目前RFLP的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。其缺点是:①操作繁琐,费时;②酶切后的DNA质量要求高;③使用放射性同位素进行分子杂交,有危险性等。 2随机扩增多态性DNA标记 (Random Amplified Polymorphic DNA,RAPD) 20世纪80年代,基于PCR技术的第二代分子标记技术诞生并迅速发展起来。1990年,Williams 等发表了一种不需预先知道DNA序列信息的检测核苷酸序列多态性的方法,即随机扩增多态性DNA标记(RAPD)。其原理是以碱基顺序随机排列的寡核苷酸单链(8-10bp)为引物,以组织中分离出来的基因组DNA为模板进行扩增。随机引物在基因组DNA序列上有其特定结合位点,一旦基因组在这些区域发生DNA片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。用琼脂糖凝胶电泳分离扩增产物,溴化乙锭染色后可在紫外光下显现出基因组相应区域DNA的多态性。与RFLP相比,RAPD方便易行,DNA用量少,设备要求简单,不需DNA探针,设计引物也不需要预先进行序列分析,不依赖于种属特异性和基因组的结构;合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,并且不需使用同位素,安全性好。但因为引物较短导致退火温度较低,易产生错配,故实验的稳定性和重复性差,且为显性标记,不能区分纯合子和杂合子。 RAPD 标记技术利用单引物扩增多个基因位点使其在一定程度上对反应条件敏感,这会限制其应用。将RAPD-PCR变成经典的PCR可克服此限制,即设计更长的引物。1993年,Paran提出的序列特征化扩增区域标记(Sequenced Characterized Amplified Region,SCAR)即为以经典PCR为基础的分子标记技术[1]。SCAR标记技术通过对产生的RAPD片段克隆和测序,设计一对互补于原

分子标记技术综述

分子标记技术及其在植物药材亲缘关系鉴定中的应用 分子标记技术 分子标记(Molecular Markers)是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接反映[1]。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有极大的优越性:大多数分子标记为共显性,对隐性性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速[2]。 技术种类及原理 分子标记技术自诞生起已研究出数十种,尽管方法差异显著,但都具有一个共同点,即用到了分子杂交、聚合酶链式反应(PCR)、电泳等检测手段。应用较为广泛的技术有以下几种: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphisms,RFLP) RFLP是最早开发的分子标记技术,指基因型间限制性内切酶位点上的碱基插入、缺失、重排或突变引起的,是由Grodzicker等于1974年创立的以DNA-DNA杂交为基础的遗传标记。基本原理是利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况[3]。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern 杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点,可靠性高,不受环境、发育阶段或植物器官的影响。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个,标记结果稳定,重复性好。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,RFLP分析工作量大,成本高,使用DNA量大,使用放射性同位素和核酸杂交技术,不易自动化,尽管结合PCR技术,RFLP仍在应用,但已不再是主流分子标记。 2.随机扩增多态性DNA(Random Amplification Polymorphism,RAPD) RAPD技术是1990年由William和Welsh等人利用PCR技术发展的检测DNA多态性的方法,其基本原理是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。扩增片段多态性便反映了基因组相应区域的DNA多态性。RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性[4]。就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。 与RFLP技术相比,RAPD技术操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物,扩增产物具有丰富的多态性。但RAPD也存在一些缺点:(1)RAPD标记是一个显

DNA分子标记技术及其应用

DNA分子标记技术及其应用 摘要:分子遗传标记是近年来现代遗传学发展较快的领域之一。本文系统阐述了DNA分子标记的概念,以及RFLP、RAPD、ALFP、STS、SSR和SNP为代表的分子标记技术的原理和主要方法,并简单介绍了DNA分子标记技术的应用。最后探讨了其进展以及存在的一些问题。 关键词:分子标记;应用 分子遗传标记技术作为一种新的分子标记技术,在分子生物学特别是在分子遗传学的研究中得到了广泛的应用和发展,其所构建的遗传图谱具有高度的特异性。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面,成为分子遗传学和分子生物学研究与应用的主流之一。 1DNA分子标记的概念 遗传标记是基因型特殊的易于识别的表现形式,在遗传学的建立和发展过程中起着重要作用。从遗传学的建立到现在,遗传标记的发展主要经历了4个阶段,表现出了4种类型:1形态标记(Morphological Markers),指生物的外部特征特性,包括质量性状作遗传标记和数量性状作遗传标记;2细胞标记(Cytological Markers),主要指染色体组型和带型;3生化标记(Biochemical Markers),指生物的生化特征特性,主要包括同工酶和贮藏蛋白两种标记;4DNA分子标记(Molecular Markers)是以生物大分子(主要是遗传物质DNA)的多态性为基础的一种遗传标记。前3种标记是对基因的间接反映,而DNA分子标记是DNA水平遗传变异的直接反映。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面。目前,被广泛应用的DNA分子标记主要有RFLP(限制性片段长度多态性)、RAPD(随机扩增多态性DNA)、ALFP(扩增片段长度多态性)、STS(序列标记位点)、SSR(简单重复序列)和SNP(单核苷酸多态性)等。 2分子遗传标记技术的种类 2.1RFL P标记 RFLP(Restriction Fragment Length Polymorphism,限制性片段长度多态性)标记,是人类遗传学家Botstein等于1980年提出的,是以Southern杂交为核心的第一代分子标记技术。它是用限制性内切酶切割不同个体基因组DNA后,用印迹转移杂交的方法检测同源序列酶切片段在长度上的差异。这种差异是由于变异的产生或是由于单个碱基的突变所导致的限制性位点增加或消失,或是由于DNA序列发生 插入、缺失、倒位、易位等变化所引起的结构重排所致。其差异的检测是利用标记的同源序列DNA片段作探针进行分子杂交,再通过放射自显影(或非同位素技术)实现的。 与传统的遗传标记相比,RFL P标记具有下列优点: (1)RF LP标记无表型效应,其检测不受外界条件、性别及发育阶段的影响;

分子印迹技术原理及其在分离提纯上的应用

. . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

分子标记技术的类型原理及应用

分子标记 1.分子标记技术及其定义 1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。通常所说的分子标记是指以DNA多态性为基础的遗传标记。分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。 2.分子标记技术的类型 分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。 2.1 建立在Southern杂交基础上的分子标记技术 (1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记; (2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。 2.2 以重复序列为基础的分子标记技术 (1) ( Satellite DNA ) 卫星DNA; (2) ( Minisatellite DNA ) 小卫星DNA; (3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。 2.3 以PCR为基础的分子标记技术 (1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA; (2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性; (3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性; (4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性; (5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性; (6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域; (7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。 2.4以mRNA为基础的分子标记技术

分子印迹技术原理及其在分离提纯上的应用

. . . . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

分子标记技术

分子标记技术 摘要:分子标记技术就是利用现代分子生物学基础分析DNA分子特性,并借助 一些统计工具,将不同物种或同一物种的不同类群区分开来,或者将生物体的某些性状与DNA分子特性建立起来的关联关系,已广泛应用于植物遗传与育种研究的众多领域,包括遗传图谱的构建、遗传多样性分析、物种起源与进化、品种资源与纯度鉴定、分子辅助育种等多个方面,具有重大作用。 关键词:分子标记技术原理RFLP RAPD SSR AFLP EST SNP TRAP 分子标记技术应用 引言 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 一.常用分子标记原理 分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR 技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA 或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。其特点比较见表一。 1.限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP) 1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA 分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝

分子印迹技术及应用

分子印迹技术及应用 林凯城1李永莲2 (1.揭阳职业技术学院化学工程系广东揭阳 522000;2.广东轻工职业技术学院科研处广东广州510300) 摘 要:分子印迹技术是构建高分子聚合物的有效方法,这种方法简便、成熟。所构建的纳米孔穴与印迹分子在空间形 状、大小以及作用点上相匹配,所以能被印迹分子高效地选择性识别出来。目前已广泛应用于各种离子、小分子、大分子等 的印迹。文中阐明了分子印迹技术的基本原理,简述了分子印迹技术的主要制备方法,并展望了光子晶体的应用前景。 关键词:分子印迹;聚合方法;应用 中图分类号:Q503文献标识码:B 文章编号:1674-4896(2012)12-0026-05 分子印迹技术最先应用于20世纪40年代Paulin首次提出抗体形成学说[1],为后来分子印迹理论的产生和发展奠定了理论基础。1972年,Wulff在分子印迹技术方面的研究取得了突破性进 展,首次成功制备出分子印记聚合物(MIPs )[2]。 1993年Mosbach开展的有关茶碱分子的分子印迹聚合物的研究也取得巨大成就,并在《Nature》上发表了相关的论文。从此,分子印迹聚合物引起了人们的广泛关注,因为其具有高度专一性和普适性,并且广泛地应用于化学和生物学交叉的新兴领域,如模拟酶、药物分析、催化剂、色谱分析与色谱分离、仿生传感器等方面,受到世界关注并迅速发展。 高分子聚合物的合成,在合成之前将印迹分子加入到功能单体之中,两者之间发生化学作用,与此同时,加入交联剂及引发剂,通过一系列的聚合反应形成一个固态高分子化合物,这个化合物是高度交联的,接着将印迹分子从高分子中移除,这个可以利用化学或物理的方法移除,经过这个步骤之后,大量的空腔结构就在高分子化合物的内部形成并存在了,通过这些空腔结构内各官能团的位置以及它们各自的形状,空腔结构可以与印迹高分子进行互补,并且还能发生具有特殊性能的作用。分子印迹技术各方面的研究也正是利 用这一原理开展工作的。功能单体和印迹分子之间存在的化学作用方式主要有两种,一是共价键,另外一个是非共价键,其中又以非共价键作用方式的应用较多,它包括离子键作用、疏水作用、氢键作用等。 图1典型的分子印迹步骤[3] 当前,利用分子印迹技术合成的聚合物,由于其具有广泛的通用性和惊人的立体专一识别性,全世界进行MIPs的研究与开发的国家至少有10多个国家,包括日本、美国、德国、中国等,另外还有企事业单位和学术机构,其总数也不少于100个。但是, 由于目前所利用的制备聚合物的分子印 收稿日期:2012-09-04作者简介:林凯城(1983-),男,广东揭阳人,助教,研究方向:化学传感材料。 第5卷第6期2012年12月清远职业技术学院学报JournalofQingyuanPolytechnicVol.5,No.6Dec.2012 26

分子标记技术的种类Word版

分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们均具 有各自的优点和不足。其特点比较见表一。 1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将 DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。进行 RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。目前RFLP 的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。其缺点是:①操作繁琐,费时;②酶切后的DNA质量要求高;③使用放射性同位素进行分子杂交,有危险性等。 2随机扩增多态性DNA标记 (Random Amplified Polymorphic DNA,RAPD) 20世纪80年代,基于PCR技术的第二代分子标记技术诞生并迅速发展起来。1990年,Williams 等发表了一种不需预先知道DNA序列信息的检测核苷酸序列多态性的方法,即随机扩增多态性DNA标记(RAPD)。其原理是以碱基顺序随机排列的寡核苷酸单链(8-10bp)为引物,以组织中分离出来的基因组DNA为模板进行扩增。随机引物在基因组DNA序列上有其特定结合位点,一旦基因组在这些区域发生DNA片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。用琼脂糖凝胶电泳分离扩增产物,溴化乙锭染色后可在紫外光下显现出基因组相应区域DNA的多态性。与RFLP相比,RAPD方便易行,DNA用量少,设备要求简单,不需DNA探针,设计引物也不需要预先进行序列分析,不依赖于种属特异性和基因组的结构;合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,并且不需使用同位素,安全性好。但因为引物较短导致退火温度较低,易产生错配,故实验的稳定性和重复性差,且为显性标记,不能区分纯合子和杂合子。 RAPD 标记技术利用单引物扩增多个基因位点使其在一定程度上对反应条件敏感,这会限制其应用。将RAPD-PCR变成经典的PCR可克服此限制,即设计更长的引物。1993年,Paran提出的序列特征化扩增区域标记(Sequenced Characterized Amplified Region,SCAR)即为以经典PCR为基础的分子标记技术[1]。SCAR标记技术通过对产生的RAPD片段克隆和测序,设计一对互补于原来

分子印迹技术原理及其在分离提纯上的应用剖析

生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

SSR分子标记简介

微卫星DNA标记技术及其在遗传多样性研究中的应用 摘要微卫星DNA的高突变率、中性、共显性及其在真核基因组中的普遍性,使其成为居群遗传学研究、种质资源鉴定、亲缘关系分析和图谱构建的优越的分子标记。本研究系统介绍了微卫星DNA在结构和功能上的特点,并对微卫星DNA标记技术应用的遗传学机理和一般方法进行了扼要的阐述。另外,本研究还探讨了微卫星DNA标记技术在遗传多样性研究中的应用现状,并进一步提出其发展前景。 关键词:微卫星DNA;微卫星DNA标记;遗传多样性 大量重复序列的存在是真核生物基因组的主要特点之一,而且这些重复序列的拷贝数可高达百万份以上。真核生物的基因组中,重复序列占有很大比重(>50%)。按照重复序列在染色体上的分布方式,分为散布重复和串联重复(VNTR)两种类型。散布重复序列的拷贝数很多,在重复单位之间彼此常有序列的变化,难以用做分子标记。串联重复序列根据重复单元数目的大小又分为卫星序列(satellites)、小卫星序列(mini-satellites)和微卫星序列(microsatellites)3种类型。其中,卫星序列的重复单元大,一般分布在染色体的异染色质区,采用分子标记系统来揭示其多态性有一定的困难;小卫星序列主要存在于染色体近端粒处,通常以15~75个核苷酸为核心序列,长度从几十到几千个碱基不等;微卫星序列一般较短,属于以1~6个核苷酸为基本单元的简单串联重复。 微卫星DNA是真核生物基因组重复序列中的主要组成部分。微卫星DNA也称简单串联重复序列(SSRs)或简单串联重复序列多态性(STRP)。这些位点由非常短的串联重复DNA 片段(1-5个碱基)组成。微卫星DNA 最早是在人类基因组研究中发现的,它极其丰富,分布在整个基因组中[1] 。人类基因组最普遍的微卫星是那些含有A、AC、AAAN、AAN 或AG(这里N 代表G、C或T)的序列。这5组重复序列大约占到人类基因组微卫星总量的75%。微卫星DNA 序列在大多数的其它动、植物基因组中也先后被发现,并且 通过聚合酶链式反应可以确定其类型[2] 。(AT)n和(ATT)n 是首先于大豆中发现的在不同的株系中长度有所不同的重复序列,它们也是第一个被定位的植物微卫星座位。Wang等[3]发现微卫星序列中所有的单、双和四核苷酸重复序列都分布在DNA非编码区,而含G-C 碱基对的三核苷酸重复序列有57%位于编码区。微卫星重复序列在植物中出现的几率比动物中少得多。在植物中,约29kb中有20bp的微卫星序列[4],例如鹰嘴豆中(TAA)n、(GA)n和(CA)n 序列在平均60kb的长度中出现于12000个位点上[5];而动物中,约每6kb中就有20bp的微卫星重复序列。另外,研究还发现植物中最丰富的微卫星是(A)n,其次是(AT)n,再次是(GA)n。 Weber[6]将微卫星分为3类:完全重复(无间隔)、不完全重复(有非重复单位的碱基间隔)和复合重复(2个或更多重复单位彼此毗邻连续出现)。这些小的、串联排列的重复序列经常是通过核苷酸链的滑动错配或者其他未知的过程来改变它们的长度,从而导致微卫星在数量上的差异[7]。微卫星的突变率高:每代每个配子的每个位点有2.5×10-5~1×10-2突变,因此造成了它们的多态性。但微卫星周围的单拷贝序列一般不受其影响。Davierwala等对水稻及其近缘种利用(GATA)n和(AC)n微卫星两侧的序列合成的引物进行PCR扩增,再通过克隆、测序获得了大小不等的8个等位基因。测序分析的结果表明,不同等位基因的大小变异是由于微卫星重复数目的变异和微卫星两侧区域的序列的变异。 尽管目前对这些重复序列的功能和起源还不清楚,但许多研究已经证明,重复序列可以作为种或基因组水平的遗传标记,是分子水平上研究遗传多样性的一个有力工具。微卫星序列的重复单位小,而且这些重复单位的序列差异和数目变化能够形成丰富的多态性,因此得到了广泛的应用。微卫星通常是复等位的,代表每个微卫星位点的等位基因数目高度可变。微卫

分子标记技术原理、方法及应用

分子标记技术原理、方法及应用 一、遗传标记的类型及发展 遗传标记(genetic marker):指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。它具有两个基本特征,即可遗传性和可识别性;因此生物的任何有差异表型的基因突变型均可作为遗传标记。包括形态学标记、细胞学标记、生化标记和分子标记四种类型。 形态学标记:主要包括肉眼可见的外部形态特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。优点: 形态学标记简单直观、经济方便。缺点: (1)数量在多数植物中是很有限的; (2) 多态性较差,表现易受环境影响; (3)有一些标记与不良性状连锁; (4)形态标记的获得需要通过诱变、分离纯合的过程,周期较长 细胞学标记:植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。优点: 能进行一些重要基因的染色体或染色体区域定位。缺点: (1)材料需要花费较大的人力和较长时间来培育,难度很大; (2) 有些变异难以用细胞学方法进行检测 生化标记:主要包括同工酶和等位酶标记。分析方法是从组织蛋白粗提物中通过电泳和组织化学染色法将酶的多种形式转变成肉眼可辩的酶谱带型。优点: 直接反映了基因产物差异,受环境影响较小。缺点: (1)目前可使用的生化标记数量还相当有限; (2)有些酶的染色方

法和电泳技术有一定难度 分子标记:主要指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA间的差异,也叫DNA标记。 (1)数量多,高多态性,信息量大(2)与生长发育无关,取材不受限制(3)能明确辨别等位基因(4)均匀分布于整个基因组(5)选择中性,不影响目标性状的表达(6)检测手段简单、快速(7)成本低廉(8)稳定,重复性好(9)共显性遗传 在遗传学研究中广泛应用的DNA分子标记已经发展了很多种,一般依其所用的分子生物学技术大致可以分为三大类: 第一类是以分子杂交为核心的分子标记,包括RFLP、DNA指纹技术等,这类分子标记被称为第一代分子标记; 第二类是以PCR为核心的分子标记,包括随机扩增多态性RAPD、简单序列重复SSR、扩增片段长度多态性AFLP、序列标签位点STS等,为第二代分子标记; 第三类是一些新型的分子标记,如:SNP标记、表达序列标签EST 标记等,也以PCR技术为基础,为第三代分子标记。 几种主要的DNA分子标记

分子标记技术简介

分子标记技术简介 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 分子标记的概念有广义和狭义之分。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。 理想的分子标记必须达以下几个要求:(1) 具有高的多态性;(2) 共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型;(3) 能明确辨别等位基因;(4) 遍布整个基因组;(5) 除特殊位点的标记外,要求分子标记均匀分布于整个基因组;(6) 选择中性(即无基因多效性);(7) 检测手段简单、快速(如实验程序易自动化);(8) 开发成本和使用成本尽量低廉;(9) 在实验室内和实验室间重复性好(便于数据交换)。但是,目前发现的任何一种分子标记均不能满足以所有要求。

【分子标记的种类】 一、基于分子杂交技术的分子标记技术 此类标记技术是利用限制性内切酶解及凝胶电泳分离不同的生物DNA 分子,然后用经标记的特异 DNA 探针与之进行杂交,通过放射自显影或非同位素显色技术来揭示 DNA 的多态性。 ①限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP) 1974年Grodzicker等创立了限制性片段长度多态性(RFLP)技术,它是一种以DNA—DNA杂交为基础的第一代遗传标记。RFLP基本原理:利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,实验操作较繁锁,检测周期长,成本费用也很高。自RFLP问世以来,已经在基因定位及分型、遗传连锁图谱的构建、疾病的基因诊断等研究中仍得到了广泛的应用。

分子印迹技术及其研究进展

分子印迹技术及其研究进展 Malikullidin iz kaldurux tehnikisi wa uning tarakkiyati 分子印迹技术 近年来分子印迹学作为一门新兴的科学门类得到巨大的发展。分子印迹技术是 一种模拟抗体- 抗原相互作用的人工生物模板技术。它可为人们提供具有期望结构和性质的分子组合体,因此,分子印迹技术已成为当今化学研究领域的热点课题之一。分子印迹的出现源于免疫学,早在20世纪40年代由诺贝尔奖获得者Pauling 根据抗体与抗原相互作用时空穴匹配的“锁匙”现象,提出了以抗原为模板来合成抗体的理论。直到1972年德国科学家Wulff [18]研究小组首次成功制备出分子印迹聚合物,使这方面的研究得到了飞速的发展。1993年Mosbach[19]研究小组在美国《自然杂志》(《Nature》)上发表有关分子印迹聚合物的报道,更加速了分子印迹在生物传感器[20-24]、人工抗体模拟[25]及色谱固定相[26-30]分离等方面的发展,并由此使其成为化学和生物学交叉的新兴领域之一,得到了世界注目并迅速发展。分子印迹技术的应用研究所涉及的领域非常广泛,包括环境、医药、食品、 军事等。 1.分子印迹技术的基本原理及特点 分子印迹聚合物是具有特定功能基团以及孔穴大小和形状的新型高分子材料。是具有高度交联的结构,稳定性好,能够在高温、高压、有机溶剂以及耐酸碱的分子识别材料。它的制备是通过以下方法实现的:首先用功能单体(functional monomer)(funkissial tana)和模板分子(template)(izi kaldurlidigan malikulla)以共价键或非共价键形成复合物,再加入适当的交联剂 (cross-linker)(tutaxturguqi)和引发剂在加热、紫外光或其它射线照射的条件下聚合, 从而使模板分子在空间固定下来;最后通过一定的方法把模板分子洗脱,将模板分子从聚合物中除去, 这样就在聚合物中留下一个与模板分子在空间结构上完

分子标记技术的种类

分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本与使用成本尽量低廉;⑧在实验室内与实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点与 不足。其特点比较见表一。 1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP) 1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理就是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA 酶切片段,通过凝胶电泳将DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。进行RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。目前RFLP 的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境与发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型与杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。其缺点就是:①操作繁琐,费时;②酶切后的DNA质量要求高;③使用放射性同位素进行分子杂交,有危险性等。 2随机扩增多态性DNA标记 (Random Amplified Polymorphic DNA,RAPD) 20世纪80年代,基于PCR技术的第二代分子标记技术诞生并迅速发展起来。1990年,Williams 等发表了一种不需预先知道DNA序列信息的检测核苷酸序列多态性的方法,即随机扩增多态性DNA标记(RAPD)。其原理就是以碱基顺序随机排列的寡核苷酸单链(8-10bp)为引物,以组织中分离出来的基因组DNA为模板进行扩增。随机引物在基因组DNA序列上有其特定结合位点,一旦基因组在这些区域发生DNA片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量与大小发生改变,表现出多态性。用琼脂糖凝胶电泳分离扩增产物,溴化乙锭染色后可在紫外光下显现出基因组相应区域DNA的多态性。与RFLP相比,RAPD方便易行,DNA用量少,设备要求简单,不需DNA探针,设计引物也不需要预先进行序列分析,不依赖于种属特异性与基因组的结构;合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,并且不需使用同位素,安全性好。但因为引物较短导致退火温度较低,易产生错配,故实验的稳定性与重复性差,且为显性标记,不能区分纯合子与杂合子。 RAPD 标记技术利用单引物扩增多个基因位点使其在一定程度上对反应条件敏感,这会限制其应用。将RAPD-PCR变成经典的PCR可克服此限制,即设计更长的引物。1993年,Paran提出的序列特征化扩增区域标记(Sequenced Characterized Amplified Region,SCAR)即为以经典PCR为基础的分子标记技术[1]。SCAR标记技术通过对产生的RAPD片段克隆与测序,设计一对互补于原来RAPD片段两端序列的24聚体的引物,扩增原来模板DNA,产生SCAR-DNA片段。相对于RAPD,SCAR由于使用更长的引物与

相关文档
最新文档