MATLAB实现非线性曲线拟合最小二乘法

MATLAB实现非线性曲线拟合最小二乘法
MATLAB实现非线性曲线拟合最小二乘法

非线性曲线拟合最小二乘法

一、问题提出

设数据(i i y x ,),(i=0,1,2,3,4).由表3-1给出,表中第四行为i i y y =ln ,可以看出数学模型为bx ae y =,用最小二乘法确定a 及b 。 i

0 1 2 3 4 i x 1.00 1.25 1.50 1.75 2.00 i y

5.10 5.79

6.53

7.45

8.46 i y

1.629

1.756

1.876

2.008

2.135

二、理论基础

根据最小二乘拟合的定义:在函数的最佳平方逼近中],[)(b a C x f ∈,如果f(x)只在一组离散点集{i x ,i=0,1,…,m},上给定,这就是科学实验中经常见到的实验数据{(i i y x ,), i=0,1,…,m}的曲线拟合,这里)(i i x f y =,i=0,1,…,m,要求一个函数)(*x S y =与所给数据{(i i y x ,),i=0,1,…,m}拟合,若记误差

i i i y x S -=)(*δ,i=0,1,…,m,T m ),,(10δδδδ, =,设)(,),(),(10x x x n ??? 是]

,[b a C 上线性无关函数族,在)}(,),(),({10x x x span n ???? =中找一函数)(*x S ,使误差平方和

∑∑∑===∈

-=-==m i m

i m

i i

i

x S i i i

y x S y x S 0

2

)(2

*

2

22

])([])([min

?

δδ

,

这里

)()()()(1100x a x a x a x S n n ???+++= (n

这就是一般的最小二乘逼近,用几何语言来说,就称为曲线拟合的最小二乘

法。

在建模的过程中应用到了求和命令(sum )、求偏导命令(diff)、化简函数命令(simple )、用迭代方法解二元非线性方程组的命令(fsolve ),画图命令(plot )等。

三、实验内容

用最小二乘法求拟合曲线时,首先要确定S(x)的形式。这不单纯是数学问题,

还与所研究问题的运动规律及所得观测数据(i i y x ,)有关;通常要从问题的运动规律及给定数据描图,确定S(x)的形式,并通过实际计算选出较好的结果。S(x)的一般表达式为线性形式,若)(x k ?是k 次多项式,S(x)就是n 次多项式,为了使问题的提法更有一般性,通常在最小二乘法中22

δ

都考虑为加权平方和

∑=-=m

i i i i x f x S x 0

222)]()()[(ωδ

.

这里0)(≥x ω是[a,b]上的权函数,它表示不同点))(,(i i x f x 处的数据比重不同。

用最小二乘法求拟合曲线的问题,就是求形如S(x)的一个函数)(*x S y =,使∑=-=m

i i i i x f x S x 0

222

)]()()[(ωδ

取得最小。它转化为求多元函数

20

10)]()([)(),,,(i n

j i j j m i i n x f x a x a a a I -=∑∑==?ω

的极小点),,,(**1*0n a a a 问题。再由求多元函数极值的必要条件,有

∑∑===-=??m i i k n

j i i j j i k x x f x a x a I

00

0)(])()()[(2??ω (k=0,1,…,n) 此题中假设1)(=x ω,由已知所给数据点(i i y x ,)画出图形,根据离散点的位置观察出它们所拟合的曲线图形应类似于指数函数的曲线图形,故设拟合曲线的函数为bx ae y =。

本题编程过程中,令f=y,z1=a,z2=b,

令拟合曲线中对应i x 的函数值与i y 的差的平方和为J,即J=sum(fy.^2);分别求J 关于z1,z2的偏导,简化后并令其分别为0得一关于z1,z2的二元非线性方程组,

最后利用fsolve 命令求得z1,z2的值分别为

z1=3.0751 z2=0.5052

故得到拟合曲线为

x e y 5052.00751.3=

为证明曲线拟合的正确性,我们将离散点(i i y x ,)与所得的拟合曲线

x e y 5052.00751.3=

画于同一图形中,图形如下:

1 1.1 1.

2 1.

3 1.4

1.5 1.6 1.7 1.8 1.92

5

5.5

6

6.5

77.5

8

8.5

x 轴

y 轴

例8的数据点(x(i),y(i))和拟合曲线y=f(x)的图形

数据点(x(i),y(i))拟合曲线y=f(x)

四、结果分析

根据实验内容求得拟合曲线bx ae y =中未知数a,b 分别为

a=3.0751 b=0.5052

即拟合曲线为

x e y 5052.00751.3=。

由图形知拟合成功!

参考文献

1·《数值分析》,李庆扬,王能超,易大义,2001,清华大学出版社(第

四版)。 2·《数值方法》,关治,陆金甫,2006,清华大学出版社。 3·《数值分析与实验学习指导》,蔡大用,2001,清华大学出版社。 4·《数值分析与实验》,薛毅,2005,北京工业大学出版社.

附录

程序1:syms z1 z2

x=1.00:0.25:2.00;

y=[5.10,5.79,6.53,7.45,8.46];

f=z1*exp(z2.*x)

fy=f-y;

J=sum(fy.^2);

Ja=diff(J,z1);

Jb=diff(J,z2);

Ja1=simple(Ja),

Jb1=simple(Jb),

程序2:function [y1,y2]=fun(z)

y1=2*z(1)*exp(2*z(2))-51/5*exp(z(2))+2*z(1)*exp(5/2*z(2))-579/50*exp(

5/4*z(2))+2*z(1)*exp(3*z(2))-653/50*exp(3/2*z(2))+2*z(1)*exp(7/2*z(2))

-149/10*exp(7/4*z(2))+2*exp(4*z(2))*z(1)-423/25*exp(2*z(2));

y2=-1/200*z(1)*(-400*z(1)*exp(2*z(2))+2040*exp(z(2))-500*z(1)*exp(5/2

*z(2))+2895*exp(5/4*z(2))-600*z(1)*exp(3*z(2))+3918*exp(3/2*z(2))-700

*z(1)*exp(7/2*z(2))+5215*exp(7/4*z(2))-800*z(1)*exp(4*z(2))+6768*exp

(2*z(2)));

作图程序:x=1.00:0.25:2.00;

y=[5.10,5.79,6.53,7.45,8.46];

f=3.0751*exp(0.5052*x);

plot(x,y,'r*',x,f,'b-');

xlabel('x轴'),ylabel('y轴'),

legend('数据点(x(i),y(i))','拟合曲线y=f(x)'),

title('例8的数据点(x(i),y(i))和拟合曲线y=f(x)的图形')

【VIP专享】MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合 2015.4.19 19:21 【目录】 1. 线性拟合函数:regress() 2. 多项式曲线拟合函数:polyfit( ) 3. 多项式曲线求值函数:polyval( ) 4. 多项式曲线拟合的评价和置信区间函数:polyconf( ) 5. 稳健回归函数:robustfit( ) §1曲线拟合 实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6 7 8 9 10 T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型:y=Xβ+ε; β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1)

MATLAB实现非线性曲线拟合最小二乘法

非线性曲线拟合最小二乘法 一、问题提出 设数据(i i y x ,),(i=0,1,2,3,4).由表3-1给出,表中第四行为i i y y =ln ,可以看出数学模型为bx ae y =,用最小二乘法确定a 及b 。 i 0 1 2 3 4 i x 1.00 1.25 1.50 1.75 2.00 i y 5.10 5.79 6.53 7.45 8.46 i y 1.629 1.756 1.876 2.008 2.135 二、理论基础 根据最小二乘拟合的定义:在函数的最佳平方逼近中],[)(b a C x f ∈,如果f(x)只在一组离散点集{i x ,i=0,1,…,m},上给定,这就是科学实验中经常见到的实验数据{(i i y x ,), i=0,1,…,m}的曲线拟合,这里)(i i x f y =,i=0,1,…,m,要求一个函数)(*x S y =与所给数据{(i i y x ,),i=0,1,…,m}拟合,若记误差 i i i y x S -=)(*δ,i=0,1,…,m,T m ),,(10δδδδ, =,设)(,),(),(10x x x n ??? 是] ,[b a C 上线性无关函数族,在)}(,),(),({10x x x span n ???? =中找一函数)(*x S ,使误差平方和 ∑∑∑===∈ -=-==m i m i m i i i x S i i i y x S y x S 0 2 )(2 * 2 22 ])([])([min ? δδ , 这里 )()()()(1100x a x a x a x S n n ???+++= (n

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

最小二乘法曲线拟合原理及matlab实现

最小二乘法曲线拟合原理及m a t l a b实现 Modified by JEEP on December 26th, 2020.

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[,,,,,], y=[,,,,,]。 解:MATLAB程序如下: x=[,,,,,]; y=[,,,,,]; p=polyfit(x,y,2) x1=::; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合 首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。所以首选匿名函数。具体拟合时可以使用的方法如下: 1 曲线拟合工具箱提供了很多拟合函数,使用简单 非线性拟合nlinfit函数 clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x) 2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^ (-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2); p0=[8 0.5]'; opt=optimset('TolFun',1e-3,'TolX',1e-3);% [p R]=nlinfit(x,y,f,p0,opt) 2 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y

基于MATLAB的数值计算_插值及曲线拟合

基于MATLAB的数值计算一插值及曲线拟合摘 要:本文基于MATLA的数值计算功能,重点介绍了插值及曲线拟合的应用及特点. 关键词:MATLAB;数值计算;插值及曲线拟合本文从MATLAB的功能特点出发,阐述了它在数值计算中的基本要素和相关函数,以工程计算中常用到的数据插值和曲线拟合为主旨,通过三个实例,验证、分析了用MATLAB进行数据的插值和曲线拟合的合理性、可靠性和 准确性。 1插值及曲线拟合 插值与拟合是来源于实际、又广泛应用于实际的两种重要方法.随着计算机的不断发展及计算水平的提高,它们在国民经济和科学研究等方面扮演着越来越重要的角色。 1 .1插 值 插值计算在数据拟合和数据平滑等方面应用普遍。插值计算的目的是通过离散的数据点来获得更为丰富的信息,它可以细分为一维插值和二维插值。一维插值是在线的方向上对数值点进行插值:二维插值则可以理解为在面的方向上进行插值。比较典型的例子就是在绘图过程中,当绘制二维曲线时,利用一维插值从少量数据中获得足够的信息进行描点;在绘制三维曲线时,则必须对两个方向的数据进行插值来获得其他点的信息。 1.2曲线拟合 很多的时候,在工程研究与计算中得到的原始数据往往只是在某些点上的离散值,它们所代表的函数关系不易得出一个容易表示的数学表达式;或者所得出的数据的函数表达式比较复杂,不易计算,这样在计算这些函数其他所需要的数值方面就带来了诸多不便.解决这个难题的方法之一就是利用一些性质相对“好”的简单函数,在某种规定和标准之下,去拟合或逼近这些“困难”函数,然后通过这些简单函数去获得所希望得到的结果。曲线拟合根据拟合方法的不同,有参数拟合和非参数拟合。参数拟合,曲线不通过所有点,采用最小二乘法:非参数拟合,曲线通过所有点,采用插值法。 2插值及曲线拟合应用实例 2. 1一维插值与拟合应用 一维插值是进行数据分析和曲线拟合的重要手段,interp 1函数使用多项式技术,用多项式函数拟合所提供的数据,计算目标插值点上的

最小二乘法的多项式拟合matlab实现

最小二乘法的多项式拟 合m a t l a b实现 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

用最小二乘法进行多项式拟合(matlab 实现) 西安交通大学 徐彬华 算法分析: 对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使 函数P(x)称为拟合函数或最小二乘解,令似的 使得 其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求 的极值问题。由多元函数求极值的必要条件: j=0,1,…,n 得到: j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:

因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an ) 试验题1 编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i y i 总共有7个数据点,令m=6 第一步:画出已知数据的的散点图,确定拟合参数n; x=::;y=[,,,,,,]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on {} n k k x 0=

因此将拟合参数n设为3. 第二步:计算矩阵 A= 注意到该矩阵为(n+1)*(n+1)矩阵, 多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下: m=6;n=3; A=zeros(n+1); for j=1:n+1 for i=1:n+1 for k=1:m+1 A(j,i)=A(j,i)+x(k)^(j+i-2) end end

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法 学院:光电信息学院 姓名:赵海峰 学号: 200820501001 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。 若记 m ( j , k ) i (x i ) j (x i ) k (x i ), 0 m (f , k ) i0 (x i )f (x i ) k (x i ) d k n 上式可改写为 ( k , jo j )a j d k ; (k 0,1,..., n) 这个方程成为法方程,可写成距阵 形式 Ga d 其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T , 、 数值实例: 下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。 它的平方误差为: || 2 | 2 ] x ( f

(2008 年 10 月 26~11 月 26) F 面应用Matlab 编程对上述数据进行最小二乘拟合 三、Matlab 程序代码: x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; %三次多项式拟合% %九次多项式拟合% %十五次多项式拟合% %三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像% %用红色线画出x,b1图像% %用绿色线画出x,b2图像% %用蓝色o 线画出x,b3图像% 四、数值结果: 不同次数多项式拟和误差平方和为: r1 = 67.6659 r2 = 20.1060 r3 = 3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和 拟和曲线如下图: a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A 2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on plot(x,b2, 'g') hold on plot(x,b3, 'b:o')

Matlab 线性拟合 & 非线性拟合

Matlab 线性拟合& 非线性拟合 分类:Computer Vision MATLAB 2012-06-22 21:24 46022人阅读评论(5) 收藏举报matlabplotrandomc图像处理 目录(?)[+]使用Matlab进行拟合是图像处理中线条变换的一个重点内容,本文将详解Matlab中的直线拟合和曲线 拟合用法。 关键函数: fittype Fit type for curve and surface fitting Syntax ffun = fittype(libname) ffun = fittype(expr) ffun = fittype({expr1,...,exprn}) ffun = fittype(expr, Name, Value,...) ffun= fittype({expr1,...,exprn}, Name, Value,...) /***********************************线性拟合***********************************/ 线性拟合公式: coeff1 * term1 + coeff2 * term2 + coeff3 * term3 + ... 其中,coefficient是系数,term都是x的一次项。 线性拟合Example: Example1: y=kx+b; 法1: [csharp]view plaincopyprint? 1.x=[1,1.5,2, 2.5,3];y=[0.9,1.7,2.2,2.6,3]; 2.p=polyfit(x,y,1); 3.x1=linspace(min(x),max(x)); 4.y1=polyval(p,x1); 5.plot(x,y,'*',x1,y1); 结果:p = 1.0200 0.0400

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

最小二乘法Matlab自编函数实现及示例.docx

、最小二乘拟合原理 x= xl x2 ... xn y= yl y2 ... yn 求m 次拟合 ?力* y 卅…I ZA ; A T A = ZX 茁 X x i - X x i +1 ,- ? ? ? [函Oi …备F =⑷矿丄? A T y 所以m 次拟合曲线为y = a 0 +勿?怎+吐■审+???? +如■牙皿 二、 Matlab 实现程序 function p=funLSM (x, y, m) %x z y 为序列长度相等的数据向量,m 为拟合多项式次数 format short; A=zeros(m+l,m+l); for i=0:m for j=0:m A(i + 1, j + 1)=sum(x.A (i+j)); end b(i+1)=sum(x.A i.*y); end a=A\b 1; p=fliplr (a'); 三、 作业 题1:给出如下数据,使用最小二乘法球一次和二次拟合多项式(取小数点后3位) X 1.36 1.49 1.73 1.81 1.95 2.16 2.28 2.48 Y 14.094 15.069 16.844 17.378 18.435 19.949 20.963 22.495 解:

? x=[1.36 1.49 1.73 1. 81 1. 95 2. 16 2. 28 2. 48]: ? y=[14.094 15.069 16.844 17. 378 18.435 19.949 20.963 22.495]; >> p=funLSM(x, y? 1) P = 7.4639 3.9161 >> p=funLSM(x, y? 2) P = 0.3004 6.3145 4.9763 一次拟合曲线为: y = 7.464x+ 3.91S 二次拟合曲线为: y = +6.315^4-4.976 一次拟合仿真图

Matlab中的拟合与差值

您正在看的MATL AB是:曲线拟合与插值。 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.12阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

?x=[0.1.2.3.4.5.6.7.8.91]; ?y=[-.4471.9783.286.167.087.347.669.569.489.3011.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ?n=2;%polyno mial order ?p=poly fit(x, y, n) p = -9.810820.1293-0.0317 polyfit的输出是一个多项式系数的行向量。其解是y= -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 ?xi=linspace(0, 1, 100);%x-axis data for plotting ?z=polyval(p, xi); 为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。 ?plot(x, y, ' o ' , x, y, xi, z, ': ') 画出了原始数据x和y,用'o'标出该数据点,在数据点之间,再用直线重画原始数据,并用点' : '线,画出多项式数据xi和z。 ?xlabel('x '), y label('y=f(x) '), title('Second Order Curv e Fitting ') 将图作标志。这些步骤的结果表示于前面的图11.1中。

matlab非线性参数拟合估计_很好的参考材料

使用nlinfit、fminsearch在matlab中实现基于最小二乘法的 非线性参数拟合 (整理自网上资源) 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 ...... 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y polyfit函数 polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。 1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2) 然后可以使用polyval在t处预测: y_hat=polyval(p,t) polyfit函数可以给出置信区间。 [p S]=polyfit(x,y,2) %S中包含了标准差 [y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测 在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)

MATLAB在非线性曲线拟合中的应用研究

MATLAB 在非线性曲线拟合中的应用小结 摘要:归纳总结了非线性曲线拟合的方法、求解步骤和上机操作过程 关键词:曲线拟合非线性MATLAB 正文: 1.曲线拟合的基本原理 已知一组测定的数据(例如N 个点(xi,yi )去求得自变量x 和因变量y 的一个近似解析表达式y=φ(x )。若记误差δi=φ(xi )-yi ,i=1,2,…N ,则要使误差的平方和最小,即要求: ∑==N i i Q 1 2 δ 为最小,这就是常用的最小二乘法原理。 2 .MATLAB 曲线拟合的相关方法 2.1.函数形式: (1)多项式拟合函数polyfit ,调用格式为: p=polyfit (x,y,n ) 其中x ,y 为参与曲线拟合的实验数据,n 为拟合多项式的次数,函数返回值为拟合多项式的系数(按降幂排列)。n=1时,就为线性拟合。 例1:给出表1数据,试用最小二乘法求一次和二次拟合多项式。 表1 数据 在MATLAB 命令窗口中输入: clear; close; x=-1:0.25:1; y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836] p1=polyfit(x,y,1) p2=polyfit(x,y,2) y1=polyval(p1,x); y2=polyval(p2,x); plot(x,y,'+',x,y1,'r:',x,y2,'k-.') 运行结果:

拟合多项式为:y*=2.0516+2.0131和y*=0.0313x2+2.2516x+2.20001 (2)非线性数据拟合函数lsqcurvefit 调用格式为: c=lsqcurvefi (t'fun',x0,xdata,ydata ) 其中'fun'为拟合函数的M -函数文件名,x0为初始向量,xdata,ydata 为参与曲线拟合的实验数据。函数返回值c 为非线性函数fun 的拟合系数。 例2:2004年全国大学生数学建模竞赛C 题(酒后驾车)中给出某人在短时间内喝下两瓶啤酒后,间隔一定的时间测量他的血液中酒精含量y (毫克/百毫升),得到数据如表2。 表2 酒精含量与饮酒时间的实验数据 通过建立微分方程模型得到短时间内喝酒后血液中 酒精浓度与时间的关系为: )(321t c t c e e c y ---= (2) 根据实验数据,利用非线性拟合函数lsqcurvefit ,确定模型(2)式中的参数c1,c2,c3。求解过程为: 先编写一个M -函数文件Example2_1: function f=Example2_1(c,tdata) f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata)); 保存后,在命令窗口中输入: clear tdata=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]; ydata=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 8 15 12 10 7 7 4]; c0=[1 1 1];

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序 非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y. x=[1,2,3,4] y=[3,4,5,6] 通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算. polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形 回车打开polytool交互式界面 回车继续进行拟合 输入多项式拟合的阶数m = 4 Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72 In zxecf at 64 输出多项式的各项系数 a = 0.0200000000000001 a = -0.2000000000000008 a = 0.7000000000000022 a = 0.0000000000000000 a = 2.4799999999999973 输出多项式的有关信息 S R: [4x5 double] df: 0 normr: 2.3915e-015 Warning: Zero degrees of freedom implies infinite error bounds. > In polyval at 104 In polyconf at 92 In zxecf at 69 观测数据拟合数据 x y yh 1.0000 3.0000 3.0000 2.0000 4.0000 4.0000 3 5 5 4.0000 6.0000 6.0000 剩余平方和 Q = 0.000000 标准误差 Sigma = 0.000000 相关指数 RR = 1.000000 请输入你所需要拟合的数据点,若没有请按回车键结束程序. 输入插值点x0 = 3 输出插值点拟合函数值 y0 = 5.0000

相关文档
最新文档