浅析地下水污染物的迁移与转化

浅析地下水污染物的迁移与转化
浅析地下水污染物的迁移与转化

浅析地下水污染物的迁移与转化

摘要:随着淡水资源日益紧缺,合理利用和保护地下水资源逐渐得到社会的广泛关注。有机污染物对地下水资源的污染已成为当前地下水污染防治与保护的焦点问题。随着工农业的发展,越来越多的有机化学污染物进入自然环境,这些有机污染物随着地表径流流入渗到地下水环境中,对地下水系统造成污染。地下水是人类的主要饮用水来源之一,水中的有机污染直接或间接对人类健康造成严重危害。研究有机污染物在地下水环境中迁移转化具有重要的理论和现实意义。

关键词:地下水有机污染物迁移与转化

一、我国地下水污染源和污染物状况

1. 地下水污染的主要表现

1.1有机化合物(如合成染料,油类及有机农药)出现于地下水。

1.2极其微量的毒性金属元素(如汞、铬、铅、砷及其他放射性元素)出现于地下水中。

1.3各种细菌,病毒大量繁殖于地下水。

地下水硬度,矿化度,酸度和某些单项离子超过使用标准。[1]

2、我国地下水有机污染物的特点及危害

目前,我国大部分地区的地下水物污染日趋严重,且具有种类多、含量低、危害大、治理难等特点。在浅层地下水中有机污染物主要有三氯甲烷、PCE、TCE 等[2]。许多有机污染物具有致癌、致畸、致突变效应,严重影响人体健康,且有机污染物在地下水环境中难以通过自然降解过程去除,可能长期存在并累积,有机污染物对我国地下水污染日趋严重。

3、地下水污染物的研究现状

近年,国内外学者在地下水溶质迁移理论和试验研究方面取得了新的进展:对污染物迁移的弥散系数提出了与时空相关的表达式;大量的试验研究使得迁移方程中的衰减、离子交换、生物、化学反应的系数考虑更全,取值更合理,并考虑了污染物的固相和液相浓度的相互转化关系,吸附条件则由平衡等温模式发展到考虑非平衡吸附模式【3】。

二、地下水污染物的迁移转化研究

环境水力学在地下水污染物迁移中的应用

环境水力学在地下水污染物迁移中的应用

环境水力学在地下水污染物迁移中的应用 摘要:地下水污染问题日益严重,研究污染物在地下水中的迁移过程是解决地下水污染的最主要途径之一。本文通过查阅大量文献,综合国内外研究现状,从地下水污染物特性及地下水运移介质特性两方面出发,分析环境水力学在地下水污染物迁移理论中的应用,并从国内工程应用角度提出环境水力学尤其是数值模拟法在地下水污染物迁移研究中存在的问题及其未来发展趋势。 关键词:环境水力学地下水污染物迁移理论分析实验模拟数值模拟 1 环境水力学的发展现状 1.1 环境水力学学科定义 环境水力学是一门新兴学科,其研究内容尚在探索与发展中。从广义上讲,环境水力学是研究与环境有关的水力学问题,即研究污染物在水体中混合输移的规律及其应用的学科,是水力学的一个新分支。其研究内容除水污染、水生态问题外还有许多其它方面的问题,比如水土保持、河道冲淤、洪水破坏作用、冰凌水力学等等。[1]如果说传统水力学主要是研究水流自身运动规律的话,环境水力学则主要是研究水体中所含物质的运动规律,是传统水力学的一种发展,其内容涉及水文学、水力学、水化学、水生物学、生态学、湖沼学、海洋学和沉积学等,是一门综合性很强的交叉学科。[2]美国环境与水资源研究所环境水力学技术委员会提出“环境水力学特别着重于将物理因素(水动力学、泥沙输移和地形条件)、化学因素(保守与非保守物质的传输、反应动力学和水质)和生物因素(生态学)作为一个系统来进行研究。” [3]从与水污染有关的水力学问题来说,环境水力学主要研究地面及地下水域中物质的扩散、输移和转化规律,建立其分析计算方法,确定物质浓度的时空分布及其应用。工农业生产及生活中的污水、废热,未经足够处理,就排入河流、湖泊、海洋及地下水等水域中,污染水体,恶化水质,日益严重地影响生态、环境。污染物在水体中会因与水体混合,随水流输移而稀释,也会因化学、生物作用而降解。因此,水体本身有一定的自净能力。环境水力学的主要目标是,探求因混合、输移而形成的污染物浓度随空间和时间的变化关系,为水质评价与预报、水质规划与管理、排污工程的规划设计以及水资源保护的合理措施提供基本依据。[4] 地下水作为水体的一部分,其运动规律适用于环境水力学的大多数方法,但由于其运移介质的特殊性,亦呈现出一定特殊性。因此,地下水中污染物质的输移、转化和积累成为重要的研究课题。污染物在地下水中的输移速率较小,一旦地下水被污染就很难恢复原来的水质。地下水的过度开采会严重破坏生态系统的平衡,在临近滨海地区还会引起海水入侵,造成地下水盐化。 1

浅析地下水污染物的迁移与转化

浅析地下水污染物的迁移与转化 摘要:随着淡水资源日益紧缺,合理利用和保护地下水资源逐渐得到社会的广泛关注。有机污染物对地下水资源的污染已成为当前地下水污染防治与保护的焦点问题。随着工农业的发展,越来越多的有机化学污染物进入自然环境,这些有机污染物随着地表径流流入渗到地下水环境中,对地下水系统造成污染。地下水是人类的主要饮用水来源之一,水中的有机污染直接或间接对人类健康造成严重危害。研究有机污染物在地下水环境中迁移转化具有重要的理论和现实意义。 关键词:地下水有机污染物迁移与转化 一、我国地下水污染源和污染物状况 1. 地下水污染的主要表现 1.1有机化合物(如合成染料,油类及有机农药)出现于地下水。 1.2极其微量的毒性金属元素(如汞、铬、铅、砷及其他放射性元素)出现于地下水中。 1.3各种细菌,病毒大量繁殖于地下水。 地下水硬度,矿化度,酸度和某些单项离子超过使用标准。[1] 2、我国地下水有机污染物的特点及危害 目前,我国大部分地区的地下水物污染日趋严重,且具有种类多、含量低、危害大、治理难等特点。在浅层地下水中有机污染物主要有三氯甲烷、PCE、TCE 等[2]。许多有机污染物具有致癌、致畸、致突变效应,严重影响人体健康,且有机污染物在地下水环境中难以通过自然降解过程去除,可能长期存在并累积,有机污染物对我国地下水污染日趋严重。 3、地下水污染物的研究现状 近年,国内外学者在地下水溶质迁移理论和试验研究方面取得了新的进展:对污染物迁移的弥散系数提出了与时空相关的表达式;大量的试验研究使得迁移方程中的衰减、离子交换、生物、化学反应的系数考虑更全,取值更合理,并考虑了污染物的固相和液相浓度的相互转化关系,吸附条件则由平衡等温模式发展到考虑非平衡吸附模式【3】。 二、地下水污染物的迁移转化研究

地下水有机污染调查与评估

地下水有机污染调查与评估 姓名:王学良学号:110924 专业:自动化成绩; (北京石油化工科学院自动化系,北京102617) 摘要:随着经济的发展,人们生活中制造的垃圾也急剧提升,从最原始的灰尘到白色污染的塑料和生活中的废弃物,都是越来越多。在我国主要城市,其中有机污染物的占有率更是越来越多,那么对这些有机物污染的处理问题与技术也是越来越迫在眉睫,在当今社会,对有机污染物的处理技术到底处于何种间断,这是我们这里需要讨论和研究的重点。,采用一些技术进行评价,并对不同方法评价和评价结果进行分析,同时,提高全社会的科技意识,环保意识和参与意识,这样才是提高资源综合利用水平的途径。本文主要论述地下水有机污染的状况,和对地下水的有机污染物的影响地下水有机污染物迁移转化的作用和因素、地下水有机污染自然衰减和主动修复技术等进行了讨论。 关键词:地下水;有机污染;技术评估 一、地下水有机污染的来源与状况 人类在生产实践活动中对有机物的不合理排放及不适当处理,导致其进入地质环境,造成地下水的有机污染。近年来,由于我国城市急剧扩张,导致城市污水排放量的大幅增加,由于管网建设相对滞后、维护保养不及时,管网漏损导致污水外渗,部分进入地下水体;雨污分流不彻底,汛期污水随雨水溢流,造成地下水污染。 部分行业威胁地下水环境安全,2009 年全国5亿多吨生活与工业有机废物未得到有效综合利用或处置,生活有机废气液体渗漏污染地下水事件时有发生;石油化工行业勘探、开采及生产等活动显著影响地下水水质,加油站渗漏污染地下水问题日益显现;部分工业企业通过渗井、渗坑和裂隙排放、倾倒工业废水,造成地下水污染;部分地下水工程设施及活动止水措施不完善,导致地表污水直接污染含水层,以及不同含水层之间交叉污染。 在国内,地表水污染对地下水影响日益加重,特别是在黄河、辽河、海河及太湖等地表水污染较严重地区,因地表水与地下水相互连通,地下水污染十分严重。部分沿海地区地下水超采,破坏了海岸带含水层中淡水和咸水的平衡,引起了沿海地区地下水的海水入侵。 在国外,据已有调查资料,美国的50个州均有微量有机物的报道,且污染物的种类很多,远远大于无机污染物的种类。1987年美国地下水中已发现了175种有机化合。从统计数据来看,三氯乙烯和四氯乙烯是地下水中检出率很高的有机污染物。日本东京的地下水中于1974年首次发现有"ICE存在。随后的调查表

地下水污染的定义和特征

1 地下水污染及其特点 1.1基本概念 凡是在人类活动影响下,地下水水质朝着恶化方向发展的现象。地下水污染源可分为人为污染源和天然污染源两大类。地下水污染物是指:凡是人类活动导致进入地下水环境,会引起水质恶化的溶解物或悬浮物,无论其浓度是否使水质恶化达到影响其使用的程度。按其性质可分为3类: 化学污染物、生物污染物和放射性污染物。按其形态又分为液体污染物和固体污染物两大类。地下水污染途径是指污染物从污染源进入地下水所经过的路径。研究地下水的污染途径有助于制订正确的防治地下水污染的措施。按照水力学特点可分为4类:间歇入渗型、连续入渗型、越流型和径流型。 1.2地下水污染的特点 一般而言,地下水由于贮存于地下含水介质中,不易被污染。一方面,包气带具有过滤屏障作用, 可将进入地下的有害物质优先过滤掉;另一方面,污染物在进入地下水沿途易被土壤、岩石及水体中的微生物降解而成无害的物质,因而地下水的污染常被人们忽视。但是,由于环境容量的有限性, 污染物进入地下水系统超出其自净能力时, 将会对地下水造成一定污染。地下水一旦被污染, 很难被及早发现, 其后果莫测。地下水污染具有如下特点。 (1)不确定性,由于地下水含水介质的差异性和复杂性,决定了地下水污染范围的不确定性。地下水一旦被污染,其范围很难准确圈定。 (2)隐蔽性。地下水一旦被污染, 很难被发现,不像地表水污染直观明显而易于监测,因而常不会引起人们的关注。 (3)延时性。地下水污染早期不易被觉察,待人们发觉水质有明显变异特征时,才确定地下水已被污染或严重污染。 (4)广泛性。由于地下水是处于不断运移和循环中,经历着补给、径流、排泄各个途径,在地质环境复杂的体系中,各个水力系统又有着密切的水力联系,从而决定了地下水污染范围的广泛性。而地表水污染仅局限于水体所流经或贮存的有限空间内。 (5)不可还原性。地下水运移于含水介质中,由于受含水介质差异性、空隙、裂隙系统的限制,使地下水的运移速率极其缓慢,地下水在含水系统中的循环周期也相当长(几年、几十年、几百年),从而决定了污染地下水体在地下滞留时间亦长,使污染的地下水在近期内很难得以彻底修复还原。而地表水循环流动迅速,只要排除污染源,并加以一定的改善措施,水质还是能在短期内得到改善、净化的。

3.2水中无机污染物的迁移转化(3)

第三章:水环境化学——污染物存在形态 第二节、水中无机污染物的迁移转化 一、颗粒物与水之间的迁移、二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原 1、概述 2、天然环境中的氧化剂和还原剂 3、氧化还反应概念回顾 4、电子活度和氧化还原电位 5、天然水体的pE-pH 关系图 ● 在氧化还原体系中,往往有H +或OH -离子参与转移,因此,pE 除了与氧化态和还原 态浓度有关外,还受到体系pH 的影响,这种关系可以用pE-pH 图来表示。该图显示了水中各形态的稳定范围及边界线。 ● 由于水中可能存在物类状态繁多,于是会使这种图变得非常复杂。例如一个金属, 可以有不同的金属氧化态、羟基配合物、金属氢氧化物、金属碳酸盐、金属硫酸盐、金属硫化物等。 (1)水的氧化-还原限度 绘制pE —pH 图时,必须考虑几个边界情况。首先是水的氧化还原反应限定图中的区域边界。选作水氧化限度的边界条件是1.0130×105Pa 的氧分压,水还原限度的边界条件是1.0130×105Pa 的氢分压(此时P H2=1,P O2=1),这些条件可获得把水的稳定边界与pH 联系起来方程。 天然水中本身可能发生的氧化还原反应分别是: 水的还原限度(还原反应):22 1H e H ? ++ pE 0 =0.00 pE = pE 0 – lg((P H2)1/2/[H +]) pE = –pH 水的氧化限度(氧化反应):O H e H O 222 1 41?+++ pE 0 = +20.75 ]}[lg{4 1 20 ++=H po pE pE pE=20.75—pH

(2)pE—PH图 假定溶液中溶解性铁的最大浓度为1.0×10-7mol/L,没有考虑Fe(OH) 2+及FeCO 3 等形态 的生成,根据上面的讨论,Fe的pE—pH图必须落在水的氧化还原限度内。下面将根据各组分间的平衡方程把pE—pH的边界逐一推导。 ①Fe(OH) 3(s)和Fe(OH) 2 (s)的边界。Fe{OH} 3 (s)和Fe(OH) 2 (s)的平衡方程为: Fe(OH) 3(s)+H+ + e→Fe(OH) 2 (s)+H 2 O lgK = 4.62 ] ][ [ 1 e H K + =,所以 pE =4.62–pH 以pH对pE作图可得图3—17中的斜线①,斜线上方为Fe(OH) 3 (s)稳定区。斜线下 方为Fe(OH) 2 (s)稳定区。 ②Fe(OH) 2 (s)和FeOH+的边界。根据平衡方程: Fe(OH) 2(s)+H+→FeOH++ H 2 O lgK = 4.6 可得这两种形态的边界条件:pH = 4.6–lg[FeOH+] 将[FeOH+]=1.0×10-7mol/L代人,得:pH= 11.6 故可画出一条平行pE轴的直线,如图3—17中②所示,表明与pE无关。直线左边为FeOH+稳定区,直线右边为Fe(OH) 2 (s)稳定区。 ③Fe(OH) 3 (s)与Fe2+的边界。根据平衡方程: Fe(OH) 3(s) +3H+ +e→Fe2+ + 3H 2 O lgK=17.9 可得这二种形态的边界条件:pE=17.9–3pH–lg[Fe2+] 将[Fe2+]以1.0×10-7mol/L代入,得:pE=24.9–3pH 得到一条斜率为–3的直线,如图3—17中③所示。斜线上方为Fe(OH) 3 (s)稳定区,斜 线下方为Fe(OH) 2 (s)稳定区。 ④Fe(OH) 3 (s)与FeOH+的边界。 根据平衡方程:Fe(OH) 3(s)+2H+ +e→FeOH++2H 2 O lgK=9.25 将[FeOH+]以1.0×10-7mol/L代入,得:pE=16.25-2pH 得到一条斜率为–2的直线,如图3—17中④所示。斜线上方为Fe(OH) 3 (s)稳定区,下方为FeOH+稳定区。 ⑤Fe3+与Fe2+的边界。根据平衡方程:Fe3++e →Fe2+ lgK = 13.1

污染物在环境中的迁移和转化(1)

污染物在环境中的迁移和转化 第一节概述 一、污染物的迁移和转化的定义 污染物在环境中发生的各种变化过程称之为污染物的迁移和转化(transport and transformation of pollutants),有时也称之为污染物的环境行为(environmental behavior)或环境转归(environmental fate)。 二、研究污染物在环境中迁移和转化过程及其规律性的意义 1. 可阐明污染物种类,接触的浓度、时间、途径、方式和条件,从而研究相关毒作用。 研究污染物在环境中的迁移和转化的过程及其规律性,对于阐明人类在环境中接触的是什么污染物,接触的浓度、时间、途径、方式和条件等都具有十分重要的环境毒理学意义,否则就不能阐明有预谋中接触而导致的一系列毒作用。 2. 环境毒理学的许多基本问题在一定程度上也取决于对污染物在环境中的迁移和转化规律的认识。 例如:污染物的物质形态、联合作用、毒作用的影响因素、剂量效应关系等,都要涉及到接触污染物的真实情况的确定。 第二节环境污染物的迁移 一、概念 污染物的迁移(transport of pollutants)是指污染物在环境中发生的空间位置的相对移动过程。迁移的结果导致局部环境中污染物的种类、数量和综合毒性强度发生变化。 二、机械性迁移 根据污染物在环境中发生机械性迁移的作用力,可以将其分为气的、水的、和重力机械性迁移三种作用。 1.气的机械性迁移作用,包括污染物在大气中的自由扩散作用和被气流搬运的作用。 其影响因素有:气象条件、地形地貌、排放浓度、排放高度。 一般规律:污染物在大气中的排放量成正比,于平均风速和垂直混合高度成反比。 2.水的机械性迁移作用,包括污染物在水中的自由扩散作用和被水流的搬运作用。 一般规律:污染物在水体中的浓度与污染源的排放量成正比,与平均流速和距污染源的距离成反比。3.重力的机械迁移作用,主要包括悬浮物污染物的沉降作用以及人为的搬运作用。 三、物理化学迁移 物理化学迁移是污染物在环境中最基本的迁移过程。污染物以简单的离子或可溶性分子的形势发生溶解-沉淀、吸附-解吸附。同时还会发生降解等作用。 1.风化淋溶作用风化淋溶作用是指环境中的水在重力作用下运动时通过水解作用使岩石、矿物中的化学元素溶入水中的过程,其作用的结果是产生游离态的元素离子。 2.溶解挥发作用降水、固体废弃物水溶性成份的溶解;VOC 3.酸碱作用(常表现为环境pH值的变化) ①酸性环境促进了污染物的迁移,使大多数污染物形成易溶性化学物质。如酸雨:加速岩石和矿物风化、淋溶的速度;促使土壤中铝的活化。 ②环境pH值偏高时,许多污染物就可能沉淀下来,在沉积物中,形成相对富集。 4.络合作用(改变毒物吸附和溶解的能力)络合物的形成大大改变了污染物的迁移能力和归宿。 例如:当含有Hg2+的河水流入海洋时,水中氯离子浓度逐渐增高,河口水体中的Hg2+逐次形成Hg(OH)2→Hg(OH)Cl →HgCl2→HgCl3- →HgCl42-。其中的Hg(OH)Cl与水体中的悬浮态黏土矿物和氧化物吸附力最强,而HgCl2的吸附力最差。因而,Hg(OH)Cl部分的汞大量转移到悬浮态固相或沉积物中,而部分的汞仍留在水体中。

地下水污染概念、特点及危害

地下水污染概念、特点及危害 地下水是水资源的重要组成部分,其在社会经济发展中有着十分要的作用。在我国,约有2/3的人口以地下水为饮用水源,地下水资源对于维持人民群众的生活有着重要的意义。随着地下水的开发利用规模日益增大,造成地下水位不断下降,地下水污染也不断发生,不仅影响了城乡供水质量,危及人体健康,而且还诱发出各种各样的地质环境问题,并给经济建设带来巨大损失。 地下水环境评价主要包括地下水污染评价、地下水环境质量评价和地下水防污性能评价三个方面内容。要做好地下水环境评价工作,首先得弄清楚地下水污染的基本概念。 一、地下水污染的含义 凡是在人类活动的影响下,地下水质(物理性质、化学组分、生物性状)朝着不利于人类生活或生产的水质恶化方向发展的现象,统称为地下水污染。不管此种现象是否使水质恶化达到影响使用的程度,只要这种现象一发生,就应视为污染。而在天然环境中,含矿体地层或某种水文地球化学条件影响下,所产生的地下水某些组分相对富集及贫化而使水质恶化的现象,不应视为污染,而应称为“天然异常”。 判定地下水是否污染必须具备三个条件:第一,水质朝着恶化的方面发展;第二,这种变化是由人类活动引起的;第三,地下水是否污染的判别标准是地区背景值(或称本底值,即未受人类影响的地下水各组分的天然含量),超过此值者,即可称之为污染。但这个值很难获得,所以,有时也用历史水质数据,或无明显污染来源的水质对照值来判别地下水是否污染。

在人类活动的影响下,地下水某些组分浓度的变化是由小到大的量变过程,在其浓度未超标之前,实际污染已经产生。因此,把浓度变化超标以后才视为污染,是不科学的,而且失去了预防的意义。当然,在判定地下水是否污染时,也应该参考水质标准,但其目的并不是把它作为地下水污染的标准,而是根据它判别地下水是否朝着恶化的方向发展。 二、地下水污染的特点 地下水污染是水圈污染的一部分,但地下水污染与地表水污染明显不同,具有以下三个特点: 1.隐蔽性。由于地下水污染是发生在地表以下的多孔介质中,即使地下水受某些组分严重污染,也往往是无色、无味的,不易被发现,不能像地表水那样,从颜色、气味、感观或鱼类等生物的死亡、灭绝鉴别出来。即使人类饮用了受有害或有毒组分污染的地下水,对人体的影响也只是慢性的长期效应,不易被觉察。 2.延缓性。主要表现在两个方面。(1)由于污染物在含水层上部的包气带,污水渗入过程中经过土壤各种物理化学及生物作用,则会在时间上和垂向上延缓潜水含水层的污染,对于承压含水层,由于上部的隔水顶板存在,污染物向下的运移速度会更加缓慢;(2)因地下水流缓慢和地下水在含水层中产生的各种作用,地下水污染的扩散过程亦是相当缓慢的。 3.难以逆转性。地下水一旦受污染,便很难治理及恢复。这主要是因为其流速极其缓慢,不像地表水那样流速快,靠稀释作用即可很快恢复;切断了污染来源后,靠含水层本身的自然净化,所需的时间长达十年、几十年、甚至上百年。 三、地下水污染的危害及与人体健康

石油类污染物在土壤和地下水中的污染模拟

2、土壤污染模拟 土壤是一个多相的疏松的多孔介质,固相中有大量的有机和无机胶体。石油是一种天然的粘油状液体,主要成分为烃类化合物(占80%一90%)。烃类化合物是非极性有机物,其偶极矩<1,介电常数<3,在土壤中有一定的吸附作用。地表的石油可以在重力作用下入渗,也可能随地面水或雨水沿着土壤毛细管孔隙向下渗透污染土壤,甚至进一步向下淋滤污染地下水。石油类污染物质在土壤入渗过程中,由于土壤中存在着大量的有机和无机的胶体,使得进入土壤中的污染物不断地被吸附。吸附能力与土壤的质地、石油的性质有密切联系。通常,石油烃类在土壤介质吸附程度以分配系数Kd来表示。 式中:Cs为平衡时固相中的浓度(mg/kg);Ce为平衡时液相中的浓度(mg/l)根据土壤中溶质运移模型和石油类污染物质在土壤中的迁移转化过程,考虑吸附作用而忽略石油的挥发,建立石油类污染物质在土壤中迁移转化二维综合模型。它包括水运动方程和石油运动方程。 土壤中水运动方程: 土壤中石油类运动方程: 式中:C(h)为比水容量(cm-1);K x、K z分别为横向纵向水力传导系数(cm/d);Dxx、Dzz分别为横向纵向弥散系数(cm2/d);Rd为滞留因子;c为液相中石油的浓度(mg/l);qx、qz分别为x和z方向的达西流速(cm/d);θ为含水量(%);λ为降解系数(d-1);h为土壤中压力水头(cm)。 初始条件和边界条件 根据监测的结果和落地油的分布特征,预测石油类在土壤中迁移过程及石油是否会对地下水造成污染,选择预测范围为:长80m,深6m剖面区域。并对部分问题可进行简化处理,作一些基本假设。假设土壤水最初不含石油,即未受到污染,但土壤中存在一定的本底值,经取样测定取平均值为40.3mg/kg。在土壤的预测范围内,土壤被认为是均质的。 对水运动方程上边界确定为Cauchy边界,下边界为Neumann边界。

地下水污染类型

地下水污染类型 造成地下水水质恶化的各种物质都称为地下水污染物。地下水污染物的种类按理化性质可分为: 物理污染物、化学污染物、生物污染物、综合污染物;按形态可分为: 离子态污染物、分子态污染物、简单有机物、复杂有机物、颗粒状污染物;按污染物对地下水的影响特征可分为: 感官污染物、卫生污染物、毒理学污染物、综合污染物。 一、病原微生物污染 受生活污水、医院污水及垃圾等污染的地下 水中,常含有各种病原菌、病毒和寄生虫,其所产 生污染的特点是数量大、分布广、存活时间长、 繁殖速度快、易产生抗药性,传统的二级生化污 水处理及加氯消毒后,某些病原微生物仍能大量 存活。因此,当人类饮用了含此类污染物的地下 水后,极易引起疾病。 二、耗氧有机物污染 当生活污水及部分工业废水中含有的碳水化合物、蛋白质及脂肪和木质素等有机物进入地下水中后,在生物化学作用下易于分解而消耗水中的溶解氧,并提供病原微生物所需的营养,从而使地下水水质变差。地下水中耗氧有机物愈多,耗氧愈多,水质愈差,地下水污染愈严重。 三、无机有害物污染 主要指亚硝酸根、硝酸根、硫酸根、磷酸根等对地下水造成的污染。亚硝酸根被吸入人体血液后,能与血红蛋白结合形成失去输氧功能的变形血红蛋白使

组织缺氧而中毒,重者可因组织缺氧而导致呼吸循环衰竭。另外,亚硝酸根在人体内还可与仲胺作用生成亚销胺,亚销胺有强烈的致癌作用,同时还有致畸胎和致遗传变异的可能。硝酸根是亚硝酸根进一步氧化的产物,因此它可以被还原成亚硝酸根。硫酸根主要来源于硫酸制造选矿场、矿坑水、钢铁酸洗厂、煤加工厂等。硫酸镁和硫酸钠对胃、肠有刺激作用,可引起肠道机能失调,也可以使水味便坏。当人类饮用了上述无机有害物含量较高的地下水后,极易对人体造成损害,并产生诸如白血病、高血压、动脉硬化及损伤神经系统。 四、无机有毒污染 主要指氟离子、氰离子、硫离子等对地下水的污染。氟及其化合物主要来源于磷肥工业、电解制铝、硫酸、冶炼及制造含氟农药、塑料等工业废水。如果长期饮用含氟量过高的水,将会引起人体骨骼改变等全身慢性疾病,致人残废。氰化物主要来源于含氰工业废水,包括电镀废水、焦炉和高炉的煤气洗涤液等。氰化物是剧毒物质,经人体消化道或呼吸道进入肌体后,迅速被吸收,与高铁型细胞素氧化酶结合,变成氰化高铁型细胞色素氧化酶,失去传递氧的作用,引起组织缺氧而导致中毒。硫化物污染主要有甲硫醇、二甲硫、硫化氢等。硫化氢有刺激性,进入血液后部分与血红蛋白结合,生成硫化血红蛋白而使人出现中毒症状。 五、金属有害物污染 主要指钙、镁、锰等金属离子对地下水的污染。钙、镁在水中的含量是构成水硬度的主要成分。饮用高硬度的水,特别是永久高硬度的水,不仅有苦、涩味,而且还可引起消化功能紊乱、腹泻。锅炉用永久硬水易结垢,使导热系数减小,能耗成倍增加,并易造成爆炸。锰是人体必须元素之一,但锰也有毒性,人体吸收过多锰会产生慢性中毒,可能引起震颤麻痹、肺炎、记忆力下降、心动过速等病症。 六、重金属有毒物污染 主要指汞、铬、铅、砷等对地下水的污染。由于重金属污染的特点是不能被生物分解去毒,只有形态变化,而水体中通常被生物富集,这样,即使很低的浓度也能通过动、植物的食物链作用,产生极高的浓度。当人类饮用重金属有毒物浓度较高的地下水时,易产生肢体麻木、骨骼软化萎缩、毒害中枢神经、皮肤癌等并可影响神经系统。

地下水的污染特点及防治措施探讨

地下水的污染特点及防治措施探讨 地下水资源也是城市建设中不可忽视的重要部分,但是近几年来由于人们过度重视经济的发展,因此忽视了对地下水资源的保护。地下水资源遭到严重污染,数量也急剧减少,政府未能及时进行地下水污染防治,致使水资源出现极度缺失的现象,而且还对人们的日常生活造成严重影响。本文围绕着地下水污染的特点和防治措施进行研究和探讨,且将研究的重点放在地下水污染的防治措施上,希望对地下水污染的防治有所助益。 标签:地下水资源;污染特点;防治措施 水资源是人类赖以生存的“生命之源”。近几年来,我国的经济确实发展较为迅速,但是同样地,我们也付出了一定的代价,我国的水资源已经严重缺失,部分地区已经出现干旱现象。造成这种结果的原因归结起来就是两大方面,地下水资源的浪费为其一,而其二便是地下水资源的污染。地下水资源的缺失和污染严重影响人们的日常生活,甚至于会威胁人们的未来。因此,地下水污染的防治问题便是本文的研究重点。 一、地下水的污染特点 (一)隐蔽性 与地表水相比,由于地下水本身所处的位置不同,人们比较不容易察觉地下水的污染,因此地下水的污染具有一定的隐蔽性。一般来说,人们可以通过观察水的气味、颜色来检测地表水是否遭受污染,但是如果是地下水被污染,人们难以通过肉眼来进行判断,甚至于难以察觉地下水已经遭受到污染,因此,如果人们饮用了遭受污染的地下水,就会对身体造成一定的伤害。 (二)不可逆性 由于地下水所处位置在地下,因此流动性和自身的净化能力没有地表水那么强,如果地下水遭受污染,可能十几年甚至于几十年后才有可能被发现,治理起来不但耗费时间,还会耗费一定的人力和物力,且难度较大[1]。因此,在管理地下水资源时,最好将重点放在管理地下水污染的预防工作上,如果能将地下水污染的预防工作做好,将在一定程度上使地下水被污染的概率得以降低,同时也能使地下水污染治理起来难度大大降低。 二、地下水污染的防治措施 (一)合理使用化肥农药 导致地下水被污染的主要原因是化肥及农药的使用不当,因此在预防和治理地下水污染时,要重点防控化肥和农药,只有合理使用化肥及农药,地下水污染

地下水常见无机污染物研究进展.

第5期岩矿测试htfW.ksantfWWyc.cc p2100正():28—108183o.[6罗泽娇,孟贵.3]靳地下水三氮污染的研究进展[]J.水文地质工程地质,022()66.20,94:5—9[3龙新宪,肖娥,2]杨倪吾钟.金属污染土壤修复技术重研究的现状与展望[]应用生态学报,022J.20,7()77—6.6:572[7]3 UPSEA.EA81F9-2T,aoapmaP1--50一Ntnlrr0iiydniareuaosS.95igerrknwtgltn[]19.i[4王呜刚,小换,晓风.物修复重金属污染土壤2]任刘植[8张燕,3]陈英旭,刘宏远.地下水硝酸盐污染的控制对策及去除技术[]农业环境保护,0,12:38.J.222()1—1084[9sPlRW.Nttrutnbeoanto:3]uM,usiaecoyzrl—rnredivaiEetfrt,oaaecta,clreslt,fcsoomaext,itlrehoi,ufe

da的机理及其应用前景[]甘肃农业大学学报,07J.20()18—115:01.[5时文歆,2]于水利,晓霞,邱冯伟 明.电修复铅污染动土壤和地下水的初步研究[]环境科学与技术,J.20,81:12,1.052()2—315[62]LaenR,ClreR,PolW.Elcr—elmain,gmaakoetorcatobreadpohtJ.ninetlSicadoanhsatpe『]Evomnacnen reTcnl,0,()2122.ehog2439:5—70oO8y7[0Suge,onYCKugYH.iecordcv4]enheCYo,ynKntsfeuteiiavrtesirmeiiotnI.nienesioedaosliJIEgnrgalltnuoeiGooy20,73—)1121el,057(4:9—0.gdnretnbnnsazr—anin[.eifaoyaoceeoltrtiiilveoJ]Chmopee,00,eshr2041:37—11.1031[7查春花,2]张胜林,明芳,夏张林生.饮用水除氟方法及其机理[]净水技术,052()44.J.20,46:6—8刘俊峰,培元.灰沉淀法除氟的应用 李石[8李雪玲,2][]水处理技术,002()39—31J.20,66:56.[9吴自强,2]魏艳平.无机高分子絮凝剂在国内的研究进展[]鹭江职业大学学报,l,()671J.XY11:537—0.[1修宗明,4]全化民,康海彦,晓宇,柴金朝晖.屑去除铁酸法地浸采铀地下水中硝酸盐的试验研究[] J.环境工程学报,0,()34.2713:6—00[2吴未红,兴中,4]袁曾光明,文卫,文卫.李李电极一生物膜法去除地下水中硝酸盐氮[]水处理技术,J.20,15:5—7 053()55.[O王峰,,3]张昱杨敏.活性三氧化铝对饮用水中氟离子的吸附行为[]中国农业大学学报,0,()66.J.238

土壤及地下水污染研究进展.

土壤及地下水污染研究进展一、土壤及地下水污染研究进展目前人们对污染物在土壤及地下水中迁移转化规律的研究,一是通过室内土柱试验和野外大田试验进行实测模拟分析,二是通过建立数学模型来进行数值模拟分析,通过模型模拟来预测污染物浓度的时空变化规律,以便采取控制措施,使土壤和地下水环境受影响的程度降为最低。根据污染物在土壤及地下水系统中的迁移途径,研究者分别从表层土、含水层及非饱和带 3个方面进行了研究,并取得了一系列成果。(一)污染物在表土层中迁移转化的研究表土层污染物主要有无机废物污染及有机废物污染,国内外许多学者对上述各种污染物开展了大量的研究工作,尤其是重金属、化肥和有机农药方面的研究受到农学家们的高度重视。学者们对于污染物在土壤作物系统的吸附、迁移、转化、归宿和分布规律方面的研究,都取得了较大的成果。但由于土壤环境的复杂多样性,而且污染物的种类、污染途径、污染物与环境各要素作用机理不同,因此对各种类型的污染必须分别研究。 1.污染物在表层土中迁移转化研究由于表层土壤中含有大量的有机质和微生物,使得各种污染物在其中发生了复杂的物理、化学和生物反应。考虑到表土层比较薄,国内外大多都采用黑箱模型来描述污染物的迁移转化规律,对于内部机理的研究成果较少。如美国的Jury(1971在砂土中拌盐用灌水入渗淋溶试验观测溶质在均匀土壤中的迁移规律;Jaynes(1991在野外进行了漫灌条件下Br - 离子的示踪试验;Ellsworth(1996在露天试验场进行了微区试验,研究了Br - 、Cl - 、NO 3 - 随水流在非饱和土壤中的运移规律。近年来,土壤学家借助于室内外模型试验,正在确定土壤的环境容量,美国等发达国家正在进行表土层的灰箱模型研究,如Geng等人将氮循环过程看作“灰箱”,进行土壤地下水系统的氮循环迁移模拟,并在不同区域范围和不同环境条件下进行了应用,得到了满意的结果。该模型由3个子模型构成,分别模拟硝酸盐迁移过程中各个环节,即土壤中氮循环和硝酸盐渗出量模型、硝酸盐从土壤到含水层的迁移量模型、以及二者的耦合模型。 2.污水灌溉引起的土壤污染问题污水灌溉是解决水资源缺乏和污水资源化的重要工程措施,污水中大多含有比较丰富的有机物质,它们在一定条件下分解,能为农作物提供可利用的氮、磷等多种养分,作物增产效果明显,但是由于污水中含有不同种类的污染物质,长期利用这种污水进行灌溉已经在一定程度上造成了土壤环境的恶化。尤其是重金属污染,可在土

地下水环境 第7章 地下水污染评价

第七章地下水污染评价 §1 概述 地下水污染评价——指污染源对地下水产生的实际污染效应的评价。 评价目的——论证地下水污染程度,为污染治理提供依据。 通过地下水污染评价,可确定地下水污染范围和程度,找出主要污染因子,寻找污 染源,查明污染原因,从而为制定防治地下水污染规划与提出控制污染的措施提供科学依据。 地下水污染评价分为现状评价和预测评价(按时间): 现状评价即根据近期环境监测资料,对调查区的地下水污染现状的评价;后者即根据调查区经济发展规划,预测该区地下水污染变化情况,据预测结果进行评价。 地下水污染评价程序(包括四个阶段) 第一阶段——准备工作 环境水文地质调查,查明条件、污染源,污染途径,影响因素 监测及实验:依据精度布设监测孔,获取各种污染组分的测试数据 第二阶段——系统分析(构建出研究区的评价指标体系) 选择评价因子 确定评价标准 第三阶段——系统评价 选择评价模型 确定各评价因子的权重 污染程度的分级 第四阶段——系统调控 根据区域环境目标,制订地下水保护规划,提出污染治理措施,编写地下水污 染评价报告书 1 选择评价因子 污染物种类繁多,无需对所有成分都评价 根据污染源评价结果,选择分布范围广、对人体健康或地下水利用功能影响较大 的污染物,或选择地下水中接近或超过地下水环境质量标准的主要有害组分作为 评价因子 如从人体健康考虑,常选: 氮的化合物(NO 3-, NO 2 -, NH 4 +); 氰化物(高毒类); 重金属(铅, 铬, 镉, 汞, 砷); 有机污染物(农药,酚类,氯代烃、苯系物等)

2 确定评价标准 地下水污染指人为造成的污染,属次生污染,应选用地区环境本底值为评价标准。 本底值的确定: 地下水环境本底值:本区内未受污染地段的地下水化学组分含量均值; 地下水环境背景值:本区内相对清洁区监测得到的地下水各种组分的质量参 数的统计平均值; 对照值:未被污染、水文地质条件与本区相似的地下水背景值。 3 地下水污染程度分级 根据地下水中有害物质的检出情况将污染程度分为六个等级:未污染;微污染;轻污染;中污染;重污染;严重污染。 4 地下水污染评价方法 ——选择合理的评价方法或建立评价的数学模型,通过一定的计算对地下水污染程度进行等级划分,并提出地下水污染评价的结论。 §2 综合污染指数法 综合污染指数法 ——把具有不同量纲的量进行标准化处理,换算成某统一量纲的指数(各项污染指数),使其具有可比性,然后进行数学上的归纳和统计,得出较简单的综合污染指数,用其代表地下水的污染程度。 污染指数的计算方法: 分项污染指数计算 单综合污染指数法 双综合污染指数法 分类综合污染指数法

地下水的污染特点

地下水淡水资源的污染 陈力杨1 (1成都理工大学成都610000) 摘要:地下水资源是世界重要的水资源,然而由于人们不合理的开发利用和认为的污染,是的地下水资源的质量不断下降。地下水污染正日益受到关注。如生活和工业污水入渗,果断开采等都会造成地下水污染。及时的了解和明白地下水污染的特点,能帮助我们找到方法解决地下水污染的问题。 关键词:地下水淡水资源污染 引言:所谓水资源主要指与人类社会用水密切相关而又能不断更新的淡水, 包括地表水、地下水和土壤水, 其补给来源为大气降水。表1是一张关于全球淡水储量及平均更新周期数据表[ 1, 2] , 表中表明地下水(淡水部分)所占比例远大于地面其他可用水源, 同时其更新周期远远大于其他可用水资源,因此地下水资源的保护是当今世界重大的环境问题之一我国的的地下水资源的概况 目前全国地下淡水资源多年平均量为8837亿立方米,约占全国水资源总量的1/3。其 中山区为6561亿立方米,约占总量的74%;平原为2276亿立方米,约占总量的26%。地 下淡水可开采资源多年平均量为3527亿立方米,其中山区为1966亿立方米,平原为1561 亿立方米。 我国地下水资源的分布不均,存在明显的地区差异。南方地下水资源比北方丰富。南 方地区:地下淡水天然资源每年为6094亿立方米,占全国地下淡水天然资源的69%,北方 地区:地下淡水天然资源每年为2743亿立方米,占全国地下水天然资源的28%。 上面数据显示了我国的地下淡水资源的总量和分布,不难发现我国虽然每年平均的地 下淡水资源很大但分布不均。这也使得我们在利用这些地下淡水资源的时候出现一定的困 难。伴随着我们的开发与利用,出现了对地下淡水资源的污染。并且现在我国的地下淡水污 染已经到了一个很严重的程度[1] 2000年-2002年国土资源部进行了全国地下水资源评价,按照《地下水质量标准》,37% 已是不能饮用的类、类水。 2011年,全国共200个城市开展了地下水质监测,其中“较差—极差”水质监测点比 例为55%。与2010年相比,15.2%的监测点水质在变差[3]。 据国土资源部网站资料,辽宁海城市污水排放造成地下水大面积污染,附近一个村160 人因水而亡;由于地下水的严重污染,淄博日供水量51万立方米的大型水源地面临报废。 根据2000年-2002年国土资源部的全国地下水资源评价,全国195个城市监测结果表明,

顶空-气相色谱法测定加油站地下水中特征污染物

顶空-气相色谱法测定加油站地下水中 特征污染物 肖 寒,高 翔,李明哲,马 明 (中国石油化工股份有限公司青岛安全工程研究院,青岛266071)中图分类号:O657.7 文献标志码:B 文章编号:1001-4020(2014)05-0644-03 加油站的埋地油罐泄漏已是国际上环境污染防治领域面临的严重问题。加油站目前已成为美国地下水污染的最大污染源,截止2001年美国有超过44万个地下储油罐被确认发生渗漏[1]。地下水和土壤遭受有机污染物污染后难以清理和修复[2-3],许多有机物进入环境后对人体和生物具有致癌、致畸和致突变作用[4]。汽油添加剂甲基叔丁基醚(MT-BE)已对地表水、地下水、土壤及大气等环境要素构成严重污染[5-6]。然而在国内,加油站渗漏引起的土壤、岩层和浅层地下水污染问题至今还尚未被充分重视。 水中甲基叔丁基醚的分析方法有静态顶空-气相色谱法[7]、液液微萃取-气相色谱法[8]、固相微萃取-气相色谱-质谱法[9]、吹扫捕集-气相色谱-质谱法[10]等,苯系物的常用分析方法为二硫化碳萃取和液上气相色谱法[11]、顶空-气相色谱法[12]、吹扫捕集-气相色谱-质谱法[13]和固相微萃取-气相色谱-质谱法[14]等。文献对水中甲基叔丁基醚和苯系物的同时测定少有报道,本工作采用顶空-气相色谱法同时测定加油站地下水中甲基叔丁基醚、苯、甲苯、二甲苯和乙苯。 1 试验部分 1.1 仪器与试剂 Agilent6890N型气相色谱仪,配氢火焰离子化检测器;G1888型网络顶空进样器。20mL顶空瓶,带聚四氟乙烯密封硅橡胶垫。 标准储备溶液:用微量注射器分别移取5.0μL甲基叔丁基醚、苯、甲苯、对二甲苯、间二甲苯、邻二 收稿日期:2013-09-28甲苯、乙苯至10mL容量瓶中,用甲醇定容配制成 370mg·L-1甲基叔丁基醚、440mg·L-1苯、 434mg·L-1甲苯、432mg·L-1对二甲苯、430mg·L-1间二甲苯、440mg·L-1邻二甲苯、434mg·L-1乙苯标准储备溶液。 甲基叔丁基醚、苯、甲苯、对二甲苯、间二甲苯、邻二甲苯、乙苯、甲醇为色谱纯;氯化钠为优级纯(550℃加热4h);试验用水为去离子水。 1.2 仪器工作条件 1)顶空条件 平衡温度75℃,平衡时间40min,传输线温度90℃,进样温度105℃,进样环为1mL。 2)色谱条件 HP-FFAP型毛细管色谱柱(30m×0.53mm,1.0μm);进样口温度230℃,检测器温度250℃;载气为高纯氮气,流量3.0mL·min-1;分流比为5比1。柱程序升温:初始柱温40℃,保持5min;以5℃·min-1速率升至100℃。1.3 试验方法 移取10.00mL标准溶液或样品溶液于装有 3.0g氯化钠的20mL顶空瓶中,用钳口盖密封后轻轻振摇,使氯化钠完全溶解后采用顶空进样器进样。按仪器工作条件进行测定。 2 结果与讨论 2.1 色谱条件的选择 由于接入顶空进样器后须选择分流模式,在试样浓度和柱容量允许的条件下,尽可能减小分流比以获得更高的响应,从而降低方法的检出限。分流比不小于5比1时,能保证获得较好的重复性,因此选择分流比为5比1。当其他色谱条件为1.2节的条件时,包括对、间、邻二甲苯在内的各组分均能获 · 446 ·

无机污染物迁移、转化和归宿

无机污染物进入河流中的迁移、转化和归宿对无机污染物而言,特别是重金属和准金属等污染物,一旦进入水环境,均不能被生物降解,而其他大部分无机污染物经过分解,转化形态之后可以组成生物细胞的成分而被彻底利用,包括无机元素与金属元素。无机污染物(以重金属为主体)主要是以简单的离子、络离子或可溶性分子的形式在水环境中通过一系列物理化学作用,如溶解--沉淀作用、氧化--还原作用、水解作用、络合和螯合作用、吸附--解吸作用等实现的迁移和转化,参与和干扰各种环境化学过程和物质循环过程。重金属(Hg、Cd等)在迁移过程中可富集于底泥,成为长期潜在的有害污染源或通过食物链富集。 污染物在迁移转化的过程中,主要受污染物自身的理化性质以及外界环境的物理化学条件和自然地理条件影响。简单的内部因素可主要为组成化合物的能力、形成不同价位离子的能力、水解能力、形成络合物的能力和被胶体吸附的能力。一般来说,由共价键结合的污染物容易进行气迁移;由离子键结合容易进行水迁移。外部因素主要指环境的酸碱环境、氧化还原条件、交替种类以及数量和性质等。如酸性环境有利于钙、锶、钡、锌、镉等迁移;碱性环境则有利于硒、钼和五价钒的迁移。氧化条件有利于铬、钒、硫的迁移;还原环境有利于铁、锰等的迁移。 从微生物的角度以及水体溶解氧的情况(水体复氧及耗氧)来分析无机污染物进入河流的迁移转化问题,我们需要考虑到,在河流表层部分,溶解氧较充足,处于较高的氧化还原电位,主要存在好养性微生物,其元素将以氧化态存在,碳成为CO2,氮成为NO3-,铁成为Fe(OH)3沉淀,硫成为SO42-;在中间部分,溶解氧相对较少,是一个兼型层,兼有氧化和还原作用,主要由兼性微生物生存;在底层,水体处于还原环境,其元素都将以还原形态存在,碳还原成CH4,氮形成NH4+,硫形成H2S,铁形成可溶性Fe2+。在相应微生物作用下,完成相应元素的物质循环。 综上分析,污染物的转化,往往与迁移相伴进行,并且实现污染物迁移的途径是彼此相互作用的,是一个统一体,并不能将其独立开来,对于自净体系而言,无机污染物迁移转化的过程较为复杂,下图简以说明。

相关文档
最新文档