图像识别匹配技术原理

图像识别匹配技术原理
图像识别匹配技术原理

第1章绪论

1?1研究背景及意义

数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。

数字图像处理(Digital Image Process in g)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。

图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。

图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。

基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。

目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基

于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助性的测度与其它方法相结合起来使用。基于灰度的配准算法是医学图像配准研究的发展方向,也是目前研究的热点之一。基于灰度的配准方法与基于特征的配准方法的区别在于前者没有提取图像特征的步骤,直接对图像中的灰度进行处理。

基于灰度的配准方法计算复杂度高、对图像的灰度、旋转、形变以及遮挡都比较敏感。

灰度相关的配准方法是从待拼接图像的灰度值出发,图像拼接故而成为灰度相关的配准算法的一个基础。图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。

灰度相关的图像配准算法在图像处理技术中起着十分关键的作用,它是图像处理技术得以发展的一个重要基础。它推动着图像处理技术在医学、生物、信息

处理和其他很多高科技领域内的应用,它已渐渐发展成社会生活中不可分离的一种技术,对于图像处理技术发展及应用具有重要意义。

1.2图像配准方法概述

配准技术的流程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数:最后由坐标变换参数进行图像配准。而特征提取是配准技术中的关键,准确的特征提取为特征匹配的成功进行提供了保障。因此,寻求具有良好不变性和准确性的特征提取方法,对于匹配精度至关重要。

图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统是任意的。绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。本文主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射关系是图像配准的关键。通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制RCP。

目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配

准方法分为三个主要类别:基于灰度信息法、变换域法和基于特征法,其中基于特征法又可以根据所用的特征属性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的各种图像配准方法和原理。

1?3研究现状

国外从20世纪60年代就开始在图像配准领域进行研究,但直到1980年代才开始引起学者们的关注。到上世纪末,单模图像配准问题已基本解决,但多模图像配准由于涉及模式和领域的复杂性,仍需密切关注。国际上对图像配准技术曾做过调查,其结论是1990年代初技术就明显增加。而国内从1990年代初才开始涉足此领域。与灰度相关的图像配准算法是图像配准算法中比较经典的一种,很多配准技术都以它为基础进行延伸和扩展。

针对多光谱遥感图像,提出了一种基于局部灰度极值的配准方法:通过在基准图像和待配准图像中同步寻找含有灰度极值的小区域,再用多项式对极值区域进行曲面拟合,最后,分别计算小区域的极值点作为特征点进行配准。并用真实和模拟多光谱图像进行了试验结果显示该课题提出具有算法简单和配准精度高的特点。这是与灰度相关图像配准算法有关的一个扩展应用。

1?4研究问题及内容

本文在分析了灰度相关的图像配准算法中的线匹配法、比值匹配法和块匹配法,利用这三种方法分别实现两幅图像在水平垂直位移上的配准,而本课题研究的内容是提出一种基于灰度相关的算法,不仅能实现两幅图在水平和垂直位移的配准,同时也能实现在绕光轴旋转情况下的图像配准。这里提出了一种方法,多尺度模块匹配法。在这三种匹配的环境下,它能实现水平垂直位移上的匹配、缩放以及旋转。同时通过在Matlab编程环境下编程实现相关算法,通过实际图像的配准试验,利用这些结论最终得到精确地配准结果。

第2章图像配准基本理论

2.1图像配准的基本介绍

2.1.1 图像配准的描述

图像配准是对取自不同时间,不同传感器或不同视角的同一场景的两幅图像或

者多幅图像匹配的过程。图像配准广泛用于多模态图像分析,是医学图像处理的一个重要分支,也是遥感图像处理,目标识别,图像重建,机器人视觉等领域中的关键技术之一,也是图像融合中要预处理的问题,待融合图像之间往往存在偏移、旋转、比例等空间变换关系,图像配准就是将这些图像变换到同一坐标系下,以供融合使用。

2.1.2 图像配准的定义

对于二维图像配准可定义为两幅图像在空间和灰度上的映射⑷,如果给定尺寸的二维矩阵F1和F2代表两幅图像,F1(X,Y)和F2(X,Y)分别表示相应位置(X,Y)上的灰度值,则图像间的映射可表示为:F2(X,Y) =G(F1(H(X,Y))),式中H表示一个二维空间坐标变换,即(X',Y') =H(X,Y),且G是一维灰度变换。

2.1.3 图像配准的步骤

图像配准的基本过程可以分为三个步骤:第一步是为每一个图像信息模式各定义一个坐标系F(X,Y),然后再定义这些参考特征之间的失调或相似函数;第二步是分割出图像的参考特征,再定义这些参数特征之间的失调或相似函数;第三步是应用优化算法,使第二步中失调(相似)函数达到全局最小(最大)值,达到两幅图像的配准。其中参考特征和对应优化算法的选择是配准的核心,也是不同配准算法的差异所在。

2.2图像配准的相关概念

2.2.1 配准基准

通常,图像配准中根据配准基准的特性,可分为基于外部基准的配准和基于内部基准的配准⑸,外部基准是指强加于待配准对象的各种人造标记,这些标记必须在各种配准模式中都清晰可见且可准确检测到。内部基准是指由图像本身得

到的位置相对固定且图像特征明晰的各种配准标识。

2.2.2 映射变换与配准区域

设fl和f2表示两幅待匹配的图像,I1(x) = I1(x,y)和I2(x') = l2(x',y')分别表示两幅图像的密度函数,其中x=(x,y)和x' =(x',y')分别表示在图像D1和D2 中的像素坐标。图像匹配就是要找到一个把图像fl映射到图像f2的变换

M(x) = (U (x,y),V (x,y)使得变换后的图像I 3(M (x))和I2(x')具有几何对应性。这种映射变换有刚体变换、仿射变换、投影变换以及曲线变换等。配准时的变换区域根据实

际需要又分为局部配准和全局配准。局部变换一般很少直接使用,因为它会破坏图像的局部连续性,且变换的双映射性会影响图像的再采样。从近期关于图像配准方面的文章看,一般刚性和仿射多用于全局变换,而曲线变换多用于局部变换。

2.2.3 配准的交互性与优化

根据人的参与程序配准又可分为全自动式,交互式和半自动式三种。全自动

式中使用者仅需给相应算法提供图像数据以及图像获取的一些可能信息;交互式中使用者必须亲自进行配准,软件仅给目前变换提供一个可视的或数字的感官印象以及初始变换的一个可能参数;半自动式中,交互式有两种方式:一种是使用者须初始化算法,如分割数据,另一种是指导算法,如拒绝或接受配准假设。

配准变换的参数可以是直接计算出的,也可以是搜索计算出的。直接计算的

最优化方法一般已完全由实例决定,所能研究的工作也仅限于如何使用非常少的信息把此计算方法应用于实际。搜索计算的最优化方法大多都可以用待优化的变换参数的一个标准数学函数来表达配准实例,此函数力图使图像在某一变换时两幅图像可达到最大相似。这些函数通常在单模配准中能简单一些,因为此时图像的相似性更能容易直接定义。我们可以通过使用一个标准的、合适的最优化方法使相似函数达到最优。

目前应用比较广泛的方法有Powell的方法、Downhill Simplex方法、Brent的方法以及一系列一维搜索算法、Leve nberg-Marquardt最优化算法、Newto n-Raph son迭代算法、stochasti(搜索算法、梯度下降法(gradient descent methods、遗传算法(genetic methods)、模拟退火法(simulated annealing),粒子群算法(partice sworm),蚁群算法(ant),几何散列法(geometric hashing。多分辨率(如金字塔) 和多尺度方法可以加速最优化的收敛速度。许多实际应用中使用了不止一种最优化方法,一般是先使用一种粗糙但快速的算法,然后再接着使用一种准确但运算

速度慢的算法。

224 图像成像模式与配准方法的分类

有单模式和多模式等,单模(monomodality)图像配准是指待配准的两幅图像是同一种成像设备获取的。多模(multimodality)图像配准⑹是指待配准的两幅图像来源于不同的成像设备。基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基

于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、最大互信息法和基于小波变换的图像配准法。

(1)互相关法

对于同一物体由于各种图像获取条件的差异或物体自身发生的空间位置的改变而产生的单模图像配准问题常常应用互相关法。在互相关法中互相关值的大小反映了配准的效果。互相关法的思路是找出使各图像之间相关性最大的空间变换参数来实现图像的配准。该方法通过优化两幅图像间的相似性测度来估计空间变换参数(刚体的平移和旋转参数) ,采用的相似性测度可以是多种多样的,例如相关系数,差值的平方和及相关函数等。

其中最经典的相似性测度是归一化的相关系数(correlation coefficient CC),即:-了)(爲-刃

式中,F为模板图像,F={f n}::, f n为图像F的灰度;G为与F有相同大

小的目标图像GXg n.'n吕,g n为图像G的灰度;f和g分别为图像F和G灰度的均方值。由于要对每种变换参数可能的取值都要计算一次相似性测度,互相关法的计算量比较庞大,因此近年来发展了快速搜索算法,例如,用相位相关傅立叶法估算平移和旋转参数;用遗传算法和模拟退火技术减少搜索时间和克服局部极值问题。

尤其注意的是互相关法受到不同模态成像特点的影响,例如同一物体在不同的模态图像中表现出纹理和密度的非线性差异,使相关性计算无意义,故互相关性法主要局限于单模图像配准⑺。对于条件不好或曲线不完全闭合的图像配准,

Kaneko 等提出了一种选择性相关系数法(selective correlation coefficient,即SCC) , SCC实际上是CC的扩展,SCC在每次为其计算时间仅仅依靠两幅图像

灰度的比较过程,故其代价非常小甚至可以忽略不计。

(2)最大互信息法(Maximization of Mutual Information)

互信息是信息论的一个基本概念,是两个随机变量统计相关性的测度。最大互信息法几乎可以用在任何不同模式图像的配准,特别是当其中一个图像的数据部分缺损时也能得到很好的配准效果。当含有相同内容的两幅图像通过几何变换在空间

对齐时,它们所包含的灰度值的互信息量最大。因此最大化的互信息量可以作为图

像配准准则。

基于最大互信息⑹的配准过程实质上是搜索最佳的几何变换参数,使两幅图

像的互信息达到最大。该方法采用整幅图像的所有像素共同组成特征空间,再根据

特征空间确定一种空间变换,使一幅图像经过该变换后和另一幅图像的互信息最

大,最终实现配准。

互信息(Mutual In formation, MI)是信息论中的一个测度,用于描述两个变量间的统计相关性,或一个变量中包含的另一个变量中的信息的多少,表示两个随机变

量之间的依赖程度,一般用熵来表示。熵表达的是一个系数的复杂性和不确定性。

变量A的熵定义为:

H(A)=22 PJa)log PJa), (2.2)

_a

H(A,B)=Z P AB(a,b).log %(a,b), (2.3)

a,b

将待配准的两幅医学图像定义为浮动图像A和参考图像B,它们是关于

图像灰度的两个随机变量集。设它们的边缘概率分布分别为PA(a)、PB(b),

联合概率分布PAB(a,b),贝尼们的互信息MI(A,B)为:

血3 B)二旧(Q十丹⑷-丑(&衣2艺比(比幼1绍

2

(2.4)

当两幅图像的空间位置达到一致时,其中一幅图像表达另一幅图像的信

息,即其互信息应为最大。继互信息测度提出后,学者们对基于Shannon熵的方法做了进一步的研究,相继提出了比互信息更为稳定的,其它一些形式的熵测度,称为归一化的互信息,例如Studholme提出了归一化互信息测度(nrimalized mutual information, NMI ):

(3)基于小波的图像配准方法

近年来图像配准的重要发展之一是采用小波变换进行图像局部特征提取, 该 方法的关键技术是二维离散小波分解。设在x,y 平面内的二维图像f ( xi , y i ) 基于二维离散小波变换的图像分解是将该原始图像在某一尺度上分别在 x,y 方 向上进行小波分解,每次分解后的低频部分用 L 表示,高频部分用H 表示。 在某一尺度上,图像可以经过x 方向和y 方向的离散小波变换后分解为4个 子图像,在x 方向和y 方向都是高频子图像fHH (xi, yi),在x 方向是低频,在y 方 向是高频子图像fLH (xi,yi)和在x 方向是高频y 方向是低频的子图像 fHL(xi, yi)。低频子图像给出了原图像的概貌,高频子图像给出了原图像的细貌。

对于二维正交小波变换有其快速算法-Mallat 算法,它把小波变换的计算问 题转化为小波变换后系数的计算问题:在实际操作中,给出 M 1尺度层上的离 散采样值{ fM 1(m, n)}数据,要计算M 尺度层上的小波变换系数,即分解算法 的问题。基于小波变换的图像配准方法有多分辨率分析的优势, 能够提高配准的

速度。 2.3灰度相关的配准方法

基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理, 而是 利用图像本身具有灰度的一些统计信息来度量图像的相似程度。 主要特点是实现 简单,但应用范围较窄,不能直接用于校正图像的非线性形变, 在最优变换的搜 索过程中往往需要巨大的运算量。 经过几十年的发展,人们提出了许多基于灰度 信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法) 、序贯 相似度检测匹配法、交互信息法。

互相关法是最基本的基于灰度统计的图像配准[9]方法,通常被用于进行模板 匹配和模式识别。它是一种匹配度量,通过计算模板图像和搜索窗口之间的互相 关值,来确定匹配的程度,互相关值最大时的搜索窗口位置决定了模板图像在待 配准图像中的位置。

序贯相似度检测匹配法(Sequential Similarity Detection Algorithms , SSDA ) 是由Barnea 等人提出来的。SSDA 方法的最主要的特点是处理速度快。该方法先 选择一个简单的固定门限T ,若在某点上计算两幅图像残差和的过程中, 残差和 —号册

(2.5)

大于该固定门限T ,就认为当前点不是匹配点,从而终止当前的残差和的计算,转向别的点去计算残差和,最后认为残差和增长最慢的点就是匹配点。这种方法的基本思想是基于对误差的积累进行分析。所以对于大部分非匹配点来说,只需计算模板中的前几个像素点,而只有匹配点附近的点才需要计算整个模板。这样平均起来每一点的运算次数将远远小于实测图像的点数,从而达到减少整个匹配过程计算量的目的。

交互信息法最初是Viola等人于1995年把交互信息引入到图像配准的领域的,它是基于信息理论的交互信息相似性准则。初衷是为了解决多模态医学图像的配准问题。

交互信息用来比较两幅图像的统计依赖性。首先将图像的灰度视作具有独立样本的空间均匀随机过程,相关的随机场可以采用高斯一马尔科夫随机场模型建立,用统计特征[10]概率密度函数来描述图像的统计性质。交互信息是两个随机变量A 和B之间统计相关性的量度,或是一个变量包含另一个变量的信息量的量度。交互信息图像配准方法一经提出,有不少基于此类的研究,尤其在医学图像的配准问题上。比如将交互信息和梯度结合起来改善其极值性能的算法、多分辨率图像金字塔法等等。但交互信息是建立在概率密度估计的基础上的,有时需要建立参数化的概率密度模型,它要求的计算量很大,并且要求图像之间有很大的重叠区域,由此函数可能出现病态,且有大量的局部极值。

本文接下来将要陈述灰度相关的几种配准方法,大致可分为:线匹配法、比值匹配法和块匹配法。比值匹配法是指将待配准图像的一定间隔的行或列的像素的比值作为模板;块匹配法是指将待配准图像的正方形区域的像素的集合作为模板。比值匹配法是从一幅图像的重叠区域中部分相邻的两列上取出部分像素,然后以它们的比值作为模板,在另一幅图像中搜索最佳匹配,这种算法计算量较小,

但精度低;块匹配法是以一幅图像重叠区域中的一块作为模板,在另一幅图像中搜索与此模板最相似的匹配块,这种算法精度较高,但计算量过大。而设计一种基于灰度相关的算法,既能实现水平、垂直位移上的配准,同时也能实现绕光轴旋转这种情况是本文的核心。

第3章线匹配法

3.1线匹配法基本介绍及原理

针对图像的平移、旋转、尺度变换等整体匹配,提出了一种图像线性变换的 匹配算法[11]。首先定义待匹配图像匹配点间的线性变换模型,以对应像素灰度差 平方和作为图像匹配误差函数,然后借助最小化误差函数确定参数迭代增量,

迭代法求得最佳线性变换参数。为减少计算量与提高收敛速度提出了三种改进策 略:增加权函数、图像网格点采样和增加加速运动量。实验显示对于小范围平移、 旋转及尺度变换的图像能进行准确快速的整体匹配,而改进策略能有效提高匹配 速度。 3.2线性变换图像匹配模型

令待匹配的两幅二维图像为F 和G ,两幅图像中任意一对匹配点的坐标满足 线性变换关系。令图像G 中某一坐标为X =[x, y]T ,它与图像F 中的坐标Y 对应 (X,Y ? R 21)。上式中上标T 表示转置运算。坐标X 与Y 之间存在一个偏移量T , 定义如下:

1,x, y,0,0,0

|| 0,0,0,1,x, y 因此坐标变换可以表示为丫二X T ,即像素G(X)与F(X T)对应

3.3线匹配法具体的算法实现

如果给定条件,两幅图像内容整体间存在某种线性变换,则通过求解变换系 数能实现配准。这对很多问题是一种合理假设。 基于这一思想,为解决图像整体 匹配问题,本文针对图像的平移、旋转、尺度变换等整体匹配,提出一种带 6 个参数的坐标线性变换图像匹配新模型,该模型将匹配误差定义为图像整体误 差,通过最小化误差函数确定参数迭代增量,由迭代法求得最佳线性变换参数。 并且针对收敛速度提出了增加权函数、图像网格点采样和增加加速动量项三种策 略及具体@Xa,

(3.1) (3.2)

(3.3)

实现方法。

(1) 误差函数及参数求解算法

图像匹配的误差函数定义为:

E「[F(X T)—G(X)]2,(3.4)

x WR

该公式中领域R与图像G的分辨率一致。这种领域设置与光流模型的领域设置

存在显著不同,它对噪声更不敏感。通过最小化误差函数可以求出变换参数a,它决定各像素的偏移量T0为建立迭代求解模型,引入增量,代入式(3.1)得到?汀,新的模型如下:

.a R61,「R21, (3.5)

E = = [F(X T :T)-G(X)]2(3.6)

x :R

为求解增量,:a,上述函数需要对?汩求偏导。一种可行方法是将F函数一阶泰勒展开:

F(X T :T) :F(X T) F'(X T) T (3.7)

上式中点号表示积。将(3.7)代入(3.6),对厶a求偏导,并令偏导为零,则得

到下式:

[、(X F')(X F')T]£=、(G(X)-F(X T))X F' (3.8)

X -R X - R

?T 上式中F'表示F'(X - T),它用图像F中坐标X+T处得灰度梯度近似。X F'

~ T ~ T

表示六维列向量。求3只需对方程(3.8)乘以p (X F')(X F')T]的逆矩阵即可。

X€R

(2) 迭代方法求解变换参数

求解图像G与图像F间的匹配,可以用增量迭代法计算变换参数a向量,算

法如下:

①初始化a向量为零向量;

②按式(3.8)计算参数增量" a ;

③更新参数a : a =a「a ;

④如果.:a的二范数小于某一阈值,则表示迭代收敛,程序退出;若大于该阈

值则转到步骤②继续迭代;如果迭代次数超过最多限定次数则程序退出,提示不

收敛。判断收敛的条件也可设置为最近 n 次迭代-;a 的二范数之和小于某一阈值, n 的典型取值为3。

3.4实验结果和分析

首先利用配准图像库中的图像,生成具有不同相对位移的子图像;平移配准 参数可以在程序中进行调整,图 3.1及图3.2为配准参数为rx = 112,cy =112时生 图3.3及图3.4为配准参数为rx =224;cy=224时生成尺寸为288 X 288的两 幅图像

图3.5及图3.6为配准参数为rx =56;cy =56生成尺寸为456X 456的两幅图 像。

成一对尺寸为400X 400的两幅图像

图3.1 Lena 参考图像

图3.2 Lena 待配准图像

图3.3 Lena 参考图像 图3.4 Lena 待配准图像

图3.7为采用线模板匹配方法的实验结果。黑色线段表示选取的线模板,连 线表示线段两端点为匹配点对。

由实验可知,线模板匹配是在参考图像中选定一行上取出部分像素的灰度 值,在搜索图中搜索最佳匹配。线匹配法的优点是精确直观,缺点是操作复杂, 重复步骤较多,实用性不强。它只能处理简单的平移变换下的图像配准,容易受 光照的影响,不能实现图像旋转和缩放情况下的配准,故而存在一定的局限性, 适用性不强。

图3.5 Lena 参考图像

图3.6 Lena 待配准图像

图3.7 Lena 线匹配效果图

第4章比值匹配法

4.1比值匹配法基本介绍及原理

比值匹配法[12]算法思路是利用图像中两列上的部分像素的比值作为模板,即在参考图像(a)的重叠区域中分别在两列上取出部分像素,用它们的比值作为模板,然后在搜索图(b)中搜索最佳的匹配。匹配的过程是在搜索图(b)中,由左至右依次从间距相同的两列上取出部分像素,并逐一计算其对应像素值比值;然后将这些比值依次与模板进行比较,其最小差值对应的列就是最佳匹配。这样在比较中只利用了一组数据,而这组数据利用了两列像素及其所包含的信息。

图4.1为图像模板选取示意图,其中,图1 (a)为W H)像素的图像,图1 (b)为(W2 H)像素的图像,W和W2可相等,也可不等。图1(a)和图1(b)为左右重叠关系,图1 (a)在图1(b)的左边。

j j+span

(a) (W H)像素的图像(b)他H)像素的图像

图4.1图像模板选取示意图

在图4.1 (a)的重叠区域选取间隔为span的2列像素(第j列和第j span 列),计算其对应像素比值,即a为模板。

a(i) = R(i,j)/R(i,(j +span)) (4.1) 式中,,j为选定的列。

在图4.1(b)中从第1列开始依次取间隔为span的2列,计算其对应像素的比值,即为b模板。

b(i,j) =P21(i,j)/%(i,j) (4.2) 计算a模板与b模板差值,即为c模板,函数表达式为:

c(i,j) =(a(i,j)/b(i,j))2(4.3)式中,i?(1,H) , j (1,W?—span)。c为二维数组,对c对应的列向量求得到sum。

H

sum( j)八c(i, j) (4.4)

i丄

sum( j)的大小就反映图1所示图像选定像素对应列的差异,sum( j)的最小值summin对应的列坐标Collable min即为最佳匹配。

4.2比值匹配法具体的算法实现

该算法的具体实现步骤如下:

(1)在参考图像(a)中间隔为c个像素的距离上的两列像素中,各取m个像素,计算这m个像素的比值,将m个比值存入数组中,将其作为比较的模板。

⑵从搜索图(b)中在同样相隔c个像素的距离上的两列,各取出m,n个像素,计算其比值,将m,n个比值存入数组。假定垂直错开距离不超过n个像素,多取的n个像素则可以解决图像垂直方向上的交错问题。

(3) 利用参考图像(a)中的比值模板在搜索图(b)中寻找相应的匹配。首先进行垂直方向上的比较,即记录下搜索图(b)中每个比值数组内的最佳匹配。再将每个数组的组内最佳匹配进行比较,即进行水平方向的比较,得到的最小值就认

为是全局最佳匹配。此时全局最佳匹配即为图像间在水平方向上的偏移距离,该全局最佳匹配队应的组内最佳匹配即为图像间垂直方向上的偏移距离。

本算法的思路是在第1幅图像的重叠区域中分别在2列取出部分像素,用它们的比值作为模板;在第2幅图像中由左至右依次从间距相同2列取出部分像素,并逐一计算其对应像素值比值;然后将这些比值依次与模板进行比较,其最小差值所对应的列就是最佳匹配。

4.3实验结果和分析

以下是光照效果由弱到强的比值匹配仿真实验结果图。比值匹配和线匹配相比不同之处是通过不同亮度的调节可检测到配准参数,由此可以看出它们的区别。比值匹配是利用两条线段的比值进行匹配。灰度比值匹配法较线匹配法多了一项光照

对平移参数的影响,下面我们以平移参数为主,着重研究输入图

像存在亮度差异时,仿真图像配准的实验效果。

图4.2为待配准图像与参考图像之间存在亮度差异为-20%时的配准效果图

图4.2 Lena灰度比值匹配图(亮度差异-20%)

图4.3为待配准图像与参考图像之间存在亮度差异为+5%时的配准效果图。

图4.3 Lena灰度比值匹配图(亮度差异+5%

图4.4为待配准图像与参考图像之间存在亮度差异为+20%时的配准效果图。

图4.4 Lena灰度比值匹配图(亮度差异+20% 由图4.2-图4.4可以看出灰度比值匹配的优缺

点如下:

(1) 比值匹配法的优点:

a. 算法思路清晰简单,容易理解,实现起来比较方便。

b. 匹配计算的时候,计算量小,速度快。

(2) 比值匹配法的缺点:

a. 利用图像的特征信息太少。只利用了两条竖直的平行特征线段的像素的信息,没有能够充分利用了图像重叠区域的大部分特征信息。虽然算法提到,在搜索图(b)中由左至右依次从间距相同的两列上取出部分像素,计算其对应像素的比值,然后将这些比值依次与模版进行比较,好像是利用了搜索图(b)中的重叠区域的大部分图像信息,但在参考图像(a)中,只是任意选择了两条特征线,没有充分利用到参考图像(a)的重叠区域的特征信息。

b. 对图片的采集提出了较高的要求。此算法对照片先进行垂直方向上的比

较,然后再进行水平方向上的比较,这样可以解决上下较小的错开问题。在采集的时候只能使照相机在水平方向上移动。然而,有时候不可避免的照相机镜头会有小角度的旋转,使得拍摄出来的照片有一定的旋转,在这个算法中是无法解决的。而且对重叠区域无明显特征的图像,比较背景是海洋或者天空,这样在选取

特征模版的时候存在很大的问题。由于照片中存在大块纹理相同的部分,所以与模版的差别就不大,这样有很多匹配点,很容易造成误匹配。

c. 不易对两条特征线以及特征线之间的距离进行确定。算法中在参考图像(a)的重叠区域中取出两列像素上的部分像素,并没有给出选择的限制。然而在利用拼接算法实现自动拼接的时候,如果选取的特征线不是很恰当,那么这样的特征线算出来的模版就失去了作为模版的意义。同时,在确定特征线间距时,选的过大,则不能充分利用重叠区域的图像信息。选择的过小,则计算量太大。

第5章块匹配法

5.1块匹配法基本介绍及原理

块匹配法[13]是指将待配准图像的正方形区域的像素的集合作为模板。块匹 配

法是以一幅图像重叠区域中的一块作为模板,

在另一幅图像中搜索与此模板最 相似的匹配块,这种算法精度较高,但计算量过大。

灰度信息包含了最大量的图像信息,而边缘信息则反映了图像内在的性质, 它不易受外界光照条件的影响而产生剧烈的变化。 因此相比灰度信息,边缘信息, 使得其抗灰度和几何畸变能力强,采用边缘信息构建模板在图像拼接[17]中可获得 更加可靠的稳定性。因此我们以图像的边缘为特征寻找基准块。

应用块匹配算法,首先要有搜索最佳匹配的标准,这里称之为价值函数:均 方误差(MSE )、绝对误差和(SAD )、平均绝对误差(MAD )、方差和(SSE )、绝对变 化误差和(SATD )都可以作为价值函数。其中常用的是均方误差(MSE )和平均绝对 误差(MAD ),如方程(1)和⑵。其中N 为块边长像素数(为方便搜索块一般划 分为正方形),Cij 和Rij 分别为当前宏块和参考宏块相应像素的灰度。

1 N_JN 4

MSE =市瓦瓦(G j -R j )2, N i =0 j=0

1 N dN d

MAD = A 送瓦 |C — R , N i =0 j =0 具体步骤首先要将当前和参考帧图像分块,选取的参考帧为当前帧的前一 帧,一般宏块为16X 16像素大小,然后确定搜索范围大小,一般为以宏块为中 心的30X 30像素区域,最后在参考图像相应搜索区域中寻找价值函数最小的宏 块,运动矢量从参考宏块位置指向当前宏块位置,如图 5.1所示。

(5.1) (5.2)

J.. Center pixel

: k ■

图5.1块匹配原理 5.2块匹配法具体的算法实现

首先需要对图像进行边缘检测,这里我们使用 sobel 算子获得原图像的边缘 图E(i, j),然后我们以图像中每个像素点的邻域边缘量 (NEA)来定义此位置的边 缘信息大小:

A A

NEA(i, j)

E(i m, j n) , (5.3)

m --A n-_A 其中,E(i, j)为原图像所对应的二值边缘图,A 为在点(i, j)处所取邻域的1/2边 长。以NEA(i,j)值为依据,找出最大值所对应的点(i,j)作为基准点,然后以此 点为中心点选择大小适中的块就可以找到基准特征块 [14]。这种算法我们可以称 之为传统的块匹配算法。

具体步骤首先要将当前和参考帧图像分块,选取的参考帧为当前帧的前一 帧,一般宏块为16X 16像素大小,然后确定搜索范围大小,一般为以宏块为中 心的30X 30像素区域,最后在参考图像相应搜索区域中寻找价值函数最小的宏 块,运动矢量从参考宏块位置指向当前宏块位置。

5.3实验结果和分析

通过三、四章的阐述,我们已经得出线匹配法只能处理平移操作下的图像

配准,而灰度比值法在线匹配法的基础上多了一个光照变换对平移参数的影

Block i

Search region

Cue rent frame n Reference frame n-1

Motion vector

Reference block location Current block location

数字图像处理实验指导书-河北工业大学2014实验一

数字图像处理 实验指导书 河北工业大学 计算机科学与软件学院

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像类型转换。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化称为采样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1] (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。 (3) 索引图像 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。(4) RGB图像 一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1 图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1] A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,V al1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Empty or not,Mode:lossy or lossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。 同时显示多帧图像的所有帧,可用到montage函数。

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

数字图像处理实验指导书

实验一 Matlab图像处理工具箱的初步练习 一、实验目的和任务 1、初步了解与掌握MA TLAB语言的基本用法; 2、掌握MA TLAB语言中图象数据与信息的读取方法; 3、掌握在MA TLAB语言中图像类型的转换。 二、实验仪器、设备及材料 1、计算机 2、MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) 3、实验所需要的图片 三、实验原理 将数字图像的RGB表示转换为YUV表示; Y=0.30R+0.59G+0.11B U=0.70R-0.59G-0.11B V=-0.30R-0.59G+0.89B 四、实验步骤 1、阅读资料并熟悉MatLab的基本操作 2、读取MATLAB中的图象数据 3、显示MATLAB中的图象文件。用MATLAB在自建的文件夹中建立m文件,在这个文件的程序中,将MA TLAB目录下work文件夹中的tree.tif 图象文件读出,用到imread,imfinfo等命令,观察一下图象数据,了解一下数字图象在MA TLAB中的处理就是处理一个矩阵的本质。 4、将3中的图象显示出来(用imshow)。 5、对MA TLAB目录下work文件夹中的flowers.tif进行真彩色图像、索引色图像、灰度图像、二值图像之间的相互变换,并显示。 6、进行真彩色图像RGB(lenacolor.jpg)、YIQ图像、HSV图像、YcbCr图像的相互转换,并显示。 五、实验报告要求 1、描述实验的基本步骤; 2、用图片给出步骤4、5、6中取得的实验结果; 六、实验所需图片

lenacolor.jpg 七、实验注意事项 1、学生应提前预习 2、请大家在E盘建一个目录(matlab),在每次启动时都要将这个目录加入到MATLAB的搜索路径中,添加的方法为File----Set Path----Tool---Add Path 八、思考题 1、图像之间转换的基础是什么,为什么可以实现相互的转换 九、附录 MATLAB简介 (1) MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际上MATLAB中的绝大多数的运算都是通过矩阵这一形式进行的。这一特点也就决定了MA TLAB在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。而MATLAB的长处就是处理矩阵运算,因此用MA TLAB处理数字图像非常的方便。MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。 1、MATLAB中图象数据的读取 A、imread imread函数用于读入各种图象文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’) 其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可以加上文件的路径)。 例:[X,MAP]=imread(’flowers.tif’,’tif’);

仪表显示的图像识别算法研究

仪表显示的图像识别算法研究 摘要:随着社会的逐渐发展,人类的生活越来越趋于智能化。本文根据当今社会对于图像识别研究的发展现状,针对目前人们生活中人工读表的弊端,提出了通过采集仪表显示的图像并进行图像识别算法处理来达到智能自动读表的方法。 为了能快速获得采集数据,减少人们生活中繁复的人工作业。本文通过多样的图像处理来代替人眼识别图像。只需要得到采集到的图像,就可以利用计算机来进行计算和识别,得出最后的数字。本文采用了一系列的图像处理方法,包括图像的去噪,二值化分割,边缘检测和基于数学形态学的膨胀腐蚀操作等。同时通过多种尝试和比较各种方法的优缺点得到了一套简易而又完善,快速的图像识别算法。 在进行多次测试试验后,本文采用数码相机来进行图像的采集,同时经过图像预处理、图像分割、图像识别等一系列流程得出了较为完善的图像采集和识别系统,为未来信息传递智能化提供了基础,对于促进工业发展或是改善生活水平都有重要的意义。 关键词:图像预处理、二值化、边缘检测、形态学、去噪、图像分割、图像匹配 The research of image recognition displayed by the instrument Abstract: With the continuous development of society, people's lives become more and more intelligent. Based on the current development in today's society for the study of image recognition, according to the present disadvantages of manual meter reading in peop le’s lives, this page proposed the way by collecting the instruments display image and then deals it with image recognizing algorithms to achieve intelligent automatic meter. In order to quickly gather data, reducing manual work in people’s lives complicated. The page uses a series of image processing to replace human eye image recognition. Just need the collected images, we can use a computer to calculate and identify, then we will arrive at a final figure. We used a variety of image processing methods, including image denoising, thresholding segmentation, expansion of edge-detection based on mathematical morphology and corrosion and so on. And

【数字图像处理】概念和原理题

概念和原理题 一、绪论部分 (一) 概念解释 1、 数字图像。 2、 数字图像处理。 (二) 简答题 1、 简述数字图像处理的三个层次。 2、 简述数字图像处理的基本内容。 3、 简述数字图像处理系统的基本组成。 二、数字图像基础部分 (一) 概念解释 1、图像数字化。 2、取样。 3、量化。 4、灰度分辨率。 5、空间分辨率。 (二)简答题 1、写出简单的图象形成模型的公式,并进行说明。 2、简述图像采样和量化的一般原则。 3、简述空间分辨率、灰度分辨率与图像质量的关系。 4、简述数字图像类型。 5、简述数字图像文件格式。 (三)分析题 1、写出“*”标记的像素的4邻域、对角邻域、8邻域像素的坐标。(坐标按常规方式 确定) 2 4、计算“*”标记的两点间的欧氏距离、城区距离和棋盘距离。 答: 图像处理 ,图像分割,模式识别

三、空间域图像增强部分 (一)概念解释 1、图像增强。 2、均值滤波器。 3、统计排序滤波器。 (二)简答题 1、简述空间域图像增强的三种增强方法。 2、简述图像反转、对数变换、幂次变换、分段线性变换等增强方法的特点及其适用范围。 2、简述直方图均衡化的实现步骤。 3、简述均值滤波器的工作原理和优缺点。 4、简述中值滤波器的工作原理和优缺点。 5、与Laplacian 算子相比,LOG 算子有什么优点? (三)分析题 1、计算下图的归一化直方图。 5 577666654444444544333333333333332222222322111113211000021110000 2、对下图进行直方图均衡化处理,并画出均衡后的图像及其直方图。 5 577666654444444544333333333333332222222 32211111 3211000021110000 3、对下面两幅图像进行异或运算。 4、对下列图像分别进行3*3均值滤波和3*3中值滤波,并比较它们的结果。

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

车辆牌照图像识别算法研究与实现本科毕设论文

Q260046902 专业做论文 西南科技大学 毕业设计(论文)题目名称:车辆牌照图像识别算法研究与实现

车辆牌照图像识别算法研究与实现 摘要:近年来随着国民经济的蓬勃发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高。因此,汽车牌照识别技术在公共安全及交通管理中具有特别重要的实际应用意义。本文对车牌识别系统中的车牌定位、字符分割和字符识别进行了初步研究。对车牌定位,本文采用投影法对车牌进行定位;在字符分割方面,本文使用阈值规则进行字符分割;针对车牌图像中数字字符识别的问题,本文采用了基于BP神经网络的识别方法。在学习并掌握了数字图像处理和模式识别的一些基本原理后,使用VC++6.0软件利用以上原理针对车牌识别任务进行编程。实现了对车牌的定位和车牌中数字字符的识别。 关键词:车牌定位;字符分割;BP神经网络;车牌识别;VC++

Research and Realization of License Plate Recognition Algorithm Abstract:In recent years, with the vigorous development of the national economy,there are more and more construct in the domestic expressway, urban road, and parking area. The requisition on the traffic control, safety management improves day by day. Therefore, license plate recognition technology has the particularly important practical application value in the public security and the traffic control. In the paper, a preliminary research was made on the license location, characters segment and characters recognition of the license plate recognition. On the license location,the projection was used to locate the license plate; On the characters segmentation, the liminal rule was used to divide the characters; In order to solve the problem of the digital characters recognition in the plate, BP nerve network was used to recognize the digital characters. After studying and mastering some basic principles of the digital image processing and pattern recognition, the task of license plate recognition was programmed with VC++ 6.0 using above principles. The license location and the digital characters recognition in the license plate were implemented. Keywords: license location, characters segmentation, BP nerve network, license plate recognition, VC++

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

数字图像处理实验指导书

实验一数字图像处理编程基础 一、实验目的 1. 了解MATLAB图像处理工具箱; 2. 掌握MATLAB的基本应用方法; 3. 掌握MATLAB图像存储/图像数据类型/图像类型; 4. 掌握图像文件的读/写/信息查询; 5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法; 6. 编程实现图像类型间的转换。 二、实验原理 略。 三、实验内容 1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。 2. 运行图像处理程序,并保存处理结果图像。 四、分析思考 归纳总结Matlab各个基本指令。 Dither 采用“抖动”方法从RGB 图像创建索引图像 grayslice 从灰度图像通过阈值处理创建索引图像 gray2ind 从灰度图像创建索引图像 ind2gray 从索引图像创建灰度图像 rgb2ind 从RGB 图像创建索引图像 ind2rgb 从索引图像创建RGB 图像 rgb2gray 从RGB 图像创建灰度图像

实验二 图像几何变换实验 一、实验目的 1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果; 2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现; 3.掌握matlab 编程环境中基本的图像处理函数。 二、实验原理 1. 初始坐标为(,)x y 的点经过平移00(,)x y ,坐标变为(',')x y ,两点之间的关系为:00 ''x x x y y y =+??=+?,以矩阵形式表示为: 00'10'01100 11x x x y y y ????????????=?????????????????? 2. 图像的镜像变换是以图象垂直中轴线或水平中轴线交换图像的变换,分为垂直镜像变换和水平镜像变换,两者的矩阵形式分别为: '100'01010011x x y y -????????????=?????????????????? '100'01010011x x y y ????????????=-?????????????????? 3. 图像缩小和放大变换矩阵相同: '00'0010011X y x S x y S y ????????????=?????????????????? 当1x S ≤,1y S ≤时,图像缩小;当1x S ≥,1y S ≥时,图像放大。 4. 图像旋转定义为以图像中某一点为原点以逆时针或顺时针方

数字图像处理参考教材

数字图像处理参考教材 (Digital Image Processing ,Computer Image Processing)I.通用教材 I.1 容观澳,清华讲义,计算机图像处理, 2000年版, Pages 351 这是清华一本较早的教材,针对基本概念和方法,系统知识。 特点:1)着重本领域的基本概念、基本方法和系统知识。 2)理论结合实验,避开过多数学推导, 3) 重点介绍算法,免编程。这也是我们本科采取的策略。 内容:1)基本内容(有关图像数学、视觉、光学以及二维变换的基本理论2)图像改善:重点介绍图像增强,图像复原,还有图像重建 3)图像的上网、传输、压缩 4)图像的理解、分割、描述 5)图像的硬件系统设计 I.2 李介谷等,上海交大版,88年版,数字图像处理Pages 278 较早。全面介绍了图像处理的一些模型和算法,主要内容;数字图像的特征、品质及视觉;图像的增强处理;图像修复;图像重建;图像分析和理解;图像信息的编码和压缩。 对基本理论和基本技术介绍全面。 I.3 阮秋琦,电子工业版,01年版,数字图像处理学 Pages 562 主要内容:图像处理中的正交变换、图像增强、图像编码、图像复原、图像重建、图像分析、模式识别等。偏重于基本理论和方法。这本书强调了编码的内容。 全书强调基本理论和基本技术,有较多习题,附一套实验演示软件。 北方交大教材。 I.4 黄贤武等,电子科技大学版,2000年,数字图像处理与压缩编码技术, Pages538 主要加重了图像数据压缩技术的份量-这是多媒体处理技术的关键技术之一。对图形模式识别技术、无损压缩编码技术、预测编码、图像的变换编码、神

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

用matlab数字图像处理四个实验

数字图像处理 实验指导书

目录 实验一MATLAB数字图像处理初步实验二图像的代数运算 实验三图像增强-空间滤波 实验四图像分割 3

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: ?亮度图像(Intensity images)

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

基于Matlab的图像边缘检测算法的实现及应用汇总

目录 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1 课程设计选题的背景及意义 (3) 1.2 图像边缘检测的发展现状 (4) 第二章边缘检测的基本原理 (5) 2.1 基于一阶导数的边缘检测 (8) 2.2 基于二阶导的边缘检测 (9) 第三章边缘检测算子 (10) 3.1 Canny算子 (10) 3.2 Roberts梯度算子 (11) 3.3 Prewitt算子 (12) 3.4 Sobel算子 (13) 3.5 Log算子 (14) 第四章MATLAB简介 (15) 4.1 基本功能 (15) 4.2 应用领域 (16) 第五章编程和调试 (17) 5.1 edge函数 (17) 5.2 边缘检测的编程实现 (17) 第六章总结与体会 (20) 参考文献 (21)

摘要 边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。 边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。 关键词:边缘检测;图像处理;MATLAB仿真

引言 边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。 本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作,我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较

数字图像处理实验教学大纲

《数字图像处理》课程实验教学大纲 电子信息工程教研室编 信息与电子工程学院 2013 年 8 月

课程名称:数字图像处理课程编号:056123 英文名称: Digital Image Processing 课程负责人:马加庆 课程性质:非独立设课 课程属性:专业 应开实验学期:第6学期 学时学分:课程总学时---48 实验学时---16 课程总学分---3 实验学分---0 实验者类别:本科生 适用专业:电子信息工程、电子信息科学与技术 先修课程:线性代数,信号与系统,数字信号处理,计算机仿真及应用 一、课程简介 数字图像处理是研究数字图像处理的基本理论、方法及其在智能化检测中应用的学科,本课程侧重于数字图像的基本处理理论和方法,并对图像分析的基本理论和实际应用进行系统介绍。目的是使学生系统掌握数字图像处理的基本概念、基本原理、实现方法和实用技术,了解数字图像处理基本应用和当前国内外的发展方向。要求学生通过该课程学习,具备解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下扎实的理论基础。 二、课程实验教学的目的、任务与要求 通过实验使学生加深对课堂上所学专业知识的认识,通过理论与实践相结合提高学生的动手能力。要求学生利用所学知识完成对图像的锐化、模糊、加噪声、读取、变换等处理。 三、实验方式与基本要求 实验方式:学生一人一机,独立实验,注意记录实验数据与结果分析。 基本要求:实验前,学生要认真预习实验任务,了解实验目的和实验内容;实验时,要认真上机,做好观察分析和记录;实验后,按要求编写实验报告。 四、实验项目设置 注:实验类型:1.演示/2.验证/3.综合/4.设计研究/5.其他;实验类别:1.基础/2.专业基础/3.专业/4.其它;实验要求:1.必修/2.选修/3.其它

相关文档
最新文档