利用傅里叶频谱分析方法模拟各种衍射屏的衍射图样

利用傅里叶频谱分析方法模拟各种衍射屏的衍射图样
利用傅里叶频谱分析方法模拟各种衍射屏的衍射图样

E ? (P )=K ?d∑

F (θ,θ0)E 0(Q )exp?(ikr)/r

E ? (p )=?i

r

0?E

? (Q)e ikr d∑

E (x,y )=e jkr 0

iλr 0?E 0(x 0,y 0)exp?{jk

2r 0((x ?x 0)2+(y ?y o )2)}dxdy

F (u,v )=?f (x,y )exp(?i2π(ux +vy ))dxdy

?(x ?x 0?,y ?y 0)=e jkr 0iλr 0?exp?{jk 2r 0

((x ?x 0)2+(y ?y o )2)}dxdy

E (x,y )=E 0(x,y )?h(x,y)

E (x,y )=

F ?1(F((E 0(x,y ))F(?(x,y)))

function varargout = yanshe_beta1(varargin)

% YANSHE_BETA1 MATLAB code for yanshe_beta1.fig

% YANSHE_BETA1, by itself, creates a new YANSHE_BETA1 or raises the existing

% singleton*.

%

% H = YANSHE_BETA1 returns the handle to a new YANSHE_BETA1 or

the handle to

% the existing singleton*.

%

% YANSHE_BETA1('CALLBACK',hObject,eventData,handles,...) calls

the local

% function named CALLBACK in YANSHE_BETA1.M with the given input arguments.

%

% YANSHE_BETA1('Property','Value',...) creates a new YANSHE_BETA1 or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before yanshe_beta1_OpeningFcn gets called.

快速傅里叶变更fft的Matlab实现 实验报告

一、实验目的 1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2熟悉并掌握按时间抽取FFT算法的程序; 3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。 二、实验内容 1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序; 用MATLAB语言编写的FFT源程序如下: %% 输入数据f、N、T及是否补零 clc; clear; f=input('输入信号频率f:'); N=input('输入采样点数N:'); T=input('输入采样间隔T:'); C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0 if(C==0) t=0:T:(N-1)*T; x=sin(2*pi*f*t); b=0; e lse b=input('输入补零的个数:'); while(log2(N+b)~=fix(log2(N+b))) b=input('输入错误,请重新输入补零的个数:'); end t=0:T:(N+b-1)*T; x=sin(2*pi*f*t).*(t<=(N-1)*T); end %% fft算法的实现 A=bitrevorder(x); % 将序列按二进制倒序 N=N+b; M=log2(N); % M为蝶形算法的层数 W=exp(-j*2*pi/N); for L=1:1:M %第L层蝶形算法 B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔 K=N/(2^L); % K为每层蝶形算法中独立模块的个数 for k=0:1:K-1 for J=0:1:B-1

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

周期信号的傅里叶级数和频谱分析

实验报告 课程名称信号与线性系统分析 实验名称周期信号的傅里叶级数和频谱分析实验类型验证(验证、综合、设计、创新) 3日实验四、周期信号的傅里叶级数和频谱分析1实验目的 1)学会利用MATLAB分析傅里叶级数展开,并理解傅里叶级数的物理含义; 2)学会利用MATLAB分析周期信号的频谱特性。 2实验原理及实例分析 周期信号可以再函数的区间里展成在完备正交信号空间中的无穷级数。如果完备的正交函数集是三角函数集或指数函数集,那么,周期信号所展开的无穷级数就分别成为“三角型傅里叶级数”或“指数型傅里叶级数”,统称为傅里叶级数。

2.1周期信号的傅里叶级数 (基本原理请参阅教材第四章的4.1节和4.2节。) 例1:周期方波信号)(t f 如图1所示,试求出该信号的傅里叶级数,利用MATLAB 编程实现其各次谐波的叠加,并验证Gibbs 现象。 图1 周期方波信号)(t f 的波形图 解:从理论分析可知,周期方波信号)(t f 的傅里叶级数展开式为 )9sin 9 17sin 715sin 513sin 31(sin 4)(00000 +++++=t t t t t t f ωωωωωπ 其中,ππω220== T 。则可分别求出1、3、5、9、19、39、79、159项傅里叶级数求和的结果,其MATLAB 程序如下,产生的图形如图2所示。 close all;clear all; clc t = -2:0.0001:2; omega = 2 * pi; y = square(2 * pi * t,50); n_max = [1 3 5 9 19 39 79 159]; N = length(n_max); for k = 1:N fk = zeros(1,length(t)); for n = 1:2:n_max(k) bn = 4 / (pi * n); fk = fk + bn * sin(n * omega * t); end figure;plot(t,y,t,fk,'Linewidth',2); xlabel('t(sec)');ylabel('部分和的波形'); f(t) t(sec)

Fourier-Mellin变换图像配准算法研究

CHANGZHOU INSTITUTE OF TECHNOLOGY 毕 业 设 计 说 明 书 题目: Fourier-Mellin 变换图像配准算法研究 二级学院: 电气与光电工程学院 专 业: 电子信息工程 班级: 12信Y2 学生姓名: 马俊鑫 学号: 12120615 指导教师: 吴峰 职称: 副教授 评阅教师: 职称: 2016年 5 月 SJ006-1

摘要 图像配准技术如今在许多方面都有应用而且已经成为了不可或缺的一种技术。本文基于傅立叶梅林变换的研究,通过对图像进行平移、旋转、缩放等一系列变换对两幅或几幅待配准的图像进行配准的方法。 首先本文介绍了图像配准技术的意义、目的、研究背景及国内外发展现状。此外,还简略介绍了图像配准技术的基本原理及关键步骤。 其次讨论傅立叶变换的基本原理。研究傅立叶梅林变换的相关算法,介绍相位相关算法和频域配准算法,图像的边缘检测和提取的算法。 接着论述了与图像配准相关的傅立叶变换特性如:平移变换、旋转变换以及缩放变换等。 然后分析基于Fourier-Mellin变换的图像配准的原理以及主要技术,针对在配准的过程中配准精度降低的情况,讨论改进的方法,给出了图像配准的流程。 最后开展Fourir-Mellin变换的图像配准仿真、分析、仿真结果。给出通过高通滤波以及加窗提高图像的信噪比,提高了图像的配准精度。 关键词:傅立叶梅林;图像配准;相位相关算法;傅立叶变换

Abstract Image registration technology has been applied in many aspects and has become an indispensable technology.In this paper, based on the research of Fourier-Mellin transform,Through the image translation, rotation, scaling, and a series of transformation of two or a few images to be registered for the registration method. First of all, this paper introduces the significance, purpose, research background and development status of the image registration technology.In addition, the basic principles and key steps of image registration are briefly introduced. Secondly, the basic principle of Fu Liye transform is discussed.Fourier-mellin transform correlation algorithm, introduced the phase correlation algorithm and frequency domain registration algorithm, image edge detection and extraction algorithm. Then it discusses the characteristics of Fourier transform, such as translation transformation, rotation transformation and scaling transformation, and so on. Then, the principle and main technology of image registration based on Fourier-Mellin transform are analyzed,In the process of registration, the registration accuracy is reduced,The improved method is discussed, and the flow of image registration is given. Finally, the simulation, analysis and simulation results of Fourir-Mellin transform are carried out.The signal to noise ratio of the image is improved by using high pass filtering and adding window, and the image registration accuracy is improved. Key words: Fourier - Mellin ; Image registration; Phase correlation; Fourier transform

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

积分变换的认识与应用

积分变换的一些应用 积分变换 积分变换是数学中对于函数的作用子,理论上用以处理微分方程等问题。所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换。最常见的积分变换有两种:傅里叶变换和拉普拉斯变换,其他的还包括梅林变换和汉克尔变换等。积分变换法凭借着它灵活方便的特点在理工科方面有很大的应用,本文将会讲述关于傅里叶变换和拉普拉斯变换的一些应用。 傅里叶变换 定义 傅里叶其实是一种分析信号的方法,既可以分析信号的成分,也可以利用这些成分合成信号。设f(t)是t的周期函数,如果t满足狄里赫莱条件:在下一个周期内具有有限个间断点,并且在这些间断点上函数是有限值;在一个周期内具有有限个极值点;绝对可积。则函数满足傅里叶变换: 它存在逆变换,则傅里叶逆变换: 有一种特殊的变换叫离散傅里叶变换,它是对一个序列进行的变换,为: 傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

个别应用 傅里叶变换最常见于图像处理跟数学信号处理中,而现在现在我介绍其中一种比较不错的应用:加密、解密图像。 根据Candan等人提出的离散分数傅里叶变换的定义为,X(n)是带有N个矢量元素的输入信号,是变换核矩阵,是分数阶。Soo-Chang Pei 等人将离散分数傅里叶变换核矩阵定义为,当N为奇数时,矩阵 ,当N为偶数时,,是一个对角矩阵,其对角线上的元素是V中年每列特征向量的特征根。我们将NXN DFT矩阵定义为: ,进而可以将阶DFRFT矩阵定义为: 。 基于离散分数傅里叶变换的特征向量和特征值方法产生的定义不是唯一的,对特征值和特征向量的不同选择,导致了离散傅里叶变换的不同定义形式。如果用不同的分数次幂代替DFT矩阵的特征值=,则将FRFT推广到了MPDFRFT。N点NXN MPDFRFT矩阵定义为: 在MPDFRFT域中采用双自由度编码进行数字图像加密解密,两个过程分别如下图: 图像加密过程

MATLAB实验二傅里叶分析及应用

实验二傅里叶分析及应用 、实验目的 (一)掌握使用Matlab 进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab 分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab 分析周期信号的频谱特性 二)掌握使用Matlab 求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab 求连续时间信号的傅里叶变换 2、学会运用Matlab 求连续时间信号的频谱图 3、学会运用Matlab 分析连续时间信号的傅里叶变换的性质 三)掌握使用Matlab 完成信号抽样并验证抽样定理 1、学会运用MATLAB 完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB 改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB 对抽样后的信号进行重建 、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab 符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code: ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t- 1))+(2-t)*(heaviside( t-1)-heaviside(t- 2))' ); fw = simplify(fourier(ft)); subplot(2, 1, 1); ezplot(abs(fw)); grid on; title( 'amp spectrum' ); phi = atan(imag(fw) / real(fw)); subplot(2, 1, 2); ezplot(phi); grid on ; title( 'phase spectrum' ); 符号运算法 Code: dt = 0.01; t = -2: dt: 2; ft (t+2).*(uCT(t+2)- uCT(t+1))+(u CT(t+1)-uCT(t- 1))+(2-t).*(uCT (t-1)- uCT(t-2)); N = 2000; k = -N: N; w = pi * k / (N*dt); fw = dt*ft*exp(-i*t'*w); fw = abs(fw); plot(w, fw), grid on; axis([-2*pi 2*pi -1 3.5]); 数值运算法

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

实验三 周期信号的傅里叶级数分析及MATLAB实现

实验三周期信号的傅里叶级数分析及MATLAB实现 一、实验目的: 1.利用MATLAB实现周期信号的分解与合成,并图示仿真结果; 2.用MATLAB实现周期信号的频谱,画图观察和分析周期信号的频谱; 3.通过MATLAB对周期信号频谱的仿真,进一步加深对周期信号频谱理论知识的理解。 二、实验内容 9.1(a):程序: display('Please input the value of m(傅里叶级数展开项数)'); m=input('m='); t=-3*pi:0.01:3*pi; n=round(length(t)/4); f=cos(t).*(heaviside(t+2.5*pi)-heaviside(t+1.5*pi)+heaviside(t+0.5*pi)-heaviside(t-0.5 *pi)+heaviside(t-1.5*pi)-heaviside(t-2.5*pi)); y=zeros(m+1,max(size(t))); y(m+1,:)=f'; figure(1); plot(t/pi,y(m+1,:)); grid; axis([-3 3 -1 1.5]); title('半波余弦'); xlabel('单位:pi','Fontsize',8); x=zeros(size(t)); kk='1'; syms tx n T=2*pi; fx=sym('cos(tx)'); Nn=30; An=zeros(m+1,1); Bn=zeros(m+1,1); a0=2*int(fx,tx,-T/4,T/4)/T an=2*int(fx*cos(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T bn=2*int(fx*sin(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T An(1)=double(vpa(a0,Nn)); An(2)=0.5; for k=2:m An(k+1)=double(vpa(subs(an,n,k),Nn)); Bn(k+1)=double(vpa(subs(bn,n,k),Nn));

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MA TLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞ --∞ =? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞ -∞ =? 因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使之符合电脑计算的特征。另外,当把傅里叶变换应用于实验数据的分析和处理时,由于处理的对象具有离散性,因此也需要对傅里叶变换进行离散化处理。而要想将傅里叶变换离散化,首先要对时域上的波形x (t )进行离散化处理。采用一个时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()()x t x t t nT x nT δ=-=的傅里叶变换()X f 进行离散处理。与上述做法类似,采用频域上的δ脉冲序列: δ ( f -n/T 0), n = 0, 1, 2, …, N -1;T 0= NT 为总采样时间 可以实现傅里叶变换()X f 的离散化,如下图示。不难看出,离散后的傅里叶变换其频率间隔(频率轴上离散点的间隔,即频域分辨率) x (t ) δ 脉冲序列 x (t )δ (t -nT ) t t t

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

MATLAB实验二傅里叶分析应用

实验二傅里叶分析及应用 -、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 、实验条件 Win7 系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频

谱图(包括幅度谱和相位谱)

Code: ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t- 1))+(2-t)*(heaviside( t-1)-heaviside(t-2))' ); fw = simplify(fourier(ft)); subplot(2, 1, 1); ezplot(abs(fw)); gridon ; title( 'amp spectrum' ); phi = atan(imag(fw) / real(fw)); subplot(2, 1,2); ezplot(phi); grid on ; title( 'phase spectrum' ); 符号运算法 Code: dt = 0.01; t = -2: dt: 2; ft (t+2).*(uCT(t+2)-uCT(t+1))+(u CT(t+1)-uCT(t-1))+(2-t).*(uCT (t-1)-uCT(t-2)); N = 2000; k = -N: N; w = pi * k / (N*dt); fw = dt*ft*exp(-i*t'*w); fw = abs(fw); plot(w, fw), grid on; axis([-2*pi 2*pi -1 3.5]); 数值运算法amp spectrum -6-4 -2 0 2 4 6 w x10 phase spectrurri -6 -4 -2 0 2 4 6 w

旋转和缩放不变的联合变换报告——极-梅林变换的Matlab仿真分析

旋转和缩放不变的联合变换相关目标识别报告 ——极-梅林变换的Matlab 仿真分析 2015202120040 张智宇 联合变换相关器(Joint Transform Correlator, JTC)是利用透镜的两次傅里叶变换得到互相关峰来实现目标识别的。由于其可以实时、并行地处理光学图像,因此有着巨大的潜在应用价值。标准的JTC 只能识别畸变较小的目标,如果目标相较参考像有较大角度的旋转或较大比例的缩放,相关峰就会迅速衰减甚至无法识别。因此JTC 的应用受到了限制。 1.JTC 畸变不变识别技术发展概况 实际应用中,目标图像相对于参考图像总会存在不同程度的畸变(尺度和旋转等)。在这种情况下,系统对真假目标的识别性能称为系统的畸变不变识别能力。畸变不变识别已成为衡量系统性能的一个重要指标,提高目标畸变情况下联合变换相关器的识别能力十分重要。围绕提高光学相关目标识别系统的畸变不变识别能力,国内外进行了大量的理论和实验研究。通过三十多年的发展,人们提出了多种算法,诸如坐标变换法(也称为极-梅林变换法),Zernike 矩,综合识别函数法,圆谐函数展开法,直方图归一化法,本征图像法,滤波器库设计法,神经网路滤波法等等。这些方法能实现特定应用背景下的某种畸变不变识别,但是没有哪一种方法能够一劳永逸地解决所有情况下的畸变不变性识别问题。 1.1 圆谐函数展开法 1982 年,Yuan-Neng Hsu 等人提出用圆谐函数展开(Circular HarmonicExpansion, CHE)法解决目标旋转的识别问题,并利用基于某一圆谐分量的计算机全息图作为匹配滤波器实现了旋转目标的识别。目标图像f(x,y)可以用极坐标表示为f(ρ,θ)然后可以用指数函数展开成级数的形式: f(ρ,θ)=∑f M (ρ)exp?(jMθ)+∞M=?∞ (1-1) f M (ρ)=12π∫f(ρ,θ)exp?(?jMθ)dθ2π 0 (1-2) 如此一来,旋转 φ 后目标函数可以表示为: f(ρ,θ+φ)=∑f M (ρ)exp?(jMθ)exp?(Mφ)+∞M=?∞ (1-3) 原点处的相关在极坐标中的表达式为: C (φ)=C φ(0,0)=∫ρdρ∫f(ρ,θ+φ)f ?(ρ,θ)dθ2π0∞0 (1-4) 将1-1带入1-4得: C (φ)=∑∑exp (jMφ)∫f M (ρ)+∞0+∞M ′=?∞+∞M=?∞f M ′(ρ)ρdρ×∫exp (j (M ? 2π0M ′)θ)dθ=2π∑exp? (jMφ)∫|f M (ρ,θ)|2ρdρ∞0+∞M=?∞ (1-5) 式(1-5)所示的相关函数包含了圆谐函数各级分量的贡献。当旋转角φ变化时,显然不满足旋转不变的条件。而是得到如下结论:当参考信号中包含多个(大于等于2)圆谐函数分量时,相关输出是随旋转角度改变的。但是,如果参考信号中仅包含一个(某一级)圆谐函数分量,那么相关输出与旋转角度无关,即实现了旋转不变。 应用圆谐函数展开法进行旋转不变的相关识别,其识别性能强烈地依赖于极坐标系的原点的选择及作为参考信号的圆谐函数分量的选择。一般情况下,选择原则是把原点选在图像

积分变换的应用

浅谈积分变换的应用 学院:机械与汽车工程学院 专业:机械工程及自动化 年级:12级 姓名:郑伟锋 学号:201230110266 成绩: 2014年1月

目录 1.积分变换的简介 (3) 1.1积分变换的分类 (3) 1.2傅立叶变换 (3) 1.2拉普拉斯变换 (4) 1.3梅林变换和哈尔克变换 (5) 1.3.1梅林变换 (5) 1.3.2汉克尔变换 (6) 2.各类积分变换的应用 (6) 2.1总述 (6) 2.2傅立叶变换的应用 (6) 2.2.1傅立叶变换在图像处理中的应用 (6) 2.2.2傅立叶变换在信号处理中的应用 (7) 2.3拉普拉斯变换的应用 (8) 2.3.1总述 (8) 2.3.2 运用拉普拉斯变换分析高阶动态电路 (8) 参考文献 (9)

1.积分变换的简介 1.1积分变换的分类 通过参变量积分将一个已知函数变为另一个函数。已知?(x),如果 存在(α、b可为无穷),则称F(s)为?(x)以K(s,x)为核的积分变换。 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。 1.2傅立叶变换 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。其定义如下 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换

MATLAB实验二 傅里叶分析应用

实验二傅里叶分析及应用 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法 数值运算法

t (20 π ex p(-3 t) heaviside(t) - 8 π ex p(-5 t) heaviside(t))/(2 π) 2、试用Matlab 命令求ω ω ωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。 两个单边指数脉冲的叠加 3、已知门函数自身卷积为三角波信号,试用Matlab 命令验证FT 的时域卷积定理。

4、设有两个不同频率的余弦信号,频率分别为Hz f 1001=,Hz f 38002=;现在使用抽样频率Hz f s 4000=对这三个信号进行抽样,使用MATLAB 命令画出各抽样信号的波形和频谱,并分析其频率混叠现象 > > > > > > > > > >

相关文档
最新文档