蓖麻油酸制癸二酸反应历程探讨

蓖麻油酸制癸二酸反应历程探讨
蓖麻油酸制癸二酸反应历程探讨

蓖麻油

蓖麻油 &Nb sp; 简介: 蓖麻油取自蓖麻的种子(含油约50%)。去壳后的籽仁含油量高达近70%,含蛋白质18%左右。蓖麻油是唯一以含羟经基酸为主的商品油脂。蓖麻的主要产地为巴西、印度及前苏联,我国各省均有种植。 蓖麻油中含大量的蓖麻酸(80%以上),因此具许多独特的性质: 1.易溶解于乙醇,很难溶解于石油醚。这一特性的存在较易将蓖麻油与其它油脂区别。 2.粘度比一般油脂高很多,25时为680CPS,粘度指数84,摩擦系数很低(为0.1)。 同时蓖麻油不溶于汽油,凝固点低,燃点高。蓖麻油的流动性好,精制蓖麻油在-22时仍可流动,-50急冷后无混浊,是航空和高速机械理想的润滑油及动力皮带的保护油。 3.有很强的旋光性,因为它的主要脂肪酸--蓖麻醇酸中的不对称碳原子在12位后。 4.介电常数约为4.30,是常见油脂中最高者。 5.蓖麻油的相对密度和乙酰值都大于一般油脂。 6.蓖麻油在空气中几乎不发生氧化酸败,储藏稳定性好,是典型的不干性液体油。 蓖麻油的理化常数: 相对密度(d20℃4℃) 0.9550-0.9700 折光指数(n20℃D) 1.4765-1.4819 粘度(E020℃) 大于14 凝固点(℃) 18 燃点(℃) 322 碘值(g碘/100g油) 82-86 皂化值(mgKOH/g油) 176-187 硫氰值81-82 总脂肪酸含量(%) 约96 脂肪酸平均分子量290-300 蓖麻油的脂肪酸组成(%): 硬脂酸0.5-3.0 二羟硬脂酸0.6-2.0 油酸3-9 亚油酸 2.0-3.5 蓖麻酸80-88 蓖麻油不能食用。经济价值高,它是药用泻剂;纺织、化工及轻工等部门用蓖麻油作助染剂、润滑剂、增塑刑、乳化刑和制造涂料、油漆、皂类及油墨的原料。 蓖麻油经浓硫酸处理使得到表面活性很好的硫酸酯(俗称土耳其红油)。蓖麻油脱水则可得到具有共轭双键的干性油脂。以不同的氢化条件处理蓖麻油可以得到多种产品,因此蓖麻油广泛应用于各种工业部门。蓖麻油最接近纯化合物单酸甘三酯,在常见油脂中只有橄榄油

新型表面活性剂-蓖麻油基表面活性剂

新型表面活性剂-蓖麻油基表面活性剂 蓖麻油是自然界具有独特性能的植物油,主要含蓖麻酸、油酸、亚油酸、硬脂酸等。主成分为三蓖麻醇酸甘油酯,分子中含有三个双键、三个酯键和三个羟基。因此可作为多种化学反应或单元加工的原料。蓖麻油具有很高的应用价值和广阔的发展前景。人们很早就开始开发利用蓖麻油,最初只是简单加工,直到20世纪70年代才获得广泛的开发。蓖麻油可发生多种化学反应生成多种衍生产品,广泛应用于各个工业领域,制备表面活性剂也是蓖麻油的主要用途之一。由蓖麻油衍生的表面活性剂种类很多,最常用的有磺化蓖麻油,又称土耳其红油;及由蓖麻油水解得到的脂肪酸的皂类等。近些年来又开发出蓖麻油酸烷醇酰胺、十一烯酸烷醇酰胺、十一烯酸单乙醇酰胺琥珀酸酯磺酸二钠盐等。 1土耳其红油 蓖麻油在硫酸作用下可生成磺化油,即土耳其红油(结构如下)。由于其具有良好的润滑性、乳化性和分散性,至今一直用作纺织均染剂和皮革加脂剂等。此过程的主要副产品为甘油。 2烷醇酰胺 精制蓖麻油或其脂肪酸或脂肪酸甲酯与乙醇胺或二乙醇胺反应可生成烷醇酰胺。烷醇酰胺有稳定泡沫、乳化、抗静电等作用。用于洗涤剂可增加清洗和泡沫的能力,具有优良的钙皂分散力。与其他表面活性剂共用可大大增加去污力。用于洗发香波,可作为泡沫稳定剂,同时可控制黏度和弹性等,对皮肤刺激小,有保护作用。烷醇酰胺还具有良好的润滑性、净洗性,广泛用于纤维纺丝油剂。作为纤维用的光滑剂,可大大改善天然纤维的性能。 3十一烯酸单乙醇酰胺磺化琥珀酸二钠

十一烯酸单乙醇酰胺磺化琥珀酸二钠,商品名为去头皮屑剂NS(以下简称NS),是一种阴离子型表面活性剂。它具有配伍性好,水溶性佳的特点,广泛用于配制香波、香皂、浴液。具有较强的杀菌止痒功效,使用安全。 NS的制备过程为:蓖麻油裂解制得十一烯酸,十一烯酸与单乙醇胺反应生成十一烯酸单乙醇酰胺,再与顺丁烯二酸酐进行酯化得单酯,用Na2S03磺化,即得NS。 4蓖麻油烷醇酰胺硼酸酯 烷醇酰胺硼酸酯是一类在简单四配位硼氧杂环骨架上引入长链烷基的表面活性剂。可作为高分子材料的抗静电剂。研究发现长链疏水基在C。1~Q。范围内,链越长,油溶性越好,其抗静电持久性也越好。疏水链中含有不饱和键及侧基上有羟基,会使降低界面张力的能力更优越。王慧敏以蓖麻油为原料,合成了蓖麻油烷醇酰胺硼酸酯(结构如下),其疏水链含有18个碳,又有双键和羟基。作为抗静电剂将其加入PE中.取得了良好的效果。 蓖麻油烷醇酰胺硼酸酯具有较强的极性,适于作为高分子材料的添加型抗静电剂,稳定性好,抗静电持久,耐水洗性好。 5蓖麻油酸甲酯硫酸铵 蓖麻油酸甲酯硫酸铵是一种性能优良的阴离子表面活性剂。可由蓖麻油酸甲酯直接硫酸化制得。由于蓖麻油酸结构中含有羟基,很容易硫酸化。目前工业上常用的硫酸化剂有浓硫酸、发烟硫酸、氯磺酸等,但生产出的产品质量低劣,难

脂肪酸甲酯及其它增塑剂的区别

脂肪酸甲酯与其它增塑剂的区别 脂肪酸甲酯为黄色澄清透明液体(精馏后为无色),具有一种温和的、特有的气味,结构稳定,没有腐蚀性。脂肪酸甲酯是用途广泛的表面活性剂(SAA)的原料。从脂肪酸甲酯出发可生产两大类,一类是通过中和生产脂肪酸甲酯磺酸盐(MES),另一类是通过加氢生产脂肪醇。 简介 全世界脂肪醇的57%是由脂肪酸甲酯生产的,43%由脂肪酸生产。脂肪醇经乙氧基化生产醇醚(AE)、AE经中和生产醇醚硫酸盐(AES)。也可将脂肪醇经磺化、中和生产伯烷基硫酸盐(PAS)。因此,脂肪酸甲酯是MES、AE、AES和PAS等SAA的原料和中间体。油脂、、脂肪酸甲酯等原料的供应决定了上述生产SAA的效率。 脂肪酸甲酯按照碳链的饱和程度可分为含有的不饱和脂肪酸甲酯和不含双键、三键的饱和脂肪酸甲酯。饱和脂肪酸甲酯的主要用途是前述的生产。不饱和脂肪酸甲酯出来可用于前述表面活性剂的生产外,还可以用于生产。后者是一种重要的增塑剂,广泛用于聚氯乙烯等树脂的增塑,可部分代替邻苯二甲酸盐类增塑剂。 这里的脂肪酸甲酯,其脂肪酸的碳链一般在12-22之间,主要是12-18的饱和脂肪酸甲酯和不饱和脂肪酸甲酯,可以有侧链,碳链上也可以有羟基等其他基团。脂肪酸甲酯是油脂用甲醇酯交换的产物,也可以是来自油脂的脂肪酸用甲醇的酯化产物。这里的油脂可以是动

物性油脂,比如猪油、牛油,也可以是植物性油脂,比如、棕榈油、椰子油、蓖麻油等。美国宝洁(P&G)化工马来西亚工厂生产高碳链脂肪酸甲酯CE-1875A,低碳链CE-810等。 历史 我国脂肪酸甲酯工业经历了一个飞跃性的发展。 由于价格不断高涨,寻求柴油替代品的努力不断被实践。我国存在大量,比如油脂,这些油脂在生产过程中会产生大量副产物,其中包括以酯类形式存在的,也包括游离的脂肪酸。这里的脂肪酸的为长链脂肪酸,当脂肪酸的碳链为12-18时,其甲酯就是生物柴油的基本成分。因此,06年后我国投资生产生物柴油的企业数量迅猛增加。 但是与石化柴油相比,在性能和性价比方面难以与石化柴油抗衡,除了勉强用于船用柴油外,作为燃料很难在更多领域应用。因此,大量的生物柴油企业面临转型的困境。 但是生物柴油已经应用到了柴油调和的领域提供现有石化柴油的不环保性等各项指标,并且国家也制定出台了B5生物柴油油的国家标准。所以前景很好,只加大推广力度。 由于脂肪酸甲酯可以进一步加工成,而后者在增塑剂领域的应用得到了有效地推广,成为可在某种程度上替代邻苯二甲酸盐增塑剂的一种绿色环保型的增塑剂,生物柴油企业纷纷转型为增塑剂企业。用

中药花椒在现代的药效研究及临床应用

中药花椒在现代的药效研究及临床应用 摘要:根据《中国药典》,花椒(Huā Jiāo,PERICARPIUM ZANTHOXYLI)别名香椒、大花椒、椒目本品为芸香科植物青椒(香椒、青花椒、山椒、狗椒)Zanthoxylum schinifolium Sieb. et Zucc.或花椒(蜀椒、川椒、红椒、红花椒、大红袍)Zantho xylum bungeanum Maxim.的干燥成熟果皮(花椒)及种子(椒目)入药。秋季采收成熟果实,去除杂质晒干。与种子分开备用。性味辛,温。归脾、胃、肾经。功能主治温中止痛,杀虫止痒。用于脘腹冷痛,呕吐泄泻,虫积腹痛,蛔虫症;外治湿疹瘙痒。用法用量3~6g。外用适量,煎汤熏洗。贮藏置通风干燥处。 关键词:花椒药效研究临床应用痔疮脾胃虚寒 一. 药效研究 1.1 杀虫作用 张登霞不同药物浓度下对阴道毛滴虫体外培养,不同时间观察虫体存活状态,并与不同浓度甲硝唑体外抗虫效果进行比较。结果花椒煎剂浓度为3.13%,即有明显的抗虫效果,作用 64小时杀虫率可达 85%,浓度为25 %, 4小时杀虫率达到 80.5%,8小时达到100%。与甲硝唑抗虫效果比较,差异无显著性(P>0.05 )。结论中药花椒煎剂是一种有效的抗阴道毛滴虫药物,在临床上值得探讨应用。【1】 1.2降压作用 试验研究证明,花椒所含挥发油成分牛儿醇给家兔静脉注射,能引起血压的迅速下降,反射性引起呼吸兴奋。而且其降压作用不被阿托品阻断【2】。 1.3 对血流变学的影响 研究发现,花椒水提物10~20g/kg 和花椒醚提物0.3mL/kg 剂量下对大鼠血栓形成有明显抑制作用,能明显延长实验性血栓形成的时间,提示有预防血栓形成的作用。花椒水提物10g/kg 和醚提物0.15~0.3mL/kg 剂量时,具有一定抗凝作用,能明显延长血浆凝血酶原、白陶土部分凝血酶时间,水提物强于酶提物,推测花椒的抗栓、抗凝作用可能与血小板功能、血管内皮细胞的抗凝成分有关【2】。 1.4对心肌的影响 实验证明花椒粗提物【2】对冰水应激的心肌损伤有一定的保护作用,其水提物和醚提物均可使血清单胺氧化酶(MAO)和血清甘油三酯(TG)含量明显下降,而水提物对5'- 核苷酸酶活性改变不明显,醚提物可明显使其活性下降【2】。 1.5 麻醉作用 花椒有较强的麻醉作用。实验【3】表明,一定浓度的花椒挥发油和水溶物对蟾蜍离体坐骨神经冲动的传导和兴奋性有一定的影响,即可逆地阻断神经干的冲动传导和降低神经干兴

金属与酸反应的规律大总结

金属与酸反应的规律大总结 一、金属与酸反应的规律 1、K 、Ca 、Na 等活泼金属能与水剧烈反应生成H 2 。 2、金属活动顺序H 前的金属与非氧化性酸反应生成H 2 。 3、金属活动顺序H 后的金属与非氧化性酸不反应,但能与强氧化性酸发生反应,但不产生H 2 ,而是H 2O ,如铜与稀硫酸不反应,但能与浓硫酸、硝酸等强氧化性酸反应。 4、很不活泼金属Pt 、Au 等不溶于氧化性酸,但能溶于王水(浓硝酸和浓盐酸按体积比为1︰3的比例混合而成)。 5、常温下,Al 、Fe 遇浓硫酸和浓硝酸会发生钝化,生成一层致密的氧化物保护膜,这是金属与强氧化性酸发生氧化还原反应的结果。 6、铁与硝酸反应较为复杂,具体情况如下: 铁与稀硝酸反应,还原产物一般为NO : 铁不足:Fe + 4HNO 3(稀) Fe(NO 3)3 + NO↑ + 2H 2O 铁过量:3Fe + 8HNO 3(稀) 3Fe(NO 3)2 + 2NO↑ + 4H 2O 铁与浓硝酸反应,还原产物一般为NO 2 : 常温下:发生钝化 加热时:剧烈反应,一般生成铁盐。 二、金属与非氧化性酸反应的计算规律 解答此类试题时,关键是确定金属与氢气或者酸与氢气之间的对应关系式,在根据试题所给的限定条件作出相应的解答。金属与非氧化性酸反应时,应注重下面四个方面的规律: 1、 金属与酸反应均为氧化还原反应,且金属失去电子的物质的量等于酸得到电子的物质的量。 2、 1mol a 价的活泼金属与足量的非氧化性酸反应,可生成a/2 molH 2 3、Na Mg Al 与酸反应规律 酸足量(金属完全反应)时 a. 等物质的量的不同金属与足量的酸反应时,产生H 2的体积比等于金属元素的化合价之比。 即产生的气体Na :Mg :Al=1:2:3 可简单记忆为:金属元素的化合价数对应H 原子个数,如: Na ~ H ~1/2H 2 Zn ~ 2H ~ H 2 Al ~ 3H ~ 3/2H 2 b 、相同质量的不同金属与足量酸反应时,产生H 2的体积比等于金属的 相对原子质量 化合价 之比。即产生 的气体Na :Mg :Al=1/23:2/24:3/27

以蓖麻油酸为原料合成1_9_壬二酸工艺的改进

第25卷 第5期2010年10月 郑州轻工业学院学报(自然科学版) J OURNAL OF Z H ENGZ HOU UNI VERS I TY OF L I G HT I NDUSTRY(Nat u ral S cience) V o.l 25 N o .5 O ct .2010 收稿日期:2010-01-20 基金项目:国家自然科学基金项目(50872069) 作者简介:赵玛(1959 ),女,河南省南阳市人,郑州轻工业学院副教授,主要研究方向为化学工艺. 文章编号:1004-1478(2010)05-0065-03 以蓖麻油酸为原料 合成1,9-壬二酸工艺的改进 赵玛1 , 杨萌萌2 , 刘大勇 2 (1.郑州轻工业学院河南省表界面科学重点实验室,河南郑州450002; 2.黄淮学院化学化工系,河南驻马店463000) 摘要:以自制的蓖麻油酸为原料,用高锰酸钾氧化法来制备1,9-壬二酸,采用单因素实验法探讨了 反应条件对1,9-壬二酸收率的影响.获得的适宜反应条件为:n (KM nO 4) n (蓖麻油酸)=3.5 1,反应温度60~70 ,反应时间0.35h .该条件下,1,9-壬二酸的收率在95%以上.与其他的合成工艺相比,该工艺具有原料廉价易得、反应条件温和、产品收率高且纯度高等优点.关键词:1,9-壬二酸;蓖麻油酸;高锰酸钾氧化法中图分类号:Q949.95 文献标志码:A I mprove ment of 1,9-azelaic aci d synthesis usi ng castor oil aci d as ra w materi al Z HAO M a 1 , YANG M eng -m eng 2 , LI U Da -yong 2 (1.H e nan ProvincialK e y Lab .of Surface and Interface S ci .,Zhengzhou Un i v.of L i ght Ind.,Zhengzhou 450002,China ; 2.D ep t .of Che m.and Che m.Eng.,H uanghuai Univ .,Zhu mad ian 463000,Ch i na) Abstract :1,9-azela ic ac i d w as prepared by potassi u m per m anganate m ethod using sel-f m ade casto r o il ac i d as ra w m ateria.l The effects o f reacti o n conditi o ns w ere studied through si n g le factor exper i m en.t The opt-i m um reacti o n conditionsw ere obtained n (K M nO 4) n (castor o il acid)=3.5 1,reaction te m perature 60~70 ,reaction ti m e 0.35h .The y ield of 1,9-azela ic acid w as over 95%under the opti m u m conditi o ns .Co m pared w it h the old synthetic techno logy ,t h e process has advantages such as cheap ra w m aterials ,m od -erate reacti o n conditi o ns ,h i g h y ield and h i g h purity . Key w ords :1,9-aze l a ic acid ;castor o il acid ;potassi u m per m anganate ox idation m ethod 0 引言 1,9-壬二酸是制备增塑剂、润滑剂、化学纤维的重要原料,也可以用于皮肤的防护和皮肤病的治疗,同时作为介质,还可以提高电容器电解质的使用寿命,因此具有较高的开发和应用价值 [1-2] .目前,1,9-壬二酸的制备工艺有臭氧氧化、过氧化物氧化、硝酸氧化、空气氧化、钌盐氧化、钴盐氧化、次氯酸钠氧化以及生化氧化等.这些制备工艺大多存在着收率和原料利用率低、反应条件苛刻、后处理困难、污染严重、国产原料短缺等问题 [3-6] .本文拟 以蓖麻油酸为原料,采用高锰酸钾法来制备1,9-

利用蓖麻油发展精细化学品解读

利用蓖麻油发展精细化学品 朱红精细 1522 1501220229 摘要:本文综述了蓖麻油深加工的各种途径 , 介绍了以蓖麻油为原料加工的多 种精细化学品的生产方法及其应用。 关键词 :蓖麻油 ; 精细化学品 ; 蓖麻油酸 ; 表面活性剂 我国是世界蓖麻子富产国 , 年产量在 20万 t 左右 , 仅次于印度和巴西。但我国的蓖麻油榨油及深加工工业与蓖麻子的产量还不相匹配 , 有待于进一步改造、更新和开发。蓖麻油是高级脂肪酸的甘油酯 , 含有双键、羟基和酯基三种功能基团 , 因而可以发生多种反应 , 如皂化 (水解、磺化、酯化、酰胺化、卤化、氢化、硫酸化、环氧化、乙氧基化、裂化、脱水、碱解和酯交换等 , 故可进行广泛的化学深加工。下面简介 40余种蓖麻油精细化学品 , 以利开发 1. 合成表面活性剂 硫酸化蓖麻油 :别名太古油 , 土耳其红油 , 磺化蓖麻油 , 是蓖麻油与硫酸作用而得 , 也是最早使用的阴离子表面活性剂。用作纤维加工油剂 , 染色助剂 , 润滑剂 , 化妆品、肥皂、香波、餐洗剂等稳泡剂 , 农药用乳化剂等。硫酸化蓖麻油酸丁酯 :蓖麻油与丁醇经酯交换 , 分去甘油后与硫酸作用 , 再以碱中和制取阴离子表面活性剂 , 是耐硬水、耐酸性强的表面活性剂。用作羊毛 , 丝织品 , 棉麻制品及其混纺制 品的染色 , 漂白 , 润湿和柔软剂等。结论自 20世纪 60年代国外开发有机膦水处理剂 HEDP 以来 , 有机膦酸盐水处理剂经历了一代又一代的发展。第一代有机膦酸 盐水处理剂 HEDP 和 A TMPA ,作为阻垢缓蚀剂在磷系配方中统治了近 20年 , 直到20世纪 70年代后期 , 为了适应高浓缩倍数的需要 , 出现了 PB TCA。随之 ,20世 纪 80年代中期 ,HPA 的问世 , 组成了人们所期望的 , 可能与金属离子配方相抗衡的全有机水处理剂。进入 20世纪 90年代 , 有机膦酸盐水处理剂又有进一步的发展 , 产品以多氨基多醚基甲叉膦酸 (PAPEMP及 POCA 为代表 , 其主要特点是分子增大 , 出现了大分子有机膦酸盐水处理剂。有机磷酸盐自 20世纪 90年代初以来 , 需求量持续增长 , 今后在很长一段时间内还将维持现状。许多水处理公司正在研制开发 新型的有机膦酸盐品种 , 如在有机磷酸分子中引入磺酸基团 , 为有机磷酸盐展示了

常用养鸡饲料原料的营养成份与特性

一、热能饲料 (一)玉米(Corn) 玉米为鸡的最主要热能饲料,每公斤乾物质约含3854Kcal的代谢能(风乾物之ME为3383Kcal/Kg)。一般均先将玉米谷粒磨碎後,再喂饲鸡只。常用的黄色玉米虽然含颇高的代谢能,但蛋白质品质欠佳,离胺酸%)和色胺酸%)含量偏低。玉米蛋白质品质所以稍差,是因为含有高量的玉米胶蛋白(Zein),其量超过总蛋白质的50%,而玉米胶蛋白质含低量的离胺酸及色胺酸。 饲料用玉米大都为黄色玉米,含有丰富的胡萝卜素。白色玉米缺乏胡萝卜素(Carotene),其他养分的组成则类似黄色玉米。 1963年普渡大学的Mertz发现Opaque─2玉米,它的Lysine含量几为一般玉米的两倍。此种玉米的胺基酸组成之所以不同於一般杂交种玉米,是因为有较多的谷蛋白(glutelin)。一般玉米含41~52%玉米胶蛋白,17~28%谷蛋白,而Opapque─2玉米则恰相反,含16%玉米胶蛋白和42%谷蛋白,就饲养雏鸡的价值而言,含等量时,Opaque─2可得到较佳的效果;如果添加Lysine於一般玉米饲料,使含等量的Lysine,则两者饲料鸡只的效果一样。可见两种玉米营养价值的差异,乃在於Lysine含量不同所致。 虽然Opaque─2种玉米比一般玉米含有较高的离胺酸,但因单位面积产量较低,故仍未具实际之推广价值。 一般鸡适当用量:幼鸡及成鸡:10~70%。 (二)高粱(Sorghum) 高粱因含有单宁(Tannin),适口性较玉米差。高粱种类颇多,蛋白质含量变异甚大,其变量范围为8%~16%,平均约10%。虽然蛋白质含量不同,但胺基酸组成则颇为一致,以高或低蛋白质的高粱分别饲养鸡只,如使饲粮中蛋白质与胺基酸量相等,则鸡的增重速度一样。高粱的代谢能值和胺基酸的利用率均与单宁含量成反比的关系,亦即单宁含量越低,代谢能和胺基酸利用率越高。惟棕色种皮高粱的利用率较无棕色种皮者变异大。亦即,一般高粱之种皮色较浅者,单宁之含量较低。 高粱蛋白质的Lysine含量%)偏低;另外,酪胺酸%)和苯丙胺酸%)量也可能不足。高粱用於饲鸡的最大缺点,在次无Vit A和色素值,故於肉鸡後期配方中高粱之用量应比前期为少,

金属与酸反应规律的应用

探索规律提高能力––––金属与酸反应规律的应用 近年中考化学命题逐渐由知识立意转向能力立意,注重了对学生能力的考查。有些能力要求较高的计算题,同学们常感到棘手,究其原因主要是没有注意能力的培养。只要我们在平时的学习中认真研究解题技巧、分析和总结解题的思路,找出它们内在的联系––––即探索总结出规律,就可以提高自己的解题能力。下面将一些典型试题例析如下: 一. 规律的引出 例1. 把等质量的下列金属分别与足量的稀硫酸反应,产生氢气最多的是() A. 铁 B. 铝 C. 镁 D. 锌 解析:由于酸足量,金属都完全反应,故可设出金属的质量,然后根据化学方程式分别求出产生氢气的质量,这样易于学生的理解,但既费时又费力。设金属R的质量为m,相对分子质量为Ar,其在反应中的化合价为n,产生氢气的质量为。我们可以把金属与酸发生置换反应用化学方程式计算的形式概括出来: (1)当金属元素R的化合价为奇数时,有: 2Ar 2n m 解之得: (2)当金属元素R的化合价为偶数时,有: Ar n m 解之得: 可见,产生氢气的质量除与金属的质量有关外,还与金属元素在反应中显示的化合价及其相对原子质量有关。于是我们可以总结出像上例所述当等质量的金属与足量的稀硫酸或稀盐酸反应时,产生氢气的多少可直接用“金属的相对原子质量/金属在反应中的化合价”

这一比值来进行判断。显然,此比值越大,产生氢气的质量就越少,反之就越多。由此得出规律:等质量的活泼金属分别与足量的酸发生置换反应时,金属的相对原子质量与其反应中的化合价比值越大,产生的氢气质量越少;反之就越多。 通过计算又知:“金属的相对原子质量/金属在反应中的化合价”这一比值恰好也是产生1g氢气所需的该种金属的质量。因此我们又可以得出如下规律:当活泼金属与足量的酸反应制取等质量的氢气时,金属的相对原子质量与其反应中的化合价比值越大,消耗金属的质量就越多;反之就越少。 以上规律都是用“金属的相对原子质量/金属在反应中的化合价”分析得出的,所以我们可以把它作为一种技巧,用来速解一些中考和竞赛题。 二. 技巧的运用 例2. 等质量的Na、Mg、Al、Fe、Zn五种金属,分别与足量的稀盐酸充分反应,产生氢气的质量由多到少的顺序是() A. Al、Na、Mg、Fe、Zn B. Al、Mg、Na、Fe、Zn C. Na、Mg、Al、Fe、Zn D. Zn、Fe、Al、Mg、Na 解析:利用“金属的相对原子质量/金属在反应中的化合价”来判断,比值越大,产生氢气的质量越少;反之就越多。求出:Na:23/1=23,Mg:,Al:27/3=9,Fe:56/2=28,Zn:65/2=32.5 所以选B。 例3. 分别用Al、Fe与足量的稀硫酸反应,制得相同质量的氢气,则消耗Al、Fe的质量比为() A. 9:28 B. 27:56 C. 9:56 D. 27:112 解析:假设Al、Fe与足量的稀硫酸反应都产生1g氢气,则所需金属的质量就是“金属的相对原子质量/金属在反应中的化合价”的数值。求出:Al:27/3=9,Fe:56/2=28,所以消耗Al、Fe的质量比是9:28。 选A

蓖麻油是一种天然多羟基脂肪酸甘油酯o

蓖麻油是一种天然多羟基脂肪酸甘油酯o“。其中含有70%左右的甘油三蓖麻油油酸酯和30%甘油二蓖麻油油酸酯单亚油酸酯等,化学名称9一烯基一12羟基十八酸,平均宫能度是2.7将蓖麻油代替聚醚(酯)多元醇合成医用聚氨酯,不仅提高了聚氨酯的交联度“1,且有较好的热稳定性”o。蓖麻油中的不饱和碳碳双键还可提供与其他功能团接枝共聚的活性点,且本身也可自交联,有利于改善 2 2蓖麻油基聚氨酯接枝改性 任何一种材料的特性或多或少都取决于材料的表面性质,且单一的材料性能不能满足人体复杂器官的性能要求。尽管蓖麻油基聚氨酯材料具有优良的机械性能,良好的生物相容性和抗凝血性等优点,但是制成材料(如薄膜)硬度较大且不降解,这就限制了它在医疗方面的应用。因此,对材料的表面进行接枝改性,通过蓖麻油基聚氨酯预聚体的端基一NCO 基团与各种功能性侧链如一OH、一NH:、一COOH等基团反应,反应方程式如下”?,在聚氨酯表面进行接枝改性,在保留聚氨酯材料本身优越性能的基础上,赋予其复合材料新的特性,如降解性、生物活性等,提高材料的使用价值。 化学研究与应用第19卷第8期董志红等:生物医用蓖麻油基聚氧酯及其接枝改性

3 可生物降解水性聚氨酯的制备原理及类型生物可降解聚氨酯材料的制备是利用多异氰酸酯组分的异氰酸酯基团的高活性和天然高分子化合物的可生物降解性能,理论上可以把含有多个羟基的天然高分子化合物作为多元醇组分之一,通过多元醇组分与异氰酸酯组分之间的反应,将可被微生物分解的分子链引入到聚氨酯材料当中[10]。当用土埋法进行处理时,材料在微生物酶的作用下,发生水解和氧化等反应,这些分子链断裂成低相对分子质量的碎片,微生物吸收或消耗这些低相对分子质量的碎片后,经过代谢形成二氧化碳、水及生物能,终达到降解的目的[5]由于聚氨酯对普通微生物有一定的敏感性,是生产可生物降解材料的理想原料,同时其结构可自由设计,因此目前研究的可生物降解聚氨酯的类型较多,主要有聚醚型、聚酯型聚氨酯以及天然可生物降解高分子改性的聚氨酯。用于合成聚醚型聚氨酯的聚醚有聚氧乙烯(PEO)、聚四亚甲基醚(PTMO)、聚氧化丙烯(PPO)等。相对于聚醚型而言,聚酯型聚氨酯更容易降解,主要是由于聚酯容易在生物体内水解。常用的聚酯有PCL、PLA、PGA及其共聚物如乳酸/羟基乙酸共聚物(PLGA)等。大量研究表明,这些聚酯软段本身也具有很好的生物降解性,能够在生物体内安全降解[11]。YOUNG DUK KIM等[12]合成了化学结构各不相同的几种聚酯型聚氨酯,并且通过水

蓖麻油粘度摄氏度

蓖麻油粘度摄氏度 蓖麻油的粘稠度指数也被称为内摩擦系数。它和温度有着比较重要的关系。我们知道蓖麻油是比较常见的一种油品,它的用途是非常广泛的,比如说它具有润肠通便的作用,能够加速粪便的排出,另外在美容养颜方面效果也是比较好的,在医药行业也经常用作为收敛止痛的一种药物。 蓖麻油粘度摄氏度 液体的粘滞系数又称为内摩擦系数或粘度。是描述液体内摩擦力性质的一个重要物理量。它表征液体反抗形变的能力,只有在液体内存在相对运动时才表现出来。 粘滞系数除了因材料而异之外还比较敏感的依赖温度,液体的粘滞系数随着温度升高而减少,气体则反之,大体上按正比于的规律增长.在国际单位制中粘滞系数的单位为帕秒(pas)在CGS单位制中为泊(poise)符号为p。研究和测定液体的粘滞系数,不仅在材料科学研究方面,而且在工程技术以及其他领域有很重要的作用。 蓖麻油的功效与作用 1、润肠通便 蓖麻油中含有大量的天然油脂,它进入人体肠道以后,可以被人体肠道中的脂肪分解酶所影响,这时它会快速分解成蓖麻油酸钠和甘油,这两种物质对人类的小肠都有明显刺激性,可以加快肠道蠕动缩短人类排便时间,其润肠通便的作用特别明显。

2、保护皮肤 蓖麻油还能直接涂抹在人们的皮肤上,能预防多种皮肤性疾病发生,因为蓖麻油本身的刺激性就特别小,它性质温和,涂抹在肌肤上以后,能润滑滋养肌肤,而且能消除皮肤表面的细菌与炎症,可以防止皮炎湿疹以及风疹等常见皮肤病发生。 3、收敛止痛 蓖麻油还具有出色的收敛功效,而且能止痛止痒,平时人们出现烧伤烫伤时,可以直接涂抹适量的蓖麻油,能加快人们伤处愈合,也能缓解伤处疼痛。另外,人们出现皮肤溃疡或者口腔溃疡时,都可以直接涂抹适量的蓖麻油,能加快溃疡面愈合防止病情恶化。 4、滋养秀发 蓖麻油中含有多种氨基酸和维生素以及矿物质,平时它可以当发膜使用平时,人们在每次洗头以后,可以取适量的蓖麻油,直接涂抹在头发上,并轻轻按摩十几分钟以后,用清水把头发洗净,坚持如此可以让人们的发质变得越来越好,既能防止头发干枯脱落也能防止黑发变白。

油脂中脂肪酸的组成

1.油脂 (1)天然高级脂肪酸 组成油脂的脂肪酸绝大多数是含碳原子数较多,且为偶数碳原子的直链羧酸,约有50多种。油脂中常见的脂肪酸见表4-1。 表4-1油脂中常见的脂肪酸 天然存在的高级脂肪酸具有如下的共性: ①绝大多数为含有偶数碳原子的一元羧酸,碳原子数目在十几到二十几个。 ②绝大多数多烯脂肪酸为非共轭体系,两个双键之间由一个亚甲基隔开;不饱和脂肪酸的双键多为顺式构型。 ③不饱和脂肪酸的熔点比同碳数的饱和脂肪酸的熔点低,双键越多熔点越低。例如,十八碳的硬脂酸69 ℃,油酸13 ℃,花生四烯酸-50 ℃。 ④十六碳和十八碳的脂肪酸在油脂中分布最广,含量最多;人体中最普遍存在的饱和脂肪酸为软脂酸和硬脂酸,不饱和脂肪酸为油酸。高等植物和低等动物中,不饱和脂肪酸含量高于饱和脂肪酸。 (2)油脂的皂化值及碘值 1 g油脂完全皂化时所需氢氧化钾的毫克数称为皂化值。根据皂化值的大小,可以判断油脂中三羧酸甘油酯的平均相对分子质量。皂化值越大,油脂的平均相对分子质量越小,表示该油脂中含低相对分子质量的脂肪酸较多。皂化值是衡量油脂质量的指标之一。

含有不饱和脂肪酸成分的油脂,其分子中含有碳碳双键。油脂的不饱和程度可用碘值来定量衡量。100 g油脂所能吸收碘的克数称为碘值。碘值与油脂不饱和程度成正比,碘值越大,油脂中所含的双键数越多,不饱和度也越大。由于碘与碳碳双键加成的速度很慢,所以常用氯化碘或溴化碘的冰醋酸溶液作试剂。有些油脂可作为药物,如蓖麻油用作缓泻剂,鱼肝油用作滋补剂。 表4-2几种常见油脂中的脂肪酸的含量(%)和皂化值及碘 值 (3)食用油的变质 油脂是人体必需的营养物质之一。我们都知道油脂和含油较多的食品(例如香肠、腊肉、糕点等)放置时间过长,会产生辣、带涩、带苦的不良的味道,有些油脂还有一种特殊的臭味。这种油脂在空气中放置过久变质,产生难闻的气味的现象,称为酸败。发生了油脂酸败的食物不仅吃起来难于下咽,而且还有一定的毒性。长期食用酸败了的油脂对人体健康有害,轻者呕吐、腹泻,重 者能引起肝脏肿大造成核黄素(维生素)缺乏,引起各种炎症。油脂的酸败 是因为在空气中的氧、水和微生物的作用下,油脂中不饱和脂肪酸的双键被氧化成过氧化物,这些过氧化物继续分解或氧化生成有臭味的低级醛、酮和羧酸等。光、热或潮气可加速油脂的酸败。为防止油脂的酸败,必须将油脂保存在低温、避光的密闭容器中。还可以在油脂中加入少量的抗氧化剂。维生素E是一种良好的抗氧化剂,一般在油脂中加入0.02%的维生素E,就可以抑制其氧化反应的进行。 油脂的酸败程度可用酸值来表示。油脂酸败有游离的脂肪酸产生,它的含量可以用KOH中和来测定,中和1 g油脂所需的KOH的毫克数称为酸值。酸值越小,油脂越新鲜;一般来说,酸值超过6的油脂不宜食用。 (4)脂类的生理功能 脂类以各种形式存在于人体的各种组织中,是构成人体组织细胞重要成分之一,在人体内具有重要的生理功能。 ①供给和贮存热能。每克脂肪在体内氧化可释放出约38 kJ的热量,比等质量的碳水化合物或蛋白质的供热量大一倍多。脂肪贮存占有空间小,能量却比较大,所以贮存脂肪是储备能量的一种方式。人类从食物中获得的脂肪,一部分贮存在体内,当人体的能量消耗多于摄入时,就动用贮存的脂肪来补充热

金属与酸反应的规律大总结

一、金属与酸反应的规律 1、K、Ca、Na等活泼金属能与水剧烈反应生成H2 。 2、金属活动顺序H前的金属与非氧化性酸反应生成H2。 3、金属活动顺序H后的金属与非氧化性酸不反应,但能与强氧化性酸发生反应,但不产生H2,而是H2O , 如铜与稀硫酸不反应,但能与浓硫酸、硝酸等强氧化性酸反应。 4、很不活泼金属Pt、Au等不溶于氧化性酸,但能溶于王水(浓硝酸和浓盐酸按体积比为 1 : 3的比例混合而成)。 5、常温下,Al、Fe遇浓硫酸和浓硝酸会发生钝化,生成一层致密的氧化物保护膜,这是金属与强氧化性酸发生氧化还原反应的结果。 6、铁与硝酸反应较为复杂,具体情况如下: 铁与稀硝酸反应,还原产物一般为NO 铁不足:Fe + 4HNO 3 (稀)-------- F e(NO3)3 + NO f + 2H 20 铁过量:3Fe + 8HNO 3 (稀)------- 3Fe(NO3)2 + 2 NOT + 4H 20 铁与浓硝酸反应,还原产物一般为NO : 常温下:发生钝化 加热时:剧烈反应,一般生成铁盐。 二、金属与非氧化性酸反应的计算规律 解答此类试题时,关键是确定金属与氢气或者酸与氢气之间的对应关系式,在根据试题所给的限定条件 作出相应的解答。金属与非氧化性酸反应时,应注重下面四个方面的规律: 1、金属与酸反应均为氧化还原反应,且金属失去电子的物质的量等于酸得到电子的物质的量。 2、1mol a价的活泼金属与足量的非氧化性酸反应,可生成a/2 molH 2 3、Na Mg Al 与酸反应规律 酸足量(金属完全反应)时 a、等物质的量的不同金属与足量的酸反应时,产生Hb的体积比等于金属元素的化合价之比。即产生的气体Na : Mg: Al=1 : 2: 3 可简单记忆为:金属元素的化合价数对应H原子个数,如: Na ?H ?1/2H2 Zn ?2H ?H2 Al ?3H ?3/2H 2 化合价 b、相同质量的不同金属与足量酸反应时,产生H2的体积比等于金属的之比。即产生 相对原子质量 的气体Na : Mg AI=1/23 : 2/24 : 3/27

脂肪酸甲酯的简述

脂肪酸甲酯的简述 脂肪酸甲酯为黄色澄清透明液体(精馏后为无色),具有一种温和的、特有的气味,结构稳定,没有腐蚀性。脂肪酸甲酯是用途广泛的表面活性剂(SAA)的原料。从脂肪酸甲酯出发可生产两大类表面活性剂,一类是通过磺化中和生产脂肪酸甲酯磺酸盐(MES),另一类是通过加氢生产脂肪醇。 饱和脂肪酸甲酯的主要用途是前述表面活性剂的生产。 这里的脂肪酸甲酯,其脂肪酸的碳链一般在12-22之间,主要是12-18的饱和脂肪酸甲酯和不饱和脂肪酸甲酯,可以有侧链,碳链上也可以有羟基等其他基团。脂肪酸甲酯是油脂用甲醇酯交换的产物,也可以是来自油脂的脂肪酸用甲醇的酯化产物。这里的油脂可以是动物性油脂,比如猪油、牛油,也可以是植物性油脂,比如大豆油、棕榈油、椰子油、蓖麻油等。美国宝洁(P&G)化工马来西亚工厂生产高碳链脂肪酸甲酯CE-1875A,低碳链CE-810等. 脂肪酸甲酯的制备 种以棉油皂脚为原料合成混合脂肪酸甲酯方法,其特征在于,所述的混合脂肪酸甲酯是棉油皂脚经酸化、酯化、脱酸、减压蒸馏制成,在酸化过程中,按重量将棉油皂脚∶浓硫酸=10∶0.5~1.5的比例投入反应釜中进行搅拌、升温,当温度升高至105℃时,取样检验下层溶液的PH值,然后用棉油皂脚将PH值调节在2~3,保温反应0.5小时,停止加热和搅拌,静置0.5~1小时,将下层酸液放入贮存容器或回用,在上层的脂肪物中加入等体积的自来水洗涤,反复洗涤至放出水液的PH值为4~5为止,然后搅拌加热,在真空度为600mm/Hg下加热至250℃维持0.5小时,进行脱水处理,使含水量降至万分之三以下;在酯化反应中,按重量计将甲醇∶脱水后的脂肪物=1.5~2.5∶1的比例投入到反应釜中,再将重量为甲醇与脱水后的脂肪物两者总重量的2%~5%的浓硫酸加入至反应釜中,在搅拌下加热至回流温度(65~70℃),保温回流反应15小时,然后将回流装置改为蒸馏装置,加热升温,将过量的甲醇蒸出回用,当温度升到110℃时停止加热;在脱酸过程中,向酯化反应得到的粗酯中加入等体积的自来水反复洗涤至放出的水溶液的PH值近于7时为止,然后取样测定粗酯的酸值,依酸值加入过量5%的碳酸钠,在搅拌下快速升温至100~120℃后反应10分钟即可;在减压蒸馏过程中,将脱酸后的粗酯预热至200℃后用导管与蒸馏釜接通,导管上连接一阀门,加热蒸馏,控温在220~230℃之间,真空度为750mm/Hg,然后,慢慢开启导管阀门,投料进行减压蒸馏,馏出的物质即为混合脂肪酸甲酯。以上是传统的老工艺酸碱催化法,虽然也能生产,但是在生产过程中产生大量难于处理的污水,产量和质量也无法保障,对设备损害更大,一般情况下设备用到三个月就开始腐蚀,冒,跑,漏严重,造成一天生产三天维修的困紌。现在针对棉籽酸化油做生物柴油甲酯有了新工艺(汽相醇解工艺),适合多各种原料,解决不加酸和碱的难题,从而改变了污水过多难于处理的困境,在产量和质量稳定。自动化高,投资可大可小。工艺过程,原料预处理,预酯化,醇汽相和油相升温,过量醇相通回收器回收,提纯后再回到反应器反应,酯化是在一步完成后进入蒸馏系统进行蒸馏,先预热,脱水,脱臭进入主塔脱色和分离产品,整个生产过程是密闭性生产,无污水,无泄漏,无味飘散,生产区干净环保。

植物油在化妆品中的应用

植物油在化妆品中的应用 (园林学院城规) 摘要:油脂作物基质原料在化妆品配方中占有较大比重,其作用可使皮肤柔软,润滑和表面净化,在皮肤衷面上起摩擦效果,同时形成憎水性薄膜,起保护皮肤作用并能预防外来的有害物质侵袭;寒冷时亦可抑制皮肤表而水分的蒸发;作为过脂肪剂保护皮肤和头发,使头发光泽、柔软;还可作特殊成分的溶剂。 消费者普遍认为油脂可以抑制水分蒸发,防止皮肤干裂,使干燥的皮肤和硬化的角质层再水合,使角质层恢复柔软和弹性,使皮肤光滑、柔润和富有弹性,令皮肤保持良好的健康状态,因此,可作为润肤剂使用。油脂还是化妆品铺展性的改良剂,在很大程度上决定了护肤品的肤感,例如铺展性、润滑性、滋润度、保湿性和透气性等,因而根据其良好的铺展性和柔软性,也可作为皮肤舒展剂、弹性剂和光滑剂 关键词:植物油作用化妆品化学成分 引言: 随着人们对化妆品植物学的深入研究,及消费者要求化妆品无毒、无刺激性的呼声越来越高,许多植物油便以它特殊功能做为高效添加剂加入化妆品中。制造出各种美容与护肤的多功能新型化妆品,以满足消费者的需要。植物油作为天然原料在化妆品中应用对人体有益损。 一.植物油 1.什么是植物油? 植物油是由不饱和脂肪酸和甘油化合而成的化合物,广泛分布于自然界中,是从植物的果实、种子、胚芽中得到的油脂。如花生油、豆油、亚麻油、蓖麻油、菜子油等。植物油的主要成分是直链高级脂肪酸和甘油生成的酯,脂肪酸除软脂酸、硬脂酸和油酸外,还含有多种不饱和酸,如芥酸、桐油酸、蓖麻油酸等。植物油主要含有维生素E、K、钙、铁、磷、钾等矿物质、脂肪酸等。植物油中的脂肪酸能使皮肤滋润有光泽。 2.植物油在化妆品中的应用 油脂作物基质原料在化妆品配方中占有较大比重,其作用可使皮肤柔软,润滑和表面净化; 在皮肤衷面上起摩擦效果,同时形成憎水性薄膜,起保护皮肤作用,并能预防外来的有害物质侵袭; 寒冷时亦可抑制皮肤表而水分的蒸发;作为过脂肪剂保护皮肤和头发,使头发光泽,柔软; 还可作特殊成分的溶剂。 制造化妆品的原料品种很多, 根据其用途和性能, 基本可分为基质原料和添加剂两大类。油脂作物基质原料在化妆品配方中占有较大比重,其作用如下: 1)使皮肤柔软、滑润 2)起溶剂效果, 使皮肤表面净化 3)在皮肤表面上起摩擦效果 4)在皮肤上形成僧水性薄膜,起保护皮肤作用,并能预防外来的有害物质侵袭 5)寒冷时抑制皮肤表面水分的蒸发 6)用作特殊成分的溶剂 7)作脂肪剂保护皮肤和头发 8)使头发光泽、柔软 一般化妆品中所用的油性原料分为三类:动植物系油性原料、矿物系油性原料及上述原料经化学处理加工的合成原料。

金属与酸反应的规律大总结

金属与酸反应的规律大 总结 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

金属与酸反应的规律大总结 一、金属与酸反应的规律 。 1、K、Ca、Na等活泼金属能与水剧烈反应生成H 2 。 2、金属活动顺序H前的金属与非氧化性酸反应生成H 2 3、金属活动顺序H后的金属与非氧化性酸不反应,但能与强氧化性酸发生反应,但不产生H2,而是H2O ,如铜与稀硫酸不反应,但能与浓硫酸、硝酸等强氧化性酸反应。 4、很不活泼金属Pt、Au等不溶于氧化性酸,但能溶于王水(浓硝酸和浓盐酸按体积比为1︰3的比例混合而成)。 5、常温下,Al、Fe遇浓硫酸和浓硝酸会发生钝化,生成一层致密的氧化物保护膜,这是金属与强氧化性酸发生氧化还原反应的结果。 6、铁与硝酸反应较为复杂,具体情况如下: 铁与稀硝酸反应,还原产物一般为NO: 铁不足:Fe + 4HNO3(稀)3)3 + NO↑ + 2H2O 铁过量:3Fe + 8HNO3(稀)3)2 + 2NO↑ + 4H2O 铁与浓硝酸反应,还原产物一般为NO2: 常温下:发生钝化 加热时:剧烈反应,一般生成铁盐。 二、金属与非氧化性酸反应的计算规律 解答此类试题时,关键是确定金属与氢气或者酸与氢气之间的对应关系式,在根据试题所给的限定条件作出相应的解答。金属与非氧化性酸反应时,应注重下面四个方面的规律: 1、金属与酸反应均为氧化还原反应,且金属失去电子的物质的量等于酸得到电子的物质的量。 2、1mol a价的活泼金属与足量的非氧化性酸反应,可生成a/2 molH 2

3、Na Mg Al与酸反应规律 酸足量(金属完全反应)时 a. 等物质的量的不同金属与足量的酸反应时,产生H 2 的体积比等于金属元素的化合价之比。即产生的气体Na :Mg:Al=1:2:3 可简单记忆为:金属元素的化合价数对应H原子个数,如: Na ~ H ~1/2H 2 Zn ~ 2H ~ H 2 Al ~ 3H ~ 3/2H 2 b、相同质量的不同金属与足量酸反应时,产生H 2的体积比等于金属的 相对原子质量 化合价 之 比。即产生的气体Na :Mg:Al=1/23:2/24:3/27 c、不同化合价的金属与产生的氢气的物质的量之比分别为2:1, 1:1, 2:3 d 、Na Mg Al与足量的酸反应,要使产生氢气的量相同,消耗金属的质量最大的是钠,镁次之,铝最少。三者的物质的量之比为 1:1/2:3/2=6:3:2,质量之比为23:12:9 4、金属过量 a. 相同物质的量的不同酸与足量金属反应时,产生H 2 的体积比等于酸的元数之比,与酸的强弱无关。 b. 相同质量的不同酸与足量的金属反应时,产生H 2的体积比等于 相对分子质量 酸的元数 之比。 c. 过量的金属与等物质的量酸反应时,钠产生氢气的量较多(过量的钠还可以与水反应)美铝产生氢气的量相等且取决于酸中H+的物质的量 例题1 .金属钠跟水反应,得到100mL溶液,试计算: (1)生成的气体在标准状况下是多少升 (2)反应后所得溶液的物质的量浓度是多少 解析:n(Na)=23g/mol= 设生成气体的物质的量为n1,生成NaOH的物质的量为n2

相关文档
最新文档