神经干细胞的应用前景及研究进展

神经干细胞的应用前景及研究进展
神经干细胞的应用前景及研究进展

神经干细胞的应用前景及研究进展

生科1301班李桐 1330170031

神经干细胞( neuralstem cells, NSCs)是重要的干细胞类型之一,是神经系统发育过程中保留下来的具有自我更新和多向分化潜能的原始细胞,可分化为神经元、星形胶质细胞、少突胶质细胞等多种类型的神经细胞。具有很多的特性,如自我更新、多潜能分化、迁移和播散、低免疫原性、良好的组织相容性、可长期存活等。目前神经干细胞的分离与体外培养已取得可喜的进展,有关神经干细胞的研究已经成为国内外神经科学领域的热点。

一、神经干细胞的生物学特性

19世纪80年代提出了神经干细胞的概念,它是指一类多潜能的干细胞,能够长期自我更新与复制,并具有分化形成神经元、星形胶质细胞的能力。神经干细胞的主要特征:未分化、缺乏分化标记、能自我更新并具有多种分化潜能。它并不是指特定的单一类型的细胞,而是具有相类似性质的细胞群。Gage将神经干细胞的特性进一步描绘为以下三点,可生成神经组织或来源于神经系统,具有自我更新能力,可通过不对称法、分裂产生新细胞。神经干细胞经过不对称分裂产生一个祖细胞和另一个干细胞,祖细胞只有有限的自我更新能力,并自主分化产生神经元细胞和成胶质细胞。神经干细胞是具有自我更新和具有多种潜能的母系神经细胞,它能分化成各种神经组织细胞表型,如神经元、星形胶质细胞和少突胶质细胞.并能自我更新产生新的神经干细胞,在神经发育和神经损伤中发挥作用。神经干细胞移植、迁移及分化与局部环境密切相关,这种特性为移植及移植后的结构重建和功能恢复提供了依据,为移植治疗不同疾病提供了局可能。

二、神经干细胞的应用前景

1.细胞移植以往脑内移植或神经组织移植研究进展缓慢,主要受到胚胎脑组织的来源、数量以及社会法律和伦理等方面的限制。神经干细胞的存在、分离和培养成功,尤其是神经干细胞系的建立可以无限地提供神经元和胶质细胞,解决了胎脑移植数量不足的问题,同时避免了伦理学方面的争论,为损伤后进行替代治疗提供了充足的材料。研究表明,干细胞不仅有很强的增殖能力,而且尚有潜在的迁移能力,这一点为治疗脑内因代谢障碍而引起的广泛细胞受损提供了理论依据,借助于它们的迁移能力,可以避免多点移植带来的附加损伤。另外,神经干细胞移植也为研究神经系统发育及可塑性的实验研究提供了观察手段,前文提及细胞因子参与调控神经元增殖和分化,通过移植的手段对这些因素的具体作用形式和机制进行探索,为进一步临床应用提供了理论基础。

2.基因治疗目前诱导干细胞向具有合成某些特异性递质能力的神经元分化尚未找到成熟的方法,利用基因工程修饰体外培养的干细胞是这一领域的又一重大进展;另外已经发现许多细胞因子可以调节发育期甚至成熟神经系统的可塑性和结构的完整性,将编码这些递质或因子的基因导入干细胞,移植后可以在局部表达,同时达到细胞替代和基因治疗的作用。

3.自体干细胞分化诱导移植免疫至今为止仍是器官或组织移植的首要问题。前文提到已经证明成年动物或人脑内、脊髓内存在着具有多向分化潜能的干细胞,那么使人们很容易想到通过自体干细胞诱导来完成损伤的修复。中枢神经系统损伤后,首先反应的是胶质细胞,在某些因子的作用下快速分裂增殖,形成胶质瘢。其实在这个过程中也有干细胞的参与,可不幸的是大多数干细胞增殖后分化为胶

质细胞,什么机制控制着细胞的分化决定,确切机制尚未明了。一旦这个机制被发现,无疑对中枢神经系统损伤修复来讲是一个重大的飞跃,因为它不仅可以避免移植造成的不必要损伤,更重要的是可以避免排斥反应。体外实验已经证明某些因素的诱导分化作用,但是应用到临床尚有一段距离,可我们仍从前述成功的探索中看到希望并相信在这方面的突破即将到来。

三、神经干细胞研究的前景及问题

神经干细胞的生物学和临床应用潜能研究虽然取得了迅速和可喜的进展,对神经干细胞的形态、位置、生理特性及鉴定方法等已有初步认识。但仍有许多未知的领域等待探索。如何高效的诱导神经干细胞分化为特定递质类型的神经元或特定类型的神经胶质细胞,为临床移植治疗神经系统退行疾病提供大量的细胞来源,还有很长的路要走。尽管如此,神经干细胞在神经系统损伤后修复、退行性疾病、先天性疾病等治疗中的机制及意义是目前研究的热点。神经干细胞的研究已逐渐从基础实验阶段向临床过渡,尤其神经干细胞对治疗神经修复及退行性疾病有一定的临床效果。相信这些研究的进展将逐步推进人类对自身大脑神经生物学的认识和临床神经科学的发展。

参考文献:

[1]程焉平.神经干细胞的研究及应用前景[q] 吉林师范大学学报(自然科学版)

2 0 0 3年 2月第 1期

[2]黄强,王爱东,董军,王飞,孙继勇,兰青神经干细胞分化与神经节细胞胶质瘤恶化相关分子研究[r],肿瘤 2005年 1月 25日第 25卷第 1期

[3]王忠诚.张亚卓,神经干细胞研究现状及应用展望[r],中华神经外科杂志2000年11月第16卷第 6期

[4]马以骝,杨志敏,王秦秦,等.大鼠胚胎神经干细胞定位及干细胞克隆实验研究

[5]王华,王文辉,林蕾神经干细胞的研究进展及前景展望

[6]廖德丰,陈婉蓉.神经干细胞研究进展.生物学教学,2004,29(2):3.

细胞培养发展历史

1856年,实现红豆杉细胞培养生产紫杉醇的突破。 1885年,Roux温生理盐水培育鸡胚组织; 1887年,培养皿(英文:Petri dish)由在德国生物学家罗伯特·科赫手下工作的细菌学家朱利斯·理查德·佩特里(Julius Richard Petri,1852-1921)于1887年设计,故也称为“佩特里皿”。是一种用于细胞培养的实验室器皿,由一个平面圆盘状的底和一个盖组成,一般用玻璃或塑料制成。 1902年,植物细胞培养是在植物组织培养技术基础上发展起来的。1902年Haberlandt 确定了植物的单个细胞内存在其生命体的全部能力(全能性),使成为植物组织培养的开端。 其后,为了实现分裂组织的无限生长,对外植体的选择及培养基等方面进行了探索。 1906年,Beebe和Ewing用盖片悬滴培养法,以动物血清做培养基,培养狗淋巴细胞存活了72 小时。现代细胞培养是从Harrison(1907)和Carrel(1912)两人开始的。Harrison参考前人经验,创建了盖片覆盖凹窝玻璃悬滴培养法。 1907年,哈里森(Harrison)在无菌条件下用淋巴液作培养基,培养蛙胚神经组织存活数周,并观察到神经细胞突起的生长过程,由此创建了盖片覆盖凹窝玻璃悬滴培养法,奠定了动物组织体外培养的基础。 1910-1912年,Carrel采用无菌操作、更新培养基、传代,完善了悬滴培养法; 1912年,Haberlandt的学生Kotte和美国的Robins在根尖培养中获得了组织培养的成功。Kotte采用了无机盐、葡萄糖、蛋白胨、天冬酰胺,及添加各种氨基酸的培养基。 1915年,昆虫细胞培养的鼻祖是德国人forhardBendict(1878—1958),发表了有关昆虫细胞培养的第一篇文章。 1923年,Carral设计创立了卡氏瓶培养法,用此法可根据需要随时更换培养液,既有利于组织不断生长,又可以运用不同种类的营养液培养不同的细胞,极大地推动了当时组织培养研究。 在培养基方面,Earle在1948年设计了含有碳酸氢钠等盐类的Earle氏盐溶液,Hank’s在1949年设计了Hank’s氏盐溶液。 Earle、Dulbecco等于1943年创建单层细胞培养法,首建长期传代的L-细胞系;1948年Sanford创建单细胞分离培养法,获L-细胞纯系。 1948年,体外细胞毒性试验细胞毒性实验它是利用体外细胞培养的方法,测定细胞溶解,抵制细胞生长的毒性作用来评价生物材料的潜在细胞毒性。 1948年,RosenBluth等首次报道利用鼠成纤维细胞培养来筛选聚合物,开始了细胞毒性试验评价生物材料的生物相容性的研究与应用工作。 1950年,Enders及其同事发表了第一篇关于在培养细胞中生长病毒的报告,开拓了以动物病毒为研究对象的新领域。作为大规模细胞培养,Copsik等人成功的进行了有关仓鼠肾细胞(BHK)的悬浮培养。

神经干细胞的研究及其应用新进展

神经干细胞的研究及其应用新进展 [关键词] 神经干细胞研究 健康讯: 崔桂萍天津市脑系科中心医院 300060 1992 年, Reynolds 首次成功地从成年小鼠纹状体中分离出神经干细胞( neural stem cell, NSC ),于是“神经干细胞”这一概念被正式引入神经科学研究领域。可以总结为具有分化为神经元、星形细胞和少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。不少文献中还提到神经祖细胞和神经前体细胞,目前认为,神经祖细胞是指比 NSC 更有明确发展方向的细胞,而神经前体细胞是指处于发育早期的增殖细胞,可指代 NSC 和神经祖细胞:与 NSC 相比,二者的分裂增殖能力较弱而分化能力较强,是有限增殖细胞,但三者均属 NSC 范畴。 1. NSC 的起源、存在部位及生物学特征中枢神经系统的发育起源于神经沟、神经嵴、神经管;研究发现, NSC 在神经管壁增殖,新生细胞呈放射状纤维迁移至脑的特定位置;主要存在于室管膜区,在成脑生发区以外的区域也广泛分布,即具有高度可塑性的神经前体细胞。现发现 NSC 的生物学特征为:( 1 )具有自我更新能力;( 2 )具有多向分化潜能,可分化为神经元、星形细胞和少突胶质细胞;( 3 )处于高度未分化状态;( 4 )终生具有增殖分化能力,在有损伤的局部环境信号变化的刺激下可以增殖分化。其中( 1 )和( 2 )是 NSC 的两个基本特征。 2. NSC 的基础研究进展 NSC 的增殖和分化调控是目前 NSC 研究的核心问题,最近的研究资料显示, NSC 的增殖、分化、迁移调控受多种相关因素的影响。神经递质神经递质作为细胞外环境的一员,不仅介导神经元之间和神经元与效应器之间的信号传递,还参与 NSC 的增殖和分化。这些神经递质包括谷氨酸( G1u )、 5- 羟色胺( 5-HT )、 GABA 、甘氨酸( G1y )、乙酰胆碱( Ach )一氧化氮( NO )、肾上腺素与性激素等。 G1u :在脑的发育过程中有高含量的 G1u 表达, Haydar 等发现, G1u 可以通过大鼠胚胎皮质 AMPA/KAR 的激活调节室周区前体细胞的增殖,但 GLU 对室管膜区( SZ )和室管膜下区( SVZ )体内细胞的影响是不同的,它可增加 SZ 细胞的增殖,减少 SVZ 细胞的增殖; GLU 还可促进神经元生长和分化。 5-HT :许多研究表明, 5-HT 在皮质发育、突触形成中起重要作用,抑制 5-HT 合成或选择性损伤 5-HT 神经元则引起齿状回及脑室下区神经元增殖活性下降, 5-HT 可促进胶质细胞分化和髓鞘形成。 GABA : GABA 是成体脑发育过程中主要

干细胞治疗工作流程图

干细胞治疗工作流程 脐带血临床采集流程 干细胞是一种未分化的细胞,具有自我更新、分化、发育再生各种组织器官和人体的潜在功能。 脐带血广泛的应用前景备受关注,脐带血本属于废弃物,但是医学技术的进步使得它的价值得到了空前的提升。1989年,法国的鲁克罗曼教授用HLA 相合的同胞脐带血干细胞进行移植,成功地治疗了一例遗传性疾病—可尼贫血症,之后短短的15年的时间,医学界利用脐带血干细胞已成功治愈和改善了多种疾病,包括:血液系统疾病、免疫系统疾病、神经和血管系统疾病、脑部疾病、肿瘤、糖尿病等。现在在儿童的干细胞移植方面,由于可以存在1-2个HLA位点的不配型,免疫排斥反应小等原因,脐带血干细胞已成为治疗一些重大疾病的有效手段。同时,干细胞的进一步开发,还可用于抗衰老、器官修复、美容等保健领域。干细胞技术和临床应用的飞速发展,给人类的健康带来了新的希望和保障。但是作为采集脐带血最主要的工作人员,我们所需要的操作是非常简单的,但是对于术中操作之外,我们还是会遇到以下的问题。解决这些问题,我们才能放心的采集,存储,备用。但是真正合法,安全,便捷的让脐带血的干细胞移植到有需要的患者体,需要按以下流程操作: 脐带血采集条件: 以初产妇、年龄在45岁以或35岁以经产妇,身体健康者为宜。 脐带血安全流程

1、传染病检查:孕妇在产前要做好身体检查。这些检查包括:肝功能是否正常,有无梅毒螺旋体,艾滋病病毒(HIV )、乙型肝炎病毒(HBV )、丙型肝炎病毒(HCV)等病原体检测。如果其中有一样是阳性的话,就不要再进行采集了。 2、采集和储存的无菌观念:在自然分娩的情况下,一定要注意消毒。被厌氧菌和需氧菌污染,检测为阳性时都不能储存和使用。在脐血被采集后,应该尽快保存在2-8℃的恒温箱中,并远离辐射源,不要让X射线照到。这样的脐带血经科学实验证实,放置24小时或在-23℃以下48小时,其中的干细胞的活性是没有明显影响的,但最长不应该超过72小时。 采集流程 何种方法采集脐带血更好些呢?Solves[5]等证实了剖宫产情况下,以下两种采集方法体采集法对得到的脐带血除血细胞比容及血小板外,其他各项没有明显不同。 体采集法:产妇施行常规的子宫横切术,将胎儿取出后,立即用两把止血钳夹住脐带,将其与胎儿分离,然后用碘酒和70%酒精消毒脐带,做脐静脉穿刺后,脐带血通过重力的作用流人含抗凝剂的无菌采集袋,采集完将其放入4℃冰箱中保存。 体外采集法:同样对产妇行子宫横切术,待胎盘自然或人工剥离后,立即将其置于采集区,胎盘取出与进行采集之间时间尽可能缩短,将胎盘放在一个中间有孔的可供脐带自然垂下的采集台上,对脐带进行严格消毒后行脐静脉穿刺,血液在重力的作用下流人采集袋中,将其放人4℃冰箱保存。 脐带血贮存 因为脐血的采集、运输、储存和应用事实上有别于一般血液,国际上通行的管理法规都将血液和组织细胞分别管理,而我国目前的法规对脐血干细胞库

神经干细胞的应用前景及研究进展

神经干细胞的应用前景及研究进展 生科1301班李桐 1330170031 神经干细胞( neuralstem cells, NSCs)是重要的干细胞类型之一,是神经系统发育过程中保留下来的具有自我更新和多向分化潜能的原始细胞,可分化为神经元、星形胶质细胞、少突胶质细胞等多种类型的神经细胞。具有很多的特性,如自我更新、多潜能分化、迁移和播散、低免疫原性、良好的组织相容性、可长期存活等。目前神经干细胞的分离与体外培养已取得可喜的进展,有关神经干细胞的研究已经成为国内外神经科学领域的热点。 一、神经干细胞的生物学特性 19世纪80年代提出了神经干细胞的概念,它是指一类多潜能的干细胞,能够长期自我更新与复制,并具有分化形成神经元、星形胶质细胞的能力。神经干细胞的主要特征:未分化、缺乏分化标记、能自我更新并具有多种分化潜能。它并不是指特定的单一类型的细胞,而是具有相类似性质的细胞群。Gage将神经干细胞的特性进一步描绘为以下三点,可生成神经组织或来源于神经系统,具有自我更新能力,可通过不对称法、分裂产生新细胞。神经干细胞经过不对称分裂产生一个祖细胞和另一个干细胞,祖细胞只有有限的自我更新能力,并自主分化产生神经元细胞和成胶质细胞。神经干细胞是具有自我更新和具有多种潜能的母系神经细胞,它能分化成各种神经组织细胞表型,如神经元、星形胶质细胞和少突胶质细胞.并能自我更新产生新的神经干细胞,在神经发育和神经损伤中发挥作用。神经干细胞移植、迁移及分化与局部环境密切相关,这种特性为移植及移植后的结构重建和功能恢复提供了依据,为移植治疗不同疾病提供了局可能。 二、神经干细胞的应用前景 1.细胞移植以往脑内移植或神经组织移植研究进展缓慢,主要受到胚胎脑组织的来源、数量以及社会法律和伦理等方面的限制。神经干细胞的存在、分离和培养成功,尤其是神经干细胞系的建立可以无限地提供神经元和胶质细胞,解决了胎脑移植数量不足的问题,同时避免了伦理学方面的争论,为损伤后进行替代治疗提供了充足的材料。研究表明,干细胞不仅有很强的增殖能力,而且尚有潜在的迁移能力,这一点为治疗脑内因代谢障碍而引起的广泛细胞受损提供了理论依据,借助于它们的迁移能力,可以避免多点移植带来的附加损伤。另外,神经干细胞移植也为研究神经系统发育及可塑性的实验研究提供了观察手段,前文提及细胞因子参与调控神经元增殖和分化,通过移植的手段对这些因素的具体作用形式和机制进行探索,为进一步临床应用提供了理论基础。 2.基因治疗目前诱导干细胞向具有合成某些特异性递质能力的神经元分化尚未找到成熟的方法,利用基因工程修饰体外培养的干细胞是这一领域的又一重大进展;另外已经发现许多细胞因子可以调节发育期甚至成熟神经系统的可塑性和结构的完整性,将编码这些递质或因子的基因导入干细胞,移植后可以在局部表达,同时达到细胞替代和基因治疗的作用。 3.自体干细胞分化诱导移植免疫至今为止仍是器官或组织移植的首要问题。前文提到已经证明成年动物或人脑内、脊髓内存在着具有多向分化潜能的干细胞,那么使人们很容易想到通过自体干细胞诱导来完成损伤的修复。中枢神经系统损伤后,首先反应的是胶质细胞,在某些因子的作用下快速分裂增殖,形成胶质瘢。其实在这个过程中也有干细胞的参与,可不幸的是大多数干细胞增殖后分化为胶

人胚胎干细胞的研究发展

人胚胎干细胞的研究发展 摘要:叙述了人胚胎干细胞(hES细胞)的研究现状,并对hES 细胞的研究进展及其应用前景等全面综述。 关键词:人,胚胎干细胞,原始生殖细胞,全能性,多功能性干细胞(Stemcell)是一类具有自我更新能力的多潜能细胞,即干细胞保持未定向分化状态和具有增殖能力,在合适的条件下或给予合适的信号,它可以分化成多种功能细胞或组织器官,又称其为“万用细胞”。干细胞来源于胚胎、胎儿组织和成年组织。根据发育阶段,干细胞分为胚胎干细胞和成体干细胞。1998 年Thomson等第一次从胚胎中分离培养了人体胚胎干细胞(hES C),并随后发现它能分化为体内几乎所有的细胞后,由此掀起全球范围内的hESC研究热潮。 人胚胎干细胞的生理意义:人胚胎干细胞最有价值的应用是用来修复甚至替换已丧失功能的组织和器官,因为它具有发育分化成所有类型组织细胞的能力。任何导致丧失正常细胞的疾病都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗,如用神经细胞治疗神经变性疾病(帕金森综合征、亨廷顿舞蹈症、阿尔茨海默病等),用造血干细胞重建造血功能,用胰岛细胞治疗糖尿病,用心肌细胞修复已坏死的心肌等。 1 人胚胎干细胞的来源 胚胎干细胞来源于着床前的囊胚内细胞团或早期胚胎的原始生殖细胞是一大类未分化的二倍体全能干细胞,具有无限增殖、自我更新

和多向分化的潜能。 2 人胚胎干细胞的生物学特性 (1)具有分化的多潜能性,在体外可诱导分化出属于三个胚层的分化细胞; (2)具有种系传递功能; (3)具有长期的未分化增殖能力,细胞不仅能分化成各种器官组织,而且能增殖生成新的保持同种性状的ES 细胞; (4)易于进行基因改造操作; (5)保留了正常的二倍体的性质且核型正常; (6)胚胎干细胞端粒酶活性呈阳性,具有维持端粒长度,保持干细胞增殖能力的重要作用。 3 人胚胎干细胞的培养 (1) 常规培养液常用的基础培养基有改良伊格尔培养基(MEM)α、达氏修正依氏培养基(DMEM)、组织培养基(TCM)199、F12 等合成培养基,以DMEM应用最为普遍。它的主要成分是氨基酸、维生素、碳水化合物、无机离子和一些其他辅助物质。 (2) 无血清培养基血清中含有许多未知的成分和一些分化诱导因子,不利与ESC未分化状态的维持。为此人们尝试使用无血清培养液、化学合成培养液’进行ESC的培养,加入刺激细胞生长的激素、细胞因子等,实验表明ESC增殖旺盛,且能保持未分化状态,并认为无血清培养基优于血清培养基。但也有学者认为含血清培养液更利于胚胎干细胞向中胚层细胞分化,是因为血清中富含中胚层诱导因子,

干细胞研究进展综述

干细胞研究进展(综述) Advances in the research of stem cells(LR) 【摘要】:干细胞是人体及其各种组织细胞的最初来源,具有高度自我复制、高度增殖和多向分化的潜能。干细胞技术是生物技术领域最具有发展前景和后劲的前沿技术,其已成为世界高新技术的新亮点,势将导致一场医学和生物学革命。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透,干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究作为一门新兴学科已成为生命科学中的热点。本文对近几年来国内外对干细胞的研究现况作一综述。 【关键词】:干细胞因子帕金森病神经干细胞糖尿病 ABSTRACT:Stem cells are the body and cells of various tissues of origin, has high self replication, high proliferation and multilineage differentiation potential. Stem cell technology is the field of biotechnology has the most development prospect and potential of cutting-edge technology, it has become a new bright spot in the world of high-tech, will lead to a revolution in medicine and biology. The research of stem cell is to modern life science and medical fields intersection, stem cell technology from a laboratory concept gradually transformed to be able to see the reality. Stem cell research as a new discipline has become the hotspot of life science. Based on the domestic and abroad in recent years on stem cell research summarizes. Keywords:Stem cell factor Parkinson disease Neural stem cells Diabetes mellitus 干细胞技术最显著的特征就是能再造一种全新的、正常的甚至更年轻的细胞、组织或器官。由此人们可以用自身或他人的干细胞和干细胞衍生组织、器官替代病变或衰老的组织、器官,并可以广泛涉及用于治疗传统医学方法难以医治的多种顽症。 干细胞研究是一门新兴的学科,干细胞生物学研究与应用几乎涉及所有的生命科学和生物 医学领域。 一、目前干细胞的主要研究热点

诱导性多功能干细胞——产生,发展,应用及展望

诱导性多功能干细胞 ——产生,发展,应用及展望 张博文,杨星九,李玖一,白末* 摘要:在胚胎干细胞研究因伦理道德和免疫排斥问题而受阻的时候,诱导性多功能干细胞(induced pluripotent stem cell,以下简称iPS细胞)的横空出世为干细胞研究指明了一条新的方向。近几年来iPS细胞研究取得了许多突破性的进展,其广泛的应用前景更向人们昭示着一个新的时代的到来。本文主要从iPS细胞的发展历程入手,综述了iPS细胞的理论及应用研究的关键进展,并对之后的研究进行了展望。 关键词:诱导性多功能干细胞,胚胎干细胞,病毒,癌变,细胞治疗 Abstract:When the embryonic stem cell research was blocked by ethical issues and immune rejection, induced pluripotent stem cell (hereinafter referred to as iPS cells), turned out for stem cell research indicated a new direction. iPS cells’ research in recent years has made many breakthroughs, prospects for its wide application to remind people of a new era. This article summarizes the theory and application of iPS cells, and the key to progress in the study, from the iPS cells to start the development process, and discussed the study in the future. Key words:induced pluripotent stem cell, embryonic stem cell, virus, Canceration, cell therapy IPS细胞是通过向体细胞中导入诱导基因,使体细胞重编程获得具有胚胎干细胞样特性的多能干细胞。iPS细胞的产生可谓干细胞领域的新里程碑。近几年,iPS细胞的研究突飞猛进,本文中结合最新的研究结果,综述了iPS细胞的产生背景、发展历程及其应用前景,并对今后iPS的研究发展进行了客观的展望。 1产生背景 干细胞(stem cells, SC)是一类具有自我复制能力(self-renewing)的多潜能细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。其中胚胎干细胞(Embrtibuc stem cell)更是具有全部的全能性,能够分化成人体内的所有细胞,具有非常广阔的应用前景。 早在上个世纪,人类就已经开始针对干细胞进行研究,试图通过各种不同的方法得到多能干细胞,其中突出的方法有胚胎干细胞(ES细胞)直接植入法;体细胞核转移 ----------------------------------------- *张博文,杨星九,李玖一:资料查阅与论文编写白末:资料查阅与论文整合

肠神经干细胞研究进展

肠神经干细胞研究进展 神经干细胞主要有两类:中枢神经干细胞和外周神经嵴干细胞。中枢起源的神经干细胞研究颇多,而外周起源的神经干细胞研究还刚刚起步。两者具有很多相似性。目前研究表明,在肠道内有神经嵴来源的神经干细胞池[1]。本文就肠起源的神经干细胞—肠神经干细胞((Enteric neural stem cells,ENSCs)),对其生物学特性,迁移分化调控因素,应用前景等做一概述。 一.肠神经干细胞与肠神经系统 具有多向分化潜能的干细胞可以从出生以后的人类及啮齿类动物的大脑、胰腺、肝脏、骨髓等获取,进行体外培养并研究其相关性状。有报道,从肠管也可以获取干细胞[2] 。这种细胞在个体中一生都存在,且可以分化为神经元、神经胶质细胞以及其他细胞,具备自我更新和多向分化潜能等干细胞特性,这种细胞即为“肠神经干细胞”(Enteric neural stem cells,ENSCs)。 肠神经干细胞起源于神经嵴。在个体发育过程中,其通过迷走神经嵴在胚胎早期迁移进入肠道,从头端至尾端向成熟分化,发育形成肠神经系统[3]。国内外研究者对其不同的命名,但通过分离培养以及生物学性状的研究证实为同一种细胞。Morrison[4]等将其称为肠神经嵴细胞(Enteric neural crest cells ,ENCC)或肠神经嵴干细胞(Enteric neural crest stem cells,ENCSC),在胚胎发育时期或成年组织中,从消化道中分离出神经嵴干细胞,进行体外培养,并进行了一系列鉴定,证明其具备干细胞特性,且主要分化为神经元和神经胶质细胞。Natarajan[5]等在研究中则将其称为“肠神经系统源性的多能祖细胞”(Enteric nervous system derived multipotential progenitor cells,ENSPCs),从小鼠胚胎或出生后的肠管中制取单细胞,行体外培养后可以获取。国外学者Y oung[6]和Suarez-Rodriguez [2]等在研究中则称其为“肠神经干细胞”(Enteric neural stem cells,ENSCs)。 肠神经干细胞和肠神经系统的发育密切相关。脊椎动物的肠神经系统是外周神经系统中最复杂的部分。它是由大量的、不同种类的神经元和神经胶质细胞构成的。相互连接的神经节,围绕肠壁、外肌层、以及内部的粘膜下层的辐射轴,排列成两个同心圆状。如同外周神经系统的绝大多数细胞一样,肠神经系统完全起源于神经嵴。大多数肠神经系统的祖细胞产生于1-7 体节听泡后方的后脑迷走神经嵴。从神经管脱离不久,迷走神经嵴亚群向腹外侧移动,聚集在中间后肢区,移向主动脉背侧颈丛腹外侧,在局部信号的影响下,迷走神经嵴细胞会诱导表达RET酪氨酸激酶受体。在孕9.5 天至10 天这些RET+迷走神经嵴侵入前肠肌层,称为“肠神经嵴细胞”,即肠神经干细胞,接下来的 4 天,则会向尾侧迁移以定位于整个肠段。发育过程中,如果肠神经干细胞迁移、定位失败,就会导致肠神经节的缺失,形成神经节细胞缺失症。这种情况发生在结肠部位,会形成先天性巨结肠症,即神经节细胞缺失,导致分泌调节障碍和严重的肠道阻塞[6]。 肠神经干细胞与肠神经系统的发育密切相关。肠神经干细胞的出现为研究肠神经系统的发育提供了一个较为理想的模型,可以来研究肠神经形成过程中的分化、调节的影响因素,为阐明神经发育提供有力的证据由此可解释肠神经系统发育和修复的一些机制,此外,肠管作为器官,易于进行活检,且肠神经分布丰富,其与中枢神经系统具有许多共性。据此,可以就有可能采用肠神经干细胞对一些中枢或外周神经缺失性疾病行细胞移植替代治疗了。二.肠神经干细胞的生物学特性 作为干细胞,其特性简要概况即:①可自我复制更新,产生与自己相同的子代细胞,维持稳定的细胞储备②处于较原始的未分状态,无相应的成熟细胞的特异性标志③具有多向分化的潜能,即演变成不同类型成熟细胞的能力。要识别肠神经干细胞,可以从三个方面

人胚胎干细胞研究进展

人胚胎干细胞的研究进展 周进学号10170807 【摘要】干细胞( Stem Cell)是一类具有分化潜能和自我复制的早期未分化细胞。胚胎干细胞( Embryonic stem cells, ES细胞)是一种早期胚胎内细胞(inner cell mass, ICM)或原始生殖细胞(primordial germ cell, PGC)经体外分化抑制培养,分离和克隆得到的具有发育全能性的高度未分化细胞。人类胚胎干细胞系的建立是人类发育生物学研究的重大突破,揭示了人体发生发展奥秘的进程,可能为现代临床医疗模式带来革命性的变化。现对人类胚胎干细胞的来源,建系、生物学特性、应用前景及所涉及的伦理学问题作一综述。 【关键词】胚胎干细胞;克隆;伦理学,医学;综述 1、胚胎干细胞的概念 胚胎干细胞是从哺乳动物早期胚胎内细胞团(ICM)或桑椹胚分离出来的、能在体外长期培养的、高度未分化的全能细胞系,可在适合的条件下分化为胎儿或成体的各种类型的组织细胞。 胚胎干细胞属全能干细胞。ESCs 这一名词因其来源于胚胎而得名, 但从研究角度来说, 其概念一直没有一个特殊的标准, 2001 年美国国立卫生院根据Austin Smith 对小鼠ESCs 的研究, 概括了ESCs 的一些基本特征, 对其概念提出了一系列标准[1]: ①、来源于内细胞团或囊胚上胚层; ②、能够无限地进行对称分裂并保持未分化状态( 长期自我更新) ; ③、显示并维持正常、完整( 二倍体) 和稳定的染色体核型; ④、全能的ESCs 能够分化成三个胚层( 内胚层、中胚层、外胚层) 来源的所有细胞类型;⑤、在发育过程中能整合到所有胚胎组织中( 体外经长期培养的小鼠ESCs, 被植入另一胚胎形成嵌合体动物后, 仍能产生所有组织) ; ⑥、具有能克隆形成胚胎细胞系的能力, 并能产生卵子或精子细胞; ⑦、基因克隆, 即一个单一的ESCs 能产生一群具有相同遗传特性的细胞( 克隆) , 这些细胞有着与亲代细胞

苏教版高中生物选修3 3.2《胚胎干细胞的研究及其应用》学习要点

第二节胚胎干细胞的研究及其应用 学习目标 1.理解干细胞的概念与分类。 2.掌握胚胎干细胞来源、特点及分离途径与方法。 3.举例说明胚胎干细胞的应用。 4.了解胚胎干细胞的研究进展及其所面临的各种挑战。 学习重、难点 学习重点 1.理解干细胞的概念。 2.简述胚胎干细胞的特点及其研究进展。 学习难点 简述胚胎干细胞的特点及其研究进展。 知识要点梳理 一、胚胎干细胞及其研究进展 1.干细胞的概念:是动物(包括人)胚胎及某些器官中具有自我复制和多向分化潜能的原始细胞。 2.干细胞作用:具有重建、修复病损或衰老组织、器官功能。 3.干细胞分类 (1)专能干细胞:只能分化成一种类型或功能密切相关的两种类型的细胞,如上皮组织基底层的干细胞、肌肉中的成肌细胞。(2)多能干细胞:具有分化成多种细胞或组织的潜能,但却失去了发育成完整个体的能力,如造血干细胞等。(3)全能干细胞:可以分化为全身的多种细胞,并进一步形成机体的所有组织、器官。 二、胚胎干细胞的应用 1.如果科学家最终能够成功诱导和调控胚胎干细胞的分化与增殖,将会给胚胎干细胞的基础研究和临床应用带来积极的影响。 2.在研究新药对各种细胞的药理和毒理试验中,提供了材料,大大减少了新药研究所需动物的数量,从而降低了成本。 3.胚胎干细胞研究为细胞或组织移植提供无免疫原性的材料,用于疾病治疗等,给人类带来全新的医疗手段。

4.通过胚胎干细胞,结合基因工程等还可以在试管中改良并创造动物新品种,培育出生长快、抗病力强、高产的家畜品种等。 三、胚胎干细胞研究面临的挑战 1.胚胎干细胞的应用给法律、伦理、国家和社会安全带来的冲击是空前的。 2.胚胎干细胞在体内或者是体外都具有自我分化的潜能,极易分化成其他细胞,对培养条件的优化仍需要进一步研究。 3.对胚胎干细胞向不同组织细胞定向分化的条件还不清楚。 4.创造一种“万能供者”细胞,需要破坏或改变细胞中的许多基因,其可行性仍不清楚。

干细胞研究发展历程.

1950:将骨髓细胞移植到遭受致死剂量辐射的动物,发现能够挽救生命,重建骨髓造血免疫系统 1960:真正认识和了解人和哺乳动物干细胞始于20世纪60年代 1961:Till 和Mc Culloch 提出多能干细胞概念 1967:多纳尔–托马斯完成第一例骨髓移植,后于1990年获得诺贝尔医学和生理学奖 1980:造血干细胞移植成为治疗多种疾病的重要手段 1981:Evans等首次成功建立小鼠胚胎干细胞系 1981:胚胎干细胞(embryonic stem cell,ES细胞)的分离和培养首先在小鼠中获得成功 1988:美国科学家James Thomson分离出人类胚胎干细胞 1998:美国两个科研小组分别报告从胚胎和生殖脊成功建立人类胚胎干细胞系,使人类胚胎干细胞能在体外生长和增殖 同年,美国科学家在《美国科学院院刊》上报告:小鼠肌肉组织的成体干细胞可以“横向分化为血液细胞”。此后,世界各国科学家相继证实,包括人类的成体干细胞具有可塑性,从而掀起了全球成体干细胞研究高潮。干细胞研究进展被《科学》杂志评选为该年度世界十大科学成就之首。人类ES (hES)细胞建系获得成功,由此推动了干细胞研究的兴起。 2000: 日本把以干细胞工程为核心技术的再生医疗列为“千年世纪工程”之一,当年投资108亿日元;同年,全世界有10622例造血干细胞移植。 成体干细胞移植使糖尿病大鼠恢复正常 神经干细胞能够进入脑组织并修复脑损伤 角膜干细胞有助于恢复视力 发现成人骨髓干细胞形成肝细胞 成人骨髓干细胞可以在合适的条件下转化为神经细胞 成人骨髓干细胞可以在体外大规模培养 证实成人骨髓干细胞可以形成多种类型组织

胚胎干细胞研究进展-干细胞的研究进展

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 胚胎干细胞研究进展-干细胞的研究进展胚胎干细胞研究进展-干细胞的研究进展干细胞的研究进展干细胞是一类具有自我更新和多向分化潜能的细胞群体。 近年来干细胞的应用几乎涉及到所有生命科学和生物医学领域。 本文概述了干细胞的生物学特性,并综述了干细胞的可塑性、分离培养及其在基础研究及临床上的应用的研究进展。 最后,展望了今后研究的方向。 干细胞;生物学特性;可塑性;分离培养;应用 Advances in study of stem cells Stem cells are non-specialized cells which have the ability of self-renewal and multiple differentiation potential. The application of stem cells has nearly involved in all the research field on life sciences and biomedicine in recent years. This article summarizes the biological characteristic of stem cells, and reviews the latest progress in the study on stem cells plasticity, isolation, culture in vitro, and its extensive application in basic research and clinical application. The prospects of stem cells are also discussed. stem cells; biological characteristic; plasticity; isolation; culture in vitro; application 干细胞(stem cells)是一类具有自我更新、高度增殖和多向分化潜能的细 1 / 10

干细胞抗衰老行业现状分析报告

目录 一、干细胞行业的“万用功能“及发展前景 (2) 二、干细胞行业相关政策分析 (4) 三、干细胞抗衰老作用机理 (4) 1.骨髓间充质干细胞 (5) 2.脐带血干细胞 (6) 3.脂肪干细胞 (7) 4.胚胎干细胞 (7) 四、干细胞产业链分析 (8) 五、干细胞国内相关企业分析 (9) 1.中源协和:中国干细胞产业链的整合者,全面布局上下游 (9) 2.北科生物:干细胞技术全球领先,有望成为中国的“苹果” (10) 3.金卫医疗:通过CCBC股权间接经营干细胞存储业务 (11) 4.冠昊生物:依托技术优势进军干细胞治疗领域 (12)

图表目录 图表1:干细胞治疗应用方向 (3) 图表2:干细胞抗衰老行业相关政策 (4) 图表3:随着年龄的增长,骨髓中干细胞数目急剧下降 (5) 图表4:小鼠骨髓间充质干细胞具有抗衰老作用 (6) 图表5:脐带血干细胞可以促进细胞增殖,修复受伤组织 (6) 图表6:肌肉注射胚胎干细胞后各系统疗效(临床改善指数) (7) 图表7:干细胞产业链 (8) 图表8:北科生物发展历程 (11) 图表9:金卫医疗发展历程 (12)

一、干细胞行业的“万用功能“及发展前景 干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞,是形成人体各种组织器官的原始细胞。在一定条件下,它可以分化成多种功能细胞或组织器官,医学界称其为“万用细胞”,对应干细胞治疗具有极大的潜力。干细胞按发育状态分为胚胎干细胞、成体干细胞。按分化潜能分为全能干细胞、多能干细胞、单能干细胞。 干细胞治疗则是把健康的干细胞移植到病人或自己体内,以达到修复病变细胞或重建功能正常的细胞和组织的目的。即干细胞治疗从细胞层上治疗疾病,相较很多传统治疗方法具有无可比拟的优点: (1)安全:低毒性(或无毒性); (2)在尚未完全了解疾病发病的确切机理前也可以应用; (3)治疗材料来源充足; (4)治疗范围广阔; (5)是最好的免疫治疗和基因治疗载体; (6)传统疗法认为是“不治之症”的疾病,又有了新的疗法和新的希望。 因此干细胞治疗作为一种比较优势突出的新型治疗,临床上应用的领域包括治疗心血管疾病、神经系统疾病、血液病、肝病、肾病、糖尿病、骨关节疾病等,现在比较成熟的如应用骨髓移植治疗白血病等恶性血液病,随着未来越来越多临床试验的成功,产业发展前景将十分广阔。 图表1:干细胞治疗应用方向 资料来源:银联信

神经干细胞及其应用研究新进展

神经干细胞及其应用研究新进展 摘要:长期以来,人们一直认为成年哺乳动物脑内神经细胞不具备更新能力,一旦受损乃至死亡不能再生。这种观点使人们对中枢神经系统疾病的治疗受到了很大限制。虽然传统的药物、手术及康复治疗取得了一定的进展,但是仍不能达到满意的效果。现在,神经干细胞(neural stem cells,NSCs)不仅存在于所有哺乳动物胚胎发育期的脑内,而且在其成年之后也有,这已为神经科学界所普遍接受。神经干细胞由于具有自我更新和多向分化潜能,使神经系统损伤后的细胞替代治疗成为可能本文综述了神经干细胞的分布、生物学特性、神经干细胞在细胞疗法中的多功能应用,并对神经干细胞临床应用前景做出了展望。 关键词:神经干细胞细胞疗法多向分化潜能转分化性 1、神经干细胞的分布 大量研究表明成年哺乳动物的脑室下区、海马、纹状体、大脑皮质等区域均有NSCs存在,其中侧脑室壁的脑室下层(sub ventricular zone,SVZ)和海马齿状回的颗粒下层(sub granular zone,SGZ)是神经干细胞的两个主要脑区。另外,研究者们还在成年哺乳动物脑内的其他部位发现了神经干细胞的存在,例如在黑质内发现了新生的多巴胺能神经元。 2、神经干细胞在细胞疗法中的多功能应用 2.1细胞替代治疗中外源性NSCs的使用 NSCs可以用来代替因为损伤或神经系统退行性病变而缺失的组织。理想的是重建组织适宜的结构并整合人周围组织;重要的是在这种治疗方案中,几种细胞类型需替代。在移植入成年啮齿动物脑内前,首先需从人胚胎干细胞或胎儿脑内分离出NSCs,并在体外诱导分化为神经元、星形胶质细胞和少突胶质细胞。值得注意的是NSCs整合入室管下区的微环境,促成嗅球的神经发生。在海马,移植的神经祖细胞分化为特定区域的神经细胞亚型,并功能性整合入周围的环路。NSCs移植入疾病或损伤的啮齿动物模型中取得了预期的效果。移植入的存活的NSCs首先迁移到病变部位并分化。成年鼠的NSCs移植入多发性硬化大鼠模型后可观察到少突胶质细胞祖细胞、宿主和移植来源的成熟细胞数量增加,病情明显好转。在大鼠脑梗死模型中,移植的NSCs迁移到损伤部位并大部分分化为神经元。在脑出血模型中,由静脉移植的NSCs在损伤部位分化成神经元和星形胶质细胞,并引起了功能的恢复。将富有多巴胺神经元的胚胎腹侧中脑移植入去神经的帕金森鼠中,结果移植物中的多巴胺神经元修复了损害引起的功能缺损。神经干细胞植入大鼠亨廷顿病模型脑内能保护维持运动习惯的能力,受损的运动习性也可重新恢复,表明植入的细胞在体内形成了功能性连接。Mcdona等给胸髓损伤大鼠分别注入单纯培养基、成年小鼠皮层神经元和胚胎干细胞,2周后发现植入干细胞者后肢恢复部分负重与协调能力,明显优于前二者。田增明等报道了人胚胎神经干细胞治疗21例小脑萎缩患者,发现移植后临床症状有改善。 2.2脑损伤激发内源性NSCs 近年研究表明多种神经系统损伤均可激发内源性神经细胞再生。追踪巢蛋白阳性的神经祖细胞定殖在成年脊髓损伤区,可以观察到这种祖细胞扩增并在损伤区分化为神经元;在脊髓挤压伤、局灶性脑缺血中,在有正常神经发生的大脑皮质和海马可观察到NSCs的增生,并可以被外源性神经营养因子所加强。但在病理状态下这种内源性干细胞的修复反应很显然是不够的,大量实验已证实哺乳动

简述干细胞的形态特征及其研究进展

简述干细胞的形态特征及其研究进展 干细胞是一类具有自我复制能力的原始的未分化细胞,是形成哺乳类各组织器官的原始的多潜能的细胞。在一定条件下,它可以分化成多种功能细胞。干细胞在形态上具有共性,通常呈圆形或椭圆形,细胞体积小,核相对较大,细胞核多为常染色质,并具有较高的端粒酶活性。根据它所处的发育阶段可以分为胚胎干细胞和成体干细胞。 胚胎干细胞的发育等级较高,是全能干细胞,而成体干细胞的发育等级较低,是多能干细胞或单能干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。 干细胞的形态特征: 干细胞具有自我更新复制的能力,能够产生高度分化的功能细胞。 1 胚胎干细胞:胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团的 细胞即为胚胎干细胞。具有全能性,可以自我更新并具有分化为体内所有组织的能力。进一步说,胚胎干细胞是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。 2 成体干细胞:成年动物的许多组织和器官,比如表皮和造血系统,具 有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。 3 造血干细胞:造血干细胞是体内各种血细胞的唯一来源,它主要存在 于骨髓、外周血、脐带血中。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。 4 神经干细胞:理论上讲,任何一种中枢神经系统疾病都可归结为神经 干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。 5 肌肉干细胞:可发育分化为成肌细胞,可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。

神经干细胞研究进展

神经干细胞研究进展 一、引言 神经干细胞(neural stem cell,NSC)是指存在于神经系统中,具有分化为神经神经元、星形胶质细胞和少突胶质细胞的潜能,从而能够产生大量脑细胞组织,并能进行自我更新,并足以提供大量脑组织细胞的细胞群[1]。狭义的神经干细胞是指成体神经干细胞,指的是分布于胚胎及成人中枢及周围神经系统的干细胞。简单的说,就是在成年哺乳动物的大脑中分离出来的具有分化潜能和自我更新能力的母细胞,它可以分化各类神经细胞,包括神经元、星形胶质细胞和少突胶质细胞。我们所讲的神经干细胞指的就是成体中存在于脑中的中枢神经干细胞,其实在外周也有一些“神经干细胞”称为“神经嵴干细胞”,可以分化成外周神经细胞、神经内分泌细胞和施旺细胞,还可横向分化成色素细胞和平滑肌细胞[2]。 神经干细胞具有以下特征:(1)有增殖能力;(2)由于自我维持和自我更新能力,对称分裂后形成的两个子细胞为干细胞,不对称分裂后形成的两个自细胞中的一个为干细胞,另一个为祖细胞,祖细胞在特定条件下可以分化为多种神经细胞;(3)具有多向分化潜能,在不同因子下,可以分化为不同类型的神经细胞,损伤或疾病可以刺激神经干细胞分化,自我更新能力和多向分化潜能是神经干细胞的两个基本特征[3]。 需要注意的是,在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。神经干细胞的治疗机理是:(1)患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位;(2)神经干细胞可以分泌多种神经营养因子,促进损伤细胞的修复;(3)神经干细胞可以增强神经突触之间的联系,建立新的神经环路[4]。 二、研究现状

干细胞研究进展及应用前景展望

干细胞研究进展及应用前景展望 摘要: 干细胞是一类具有自我更新能力的多向分化潜能细胞,在一定条件下可以分化为多种功能的组织和器官,具有重要的理论研究意义和临床应用价值。近年来的研究成果不仅揭示了许多有关细胞生长发育的基础理论难题,也在创伤修复、神经再生、抵抗衰老、糖尿病、帕金森氏症、老年痴呆、白血病、肿瘤等疾病的治疗方面显示了巨大的应用潜力,是应用生物学进入一个崭新的领域。 关键词: 干细胞;分化;诱导性多能干细胞;糖尿病;肿瘤;伦理争议; 正文: 1.干细胞 在人类生命形成的开始,单个受精卵可以分裂发育形成不同的组织和器官,并通过进一步分裂分化,形成生命个体。在成体细胞中,大部分高度分化的细胞则失去了再分化的能力,而特定组织正常的生理代谢或病理损伤也会引起组织或器官的修复再生,这种具有在分化能力的细胞,即为干细胞。 干细胞(Stem Cells,SC)是一类具有自我更新能力的多向分化潜能细胞,在一定的条件下,它可以分化成多种功能的器官组织。这些细胞呈圆形或椭圆形,体积较小,核质比大,具有较强的端粒酶活性,因此具有较强的增殖能力。 干细胞是一种未充分分化、尚不成熟的细胞,其再生各种组织器官和人体的潜在功能,吸引着越来越多人的眼球。 2.干细胞的研究历史 干细胞的研究被认为起始于二十世纪六十年代,加拿大科学家James E. Till和Ernest A.McCulloch发现并命名造血干细胞之后。 60年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明,其来源于胚胎干细胞,确立了胚胎癌细胞是一种干细胞; 1968年,Edwards 和Bavister 在体外获得了第一个人卵子; 1978年,第一个试管婴儿Louise Brown 在英国诞生。 1981年,Evan, Kaufman 和Martin从小鼠胚泡内细胞群分离出小鼠ES细胞,建立了小鼠干细胞体外培养条件,将干细胞注入上鼠,能诱导形成畸胎瘤。 1984-1988年,Anderews 等人从人睾丸畸胎瘤细胞系Tera-2中产生出多能的、克隆化的胚胎癌细胞,克隆的干细胞在视黄酸的作用下分化形成神经元细胞和其他类型的细胞。 1992年,Reynolds和Richards先后在成年鼠的纹状体和海马中分离出神经干细胞。

相关文档
最新文档