物理学前沿简介

物理学前沿简介
物理学前沿简介

放射物理与防护绪论

物理学是自然科学中基本的学科,是研究物质运动最一般规律和物质基本结构的学科。在尺寸标度上涉及从基本粒子到整个宇宙,在时间标度上从飞秒级的短寿命到宇宙纪元。物理学确立的新概念和理论,已经成为人类对周围世界认识的不可分割的部分,直接影响到社会生产和生活,对社会发展起着推动作用。一、物理学的发展

纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段。

(一)物理学萌芽时期

在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。

在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直进、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的著作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。电磁学方面,发现了摩擦起电、磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、元气论、阴阳五行说、以太等假设。

在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。

总之,从远古直到中世纪(欧洲通常把五世纪到十五世纪叫做中世纪)末,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件

并做了一些实验,但是这些都还称不上系统的自然科学研究。在这个时期,物理学尚处在萌芽阶段。

此阶段著名物理学家:

亚里士多德:亚里士多德反对原子论;不承认有真空存在;他还认为物体只有在外力推动下才运动,外力停止,运动也就停止;还认为作自由落体运动的物体重的比轻的落得快。

(二)经典物理学时期

十五世纪末叶,资本主义生产关系的产生,促进了生产和技术的大发展;席卷西欧的文艺复兴运动,解放了人们的思想,激发起人们的探索精神。近代自然科学就在这种物质的和思想的历史条件下诞生了。系统的观察实验和严密的数学演绎相结合的研究方法被引进物理学中,导致了十七世纪主要在天文学和力学领域中的“科学革命”。牛顿力学体系的建立,标志着近代物理学的诞生。整个十八世纪,物理学处在消化、积累、准备的渐进阶段。新的科学思想、方法和理论,得到了传播、完善和扩展。牛顿力学完成了解析化工作,建立了分析力学;光学、热学和静电学也完成了奠基性工作,成为物理学的几门基础学科。人们以力学的模型去认识各种物理现象,使机械论的自然观成为十八世纪物理学的统治思想。到了十九世纪,物理学获得了迅速和重要的发展,各个自然领域之间的联系和转化被普遍发现,新数学方法被广泛引进物理学,相继建立了波动光学、热力学和分子运动论、经典电磁场理论等完整的、解析式的理论体系,使经典物理学臻于完善。由物理学的巨大成就所深刻揭示的自然界的统一性,为辨证唯物主义的自然观提供了重要的科学依据。

此阶段著名物理学家:

牛顿:

数学:牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。

光学:牛顿认为光是由粒子或微粒组成的。

力学:牛顿三大定律、万有引力定律等。

晚年:晚年的牛顿在伦敦过着堂皇的生活,1705年他被安妮女王封为贵族。此时的牛顿非常富有,被普遍认为是生存着的最伟大的科学家。他担任英国皇家学会会长,在他任职的二十四年时间里,他以铁拳统治着学会。没有他的同意,任何人都不能被选举。

晚年的牛顿开始致力于对神学的研究,他否定哲学的指导作用,虔诚地相信上帝,埋头于写以神学为题材的著作。当他遇到难以解释的天体运

动时,提出了“神的第一推动力”的理论。他说“上帝统治万物,我们是他的仆人而敬畏他、崇拜他”。

1727年3月31日,伟大艾萨克·牛顿逝世。同其他很多杰出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:

“让人们欢呼这样一位多么伟大的人类荣耀曾经在世界上存在”(三)现代物理学时期

十九世纪末叶物理学上一系列重大发现,使经典物理学理论体系本身遇到了不可克服的危机,从而引起了现代物理学革命。由于生产技术的发展,精密、大型仪器的创制以及物理学思想的变革,这一时期的物理学理论呈现出高速发展的状况。研究对象由低速到高速,由宏观到微观,深入到广垠的宇宙深处和物质结构的内部,对宏观世界的结构、运动规律和微观物质的运动规律的认识,产生了重大的变革。在19世纪末叶,有一个叫开尔文的物理学家,他当时有一个很有名的话,就是“19世纪的物理学,已经把所有的问题都解决了,好像是一片晴朗的天空,但是在晴朗的天空上还有两朵乌云”。这两朵乌云指什么呢,一个是指当时对以太的存在性,光速跟以太有没有关系的疑问;另外一个是关于黑体辐射的,谱形没有得到很好的解释。相对论和量子力学的建立,克服了经典物理学的危机,完成了从经典物理学到现代物理学的转变,使物理学的理论基础发生了质的飞跃,改变了人们的物理世界图景。这是19世纪物理学家说的话,没有想到这就成为了20世纪物理学发展的序幕。第一朵乌云的驱散,导致了狭义相对论的诞生,另外一朵乌云的澄清。导致了量子力学诞生。这两朵乌云一澄清以后,物理学就有飞速发展。我可以简要叙述一下狭义相对论的特点。狭义相对论之所以提出来,是针对光速测量产生的。当时有好多实验,有的证明了以太是静止不动的,还有的证明了以太是随着物质的运动而运动的,也有一些证明是以太是随着物质的运动而部分地带运动的。所以这个以太就成为了一个“谜”。爱因斯坦就深入分析了这个问题,从一个科学实验事实出发,实验说光的速度和发光物质的运动状态无关,也就是说光不论在什么地方发射,光源的速度是多少,观察者,包括运动中的观察者,永远看到的是光的速度,大概是每秒30万公里在运行。根据这样一个奇怪的事情,再加上了空间是均匀的,各向同性的假定,爱因斯坦就提出了狭义相对论,这是人们对事件空间的观念的一个转变。在狭义相对论中发现,牛顿力学需要有修正。牛顿力学中的力等于动量对时间的微分,其

中动量就是质量乘以速度,而相对论就是对这个动量作了修正,结果就是就是物体在低速运动的时候仍然符合牛顿力学的规律,而在速度很大,接近光速的时候,运动规律就有很大的修改。同时爱因斯坦的相对论还有一些很特殊性质的发现,比如钟慢尺缩。

20世纪另外一个重大的发现是量子力学,量子力学的发现是由于黑体辐射问题很难得到一个统一的解决而产生出的问题。这一件事情,当时有一个大物理学家叫做普朗克,他在1900年12月14日发表了一篇很重要的文章来解释黑体辐射。普朗克引进了一个假说,也就是光的能量的传播,不是连续的释放和吸收,而是以一个一个光量子的形态来出现,这个光量子形态也就是普朗克常数乘以光的频率。这个假说很好的解释了黑体辐射问题。这是物理学中第一次引进了光能的吸收和释放是不连续的概念。爱因斯坦进一步用普朗克假说解释了光电效应,进一步爱因斯坦又提出光子除了具有能量之外,还具有动量,这个动量就是普朗克常数h乘以振动频率再除以光速c。光子就不再简单看作电磁波的振动,也看作是粒子,这个粒子既有能量又有动量。后来康普顿和吴有训先生在实验上证明了这样一个光子打到电子以后,光子运动的频率和运动方向都会发生改变,而这样一个改变的后果就象是光子作为一个具有确定动量的小球,打在一个静止的电子上面,然后光子再通过弹性散射到另外一个方位上去,这样的改变完全遵守牛顿力学中的弹性碰撞定律,这样就让人们看得很清楚,就是光子既是波,又是粒子,这就是波粒二象性。进一步,法国人德布洛意提出波粒二象性不仅是光子具有的,而是任何一种粒子都具有的。也就是光子看起来是波,其实也是粒子;而普通称为粒子的电子,中子,质子,甚至分子,原子,这些看起来是粒子的也有波动性,因此他把光子的波粒二象性扩展成粒子的波粒二象性。这就是德布洛意波假说。进一步,到了薛定鄂、海森堡就把德布洛意的观念更加普遍化,变成量子力学。量子力学出来以后,引起了人们对微观世界认识的一场大革命。

此阶段著名物理学家简介

爱因斯坦(1879—1955),1879年3月14日诞生在德国乌尔姆的一个犹太人家中。1894年举家迁居意大利米兰。1900年毕业于瑞士苏黎世工业大学。1901年入瑞士国籍;1914年任柏林大学教授,1933年因受纳粹迫害而移居美国,1940年入美国国籍,1955年4月18日逝世。

爱因斯坦被认为是最富于创造力的科学家,他不但创立了相对论,还提出了光量子的概念,得出了光电效应的基本定律,并揭示了光的波粒二重性本质,为量子力学的建立奠定了基础。为此荣获1921年度的诺贝尔物理学奖。同时,他还证明了热的分子运动论,提出了测定分子大小的新方法。

然而就是这样一位光彩夺目的人物,爱因斯坦年幼时也未显出智力超群,相反,到了四岁多还不会说话,家里人甚至担心他是个低能儿。在整个中小学时代却常常被斥为“生性孤僻、智力迟钝”,“心不在焉,想入非非”。中学毕业前夕,校方甚至断言他未来将“一事无成”,勒令他退了学。16岁那年,他以同等学历报考大学,尽管物理。数学成绩很好,但由于需要死记硬背的科目考砸了锅,只得名落孙山。第二年进入大学后,他擅自“刷掉了”很多课程,只以“极大的兴趣”去听某些课和在家里自学。曾被数学教授称为“懒狗”,曾因做实验出事故受到处分,还曾被物理教授认为不适宜学物理而应当改行。

大学毕业时几位同窗好友都留校当了助教,他却因得不到教授们的赏识而遭到了“毕业即失业”的命运。这种种亲身经历,使爱因斯坦对教育的总体印象一直不佳。正因为如此,成名后的爱因斯坦通过自身的体验和长期的观察,形成了一种与众不同的教育观点。

“知识是死的;而学校却要为活人服务。”这是爱因斯坦对于学校教育的基本看法。他反对把学校仅仅看做是传授知识的工具,更反对把学生“当作死的工具来对待”。他认为:“学校的目的始终应当是:青年人在离开学校时,是作为一个和谐的人,而不是作为一个专家。”

1955年 4月18日因主动脉瘤破裂逝世于普林斯顿。遵照他的遗嘱,不发讣告,不举行公开葬礼,不建坟墓,不立纪念碑。火化时按照他的书面遗嘱:免除所有花卉布臵以及所有音乐典礼。骨灰撒在永远对人保密的地方,为的是不使任何地方成为圣地。遗嘱执行者用歌德悼念席勒的诗结束了那朴素的葬礼:

我们全都获益不浅,

全世界都感谢他的教诲;

那专属他个人的东西,

早已传遍广大人群。他像行将陨灭的彗星,

光华四射,

把无限的光芒同他的光芒永相连结。

他的主治医生贺维博士认为如此伟大的大脑,应该进行研究,所以他便把爱因斯坦的大脑保留了下来,并切成200片带走。但至今没有结论。

二、物理学在医学中的应用

医学物理学可归纳为物理学应用的一个支脉,它是将物理学的理论、方法和技术应用于医学而形成的一门新兴边缘学科。换句话说,医学物理学系结合物理学、工程学、生物学等专业,应用于医学上,尤其是在放射医学或激光医学。因此,医学物理学也可与医学电子学(医学器材的研究)、生物医学工程学(工程原理应用于生物与医学),及保健物理学(分析、控制辐射伤害)等学科合作,共同促进医学与生物科技的进步。它的出现大大提高了医学教育水平,促进了临床诊断、治疗、预防和康复手段的改进和更新进程。其主要研究内容有:1、人体器官或系统的机能以及正常或异样过程的物理解释;2、人体组织的物理性质以及物理因子对人体的作用;3、人体内生物电、磁、声、光、热、力等物理现象的认识;4、物理仪器(显微镜、摄谱仪、X线机、CT、同位素和核磁共振仪等)和物理测量技术的医学应用。作为一个独立学科,它形成于本世纪五十年代,1974年国际医学物理组织(IOMP)成立,1986年医学物理分会以中国医学物理学会的名义加入国际医学物理组织。

随着近代物理学和计算机科学的迅速发展,人们对生命现象的认识逐步深入,医学的各分支学科已愈来愈多地把他们的理论建立在精确的物理科学基础上,物理学的技术和方法,在医学研究和医疗实践中的应用也越来越广泛。光学显微镜和X射线透视对医学的巨大贡献是大家早已热悉的。光导纤维做成的各种内窥镜已淘汰了各种刚性导管内镜,计算机和X射线断层扫描术(X-CT)、超声波扫描仪(B超)和核磁共振断层成像(MRI)、正电子发射断层显像术(PET)等的制成和应用,不仅大大地减少了病人的痛苦和创伤,提高了诊断的准确度,而且直接促进了现代医学影像诊断学的建立和发展,使临床诊断技术发生质的飞跃。物理学的每一新的发现或是技术发展到每一个新的阶段,都为医学研究和医疗实践提供更先进,更方便和更精密的仪器和方法。可以说,在现代的医学研究和医疗单位中都离不开物理学方法和设备,随着医学科学的发展,物理学和医学的关系必将越来越密切。物理学不仅为医学中病因、病理的研究和预防提供了现代化的实验手段,而且为临床诊断和治疗提供了先进的器械设备。可以说,没有物理学的支持,就没有现代医学的今天。

1、光学对医学的影响

激光在医学上已广为应用,它是利用了激光在活体组织传播过程中会产生热效应、光化效应、光击穿和冲击波作用。紫外激光已用于人类染色体的微切割,这有助于探索疾病的分子基础。在诊断方面,随着各项激光光谱技术在医学领域运用研究的广泛开展,比如生物组织自体荧光、药物荧光光谱和拉曼光谱在癌肿诊断及白内障早期诊断等方面的研究正在发展之中。激光光学层析(断层)造影(OT)技术正在兴起,它是替代X-CT的新兴的医疗诊断技术。在治疗方面,激光手术已成为常用的实用技术,人们可选用不同波长的激光以达到高效、小损伤的目的。激光已用于心血管斑块切除、眼角膜消融整形、结石粉碎、眼科光穿孔、子宫肌瘤、皮肤痣瘤、激光美容和光动力学治癌(PDT)等方面。在诊断中使用的内窥镜如胃镜、直肠镜、支气管镜等,都是根据光在纤维表面多次发生全反射的原理制成的。医用无影灯、反光镜等也是利用光学原理制成的。近场光学扫描显微镜可直接在空气、液体等自然条件下研究生物标本等样品,分辨率高达20nm以上,已用于研究单个分子,有望在医学领域获得重要应用。利用椭圆偏振光可以鉴定传染病毒和分析细胞表面膜。全息显微术在医学上应用也很广泛。放射性对医学的影响

2、射线在医学领域应用极广,这是基于人体组织经射线照射后会产生某些生理效应。射线可通过反应堆、加速器或放射性核素获得。在病因、病理研究方面,利用放射性示踪技术,使现代医学能从分子水平动态地研究体内各种物质的代谢,使医学研究中的难题不断被攻破。例如弄清了与心血管疾病密切相关的胆固醇生物合成过程。现在放射性示踪已成为现代医学不可缺少的强大武器。放射性在临床诊断上的应用已很普及,例如X光机和医用CT。1895年伦琴在研究稀薄气体放电时发现X射线。X射线发现后仅3个月就应用于临床医学研究, X射线透视是根据不同组织或脏器对X射线的衰减本领不同,强度均匀的X射线透过身体不同部位后的强度不同,透过人体的X射线投射到照相底片上,显像后就可以观察到各处明暗不同的像。X射线透视可以清楚地观察到骨折的程度、肺结核病灶、体内肿瘤的位置和大小、脏器形状以及断定体内异物的位置等。X射线透视机已成为医院的基本设备之。

1972年英国EMI公司的电子工程师洪斯菲尔得(G.H.Hounsfield)在美国物理学家柯马克(https://www.360docs.net/doc/2018525729.html,ack)1963年发表的数据重建图像数学方法的基础上,发

明了X-CT,使医学影像技术发生重大变革。现在X-CT在全世界得到广泛应用,成为举世公认的重大科技成就。柯马克和洪斯菲尔得两人也因此获得1979年诺贝尔医学生理奖。X-CT是利用X射线穿透人体某层面进行逐行扫描,探测器测量和记录透过人体后的射线强度值,将这些强度值转换为数码信号,送进计算机进行处理,经过排列重建。在显示器上就能显示出该层面的“切片”图。使用X -CT装置,医生可以在显示器上看到各种脏器、骨骼形状和位置的“切片”,病变的部位、形状和性质在图像上清晰可见,大大提高了诊断的精度。

X-CT的优越性在于它可以清晰地显示人体器官的各种断面,避免产生影像的重叠。X-CT具有相当高的密度分辨率和一定的空间分辨率,对脑瘤的确诊率可达95%。对腹部、胸部等处的肝、胰、肾等软组织器官是否病变有特殊功用,对于已有病变肿瘤的大小和范围显示也很清楚,在一定程度上X-CT还可以区分肿瘤的性质。目前,医用X-CT已成为临床医学诊断中最有效的手段之一。而正电子发射断层扫描(PET)是一种先进的核医学技术,它的分辨率高,用生理性核素示踪,是目前唯一的活体分子生物学显示技术,PET可以从生命本原——基因水平作出疾病的早期珍断。PET不仅可生产放射性核素,还可用于肿瘤学、神经病学和心病学的研究,它可为病变的早期诊断、疗效观察提供可靠的依据。

放射性在临床中主要用于癌肿治疗,针对对常规外科手术来说困难的疾病和部位(如脑瘤)而设计的粒子手术刀已得到了推广,其中常用的有X光刀和γ光刀。快中子、负π介子和重离子治癌也在进行,它们对某些抗拒γ射线的肿瘤有良好的效果,但是价格高昂,世界上已有许多实验室在临床使用。其次,粒子手术刀对许多功能性疾病如脑血管病、三叉神经病、麻痹、恶痛、癫痫等也有很好的疗效。另外,利用放射性可对医疗用品、器械进行辐射消毒,具有杀菌彻底、操作简单等优点。

3、电磁学对医学的影响

磁共振断层成像是—种多参数、多核种的成像技术。目前主要是氢核( H)密度弛豫时间T 、T 的成像。其基本原理是利用一定频率的电磁波向处于磁场中的人体照射,人体中各种不同组织的氢核在电磁波作用下,会发生核磁共振,吸收电磁波的能量,随后又发射电磁波,MRI系统探测到这些来自人体中的氢核发射出来电磁波信号之后,经计算机处理和图像重建,得到人体的断层图像.由

于氢核吸收和发射电磁波时,受周围化学环境的影响,所以由磁共振信号得到的人体断层图像,不仅可以反映形态学的信息,还可以从图像中得到与病理有关的信息。经过比较和判断就可以知道成像部分人体组织是否正常。因此MRI被认为是一种研究活体组织、诊断早期病变的医学影像技术。

MRI与X- CT和B超比较,X- CT及B超只能显示切面的密度分布图像,而MRI图像可以显小切面的某一原子核同位素的浓度分布或某一参量(如弛豫时间)分布。因此MRI要比X- CT和B超获得更多的人体内部信息,尤其是对于脑部病变和早期肿瘤病变的诊断,MRI更具有优越性。

由于人体内存在电磁场,可为医学疾病的诊断提供重要的检测依据。故脑电图、心电图早已用于脑部疾病、心脏疾病的诊断,与之相对应的脑磁图、心磁图在医学诊断上更为准确有效,但由于技术和价格等原因在临床诊断上尚未得到广泛应用。对肺磁图的认识则较晚,它对肺部疾病(如尘肺病等)的诊断比X射线更为有效。目前,有些发达同家已把它作为肺部疾病诊断的重要手段。

由于原有X射线造影剂(钡餐)效果不够理想,人们研制了磁性X射线造影剂,现在已用于临床诊断。这是一种具有磁性的流动液体,对X射线具有较好吸收率,通过改变外部磁场,它几乎可到达身体内的任何待查部位,而且不会在体内凝固。

电子显微镜在医学中应用广泛,可用来观察普通光学显微镜不能分辨的精细结构。如生物中的病毒、蛋白质分子结构等。电子显微镜根据电子束照射物体井成像的原理,利用电子束通过磁透镜(基于磁聚焦原理)进行聚焦,然后通过加速电压能产生波长很短的电子波,其放大倍数是普通光学显微镜的几十倍甚至几十万倍。

另一方面,在医学中利用电磁原理可改善人体内部的微循环,达到治病保健的作用,如血液循环机和各种磁疗仪等;根据人体与电磁波的相互作用,在医学上利用电磁能的热效应进行肿瘤的高温治疗和一般热疗。粒子加速器在医学中用来产生用于诊断或治疗的射线,也可用来生产注入人体内利于显像的放射性物质,它是利用带电粒子在磁场中的运动规律制成的。

4、声学对医学的影响

超声在医学中用于诊断和治疗,由此形成了超声医学。超声波在临床诊断上的应用相当广泛,它主要是利用超声良好指向性和与光学相似的反射、散射、衰

减和多普勒效应等物理规律,利用超声发生器把超声波发射到体内,并在组织内传播。病变组织的声阻抗与正常组织有差异,用接受器把反射和散射波接受下来,经过处理显像后就可对病变进行诊断,比如A超、B超和多普勒血流仪等。

B超与X射线透视相比其结果的主要差别是:X射线透视所得出的是体内纵向投射的阴影像,而B超得出的是纵切面的结构像,在切面方向没有重叠。可以准确判断切面的情况。

为了提高某些微小病灶(例如小肝癌等)的检出水准,声学中的非线性问题引起了人们的关注。近来,非线性参量成像已成为超声诊断的—个研究热点,二次谐波成像是最新发展的方法之一。二次谐波的应用基于声学造影剂,在超声诊断时预先注入人体待查部位超声造影剂,这样可增加血流信息,有利于病灶的显示,二次谐波成像在冠状动脉疾病诊断中已受到广泛的重视。

超声在治疗方面的应用是基于超声在人体内的机械效应、温热效应和一些理化效应。有超声碎石、超声升温治癌、超声外科手术刀以及超声药物透入疗法,超声可用于治疗硬皮症、血管疾患、腰腿疼、精神病等许多种疾病。临床上使用的有多种超声治疗机。另外,超声在美容中用于超声洁牙、超声减肥等。

在医学上用来进行活体观察的声学显微镜,是利用声波来获得微观物质结构的可见图像技术,它是集声学、压电、光学、电子学和计算机等成果于一体的高科技仪器。

目前,物理学在医学应用中的深度和广度正在进一步拓展,往往需要综合利用多种知识,比如能迅速缓解疼痛病状的声电疗法,就是综合利用了超声和交流电。在其他方面,液晶在医学上已用于医疗热谱图(诊断乳癌、血液疾病等)和其他显像技术中。超导等技术在医学中也有应用。

总之,物理学极大地促进了医学的发展,现代医学对物理学的依赖程度也越来越高。我们相信物理学在医学中将会获得更多的应用,并为医学的发展做出更大贡献。

【毕业论文选题】物理学本科毕业论文题目

物理学本科毕业论文题目 20世纪是科学技术飞速发展的时代。在这个时代,目睹了人类分裂原子、拼接基因、克隆动物、开通信息高速公路、纳米加工和探索太空。很难设想,若没有科学技术的飞速发展,现代生活将是什么样子。与科学技术的发展一样,物理学也经历了极其深刻的革命。可以说,物理学每时每刻都在不停的发展,其活跃的前沿领域很多,是最有生命力、成果最多的之一。下面学术堂为你提供了物理学本科毕业论文题目,希望对你有所帮助。 1

物理学本科毕业论文题目一: 1、MATLAB在大学物理实验仿真中的应用 2、基于Flash的大学物理电学仿真实验的设计与实现 3、量子点和一维量子线相耦合系统在Kondo区物理性质的研究 4、基于时域物理光学方法的半空间上方目标散射研究 5、有机光电材料的光物理特性研究 6、基于激光混沌的全光物理随机数发生器 7、基于超导电路系统的量子模拟和基础量子物理研究 8、金属亚波长结构阵列电磁场增强及光学异常透射的机理研究 9、微型热电系统的多物理场耦合模型与性能优化研究 10、外尔半金属的反常物理性质研究 11、中子光子输运物理过程蒙特卡罗处理方法研究 12、红外视景仿真关键技术研究 13、关于拓扑物理的量子模拟研究 14、高真实感红外场景实时仿真技术研究 15、氢化非晶硅薄膜结构及其物理效应 16、PIC数值方法以及激光-物质相互作用若干物理研究 17、目标电磁散射特性的快速计算方法研究 18、钙钛矿半导体中的瞬态物理过程研究 19、基于激光自混合效应的多物理参数同步测量方法研究 20、高性能多物理场数值算法研究及其应用 21、超薄Bi薄膜的电子态研究 22、铁电基复合薄膜的光伏效应及其调控研究 23、高增益短波长自由电子激光相关物理研究 2

物理学最前沿八大难题

物理学最前沿八大难题 当今科学研究中三个突出的基本问题是:宇宙构成、物质结构及生命的本质和维持,所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 我们可以从物理学最前沿的八大难题来了解最新的物理学动态。 难题一:什么是暗能量 宇宙学最近的两个发现证实,普通物质和暗物质远不足以解释宇宙的结构。还有第三种成分,它不是物质而是某种形式的暗能量。 这种神秘成分存在的一个证据,来源于对宇宙构造的测量。爱因斯坦认为,所有物质都会改变它周围时空的形状。因此,宇宙的总体形状由其中的总质量和能量决定。最近科学家对大爆炸剩余能量的研究显示,宇宙有着最为简单的形状——是扁平的。这又反过来揭示了宇宙的总质量密度。但天文学家在将所有暗物质和普通物质的可能来源加起来之后发现,宇宙的质量密度仍少了2/3之多! 难题二:什么是暗物质 我们能找到的普通物质仅占整个宇宙的4%,远远少于宇宙的总物质的含量。这得到了各种测算方法的证实,并且也证实宇宙的大部分是不可见的。

最有可能的暗物质成分是中微子或其他两种粒子: neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据说是没有较为有效的测量方法。又这三种粒子都不带电,因此无法吸收或反射光,但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。如果找到它们的话,很可能让我们真正的认识宇宙的各种情况。 难题三:中微子有质量 不久前,物理学家还认为中微子没有质量,但最近的进展表明,这些粒子可能也有些许质量。任何这方面的证据也可以作为理论依据,找出4种自然力量中的3种——电磁、强力和弱力——的共性。即使很小的重量也可以叠加,因为大爆炸留下了大量的中微子,最新实验还证明它具有超过光速的性质。 难题四:从铁到铀的重元素如何形成 暗物质和可能的暗能量都生成于宇宙初始时期——氢、锂等轻元素形成的时候。较重的元素后来形成于星体内部,核反应使质子和中子结合生成新的原子核。比如说,四个氢核通过一系列反应聚变成一个氢核。这就是太阳发生的情况,它提供了地球需要的热量。当然也还有其它的种种核反应。 当核聚变产生比铁重的元素时,就需要大量的中子。因此,天文学家认为,较重的原子形成于超新星爆炸过程中,有大量现成的中子,尽管其成因还不很清楚。另外,最近一些科学家已确定,至少一些最重的元素;如金、铅等,是形成于更强的爆炸中。还有一点需要确定,即当两颗中子星相撞还会塌陷成为黑洞。

物理学前沿

陕西师范大学2014~2015学年第一学期期末考试 物理学院2012级教育硕士 物理学前沿试题 答卷注意事项: 1、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在答题纸上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4 、本卷共4大题,总分为100分。 1.理论物理部分 ( 共5题,每题5分,共25分) 1.混沌现象的主要特征是什么 对于什么是混沌,目前科学上还没有确切的定义,但 随着研究的深入,混沌的一系列特点和本质的被揭示,对混沌完整的、具有实质性意义的确切定义将会产生。目前人们把混沌看成是一种无周期的有序。它包括如下特征: (1)内在随机性。它虽然貌似噪声,但不同于噪声,系统是由完全确定的方程描述的,无需附加任何随机因数,但系统仍会表现出类似随机性的行为; (2)分形性质。前面提到的lorenz 吸引子,Henon 吸引子都具有分形的结构; (3)标度不变性。是一种无周期的有序。在由分岔导致混沌的过程中,还

遵从Feigenbaum常数系。 (4)敏感依赖性。只要初始条件稍有偏差或微小的扰动,则会使得系统的最终状态出现巨大的差异。因此混沌系统的长期演化行为是不可预测的 2.分形结构的特点是什么请举例说明。 特点是无定形,不光滑,具有自相似性。如弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星等。它们的特点都是,极不规则或极不光滑。即每一元素都反映和含有整个系统的性质和信息,从而可以通过部分来印象整体。 3.分析小世界网络、无标度网络和随机网络三者之间的相同点和不同点。 共同点:都是用特征路径长度和聚合系数来衡量网络特征。不同点:在网络理论中,小世界网络是一类特殊的复杂网络结构,在这种网络中大部份的节点彼此并不相连,但绝大部份节点之间经过少数几步就可到达。规则网络具有很高的聚合系数,大世界(largeworld,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(smallworld,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub点的节点拥有极其多的连接,而大多数节点只有很少量的连接。少数Hub点对无标度网络的运行起着主导的作用。从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。随机网络,任意两个点之间的特征路径长度短,但聚合系数低。而小世界网络,点之间特征路径长度小,接近随机网络,而聚合系数依旧相当高,接近规则网络。发现规则网络具有很高的聚合系数,大世界(large world,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(small world,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。 4.从自组织临界态的角度来看,地震的物理原理是什么

21世纪物理学的25个难题

21世纪物理学的25个难题 大卫·格罗斯1[①] 编者按:1900年,在巴黎国际数学家代表大会上,德国数学家大卫·希尔伯特(David Hilbert,1864-1943)根据19世纪数学研究成果和发展趋势,提出了新世纪数学家应该致力解决的23个数学问题。希尔伯特的演讲,对20世纪的数学发展,产生了极大的影响。100余年之后的2004年,另一个大卫,因发现量子色动力学中的“渐近自由”现象而荣获2004年诺贝尔物理学奖的美国物理学家大卫·格罗斯教授,同样就未来物理学的发展,提出了25个问题。也许人们会说,在物理学领域提出问题要比数学领域容易得多,因为物理学就像大江大河,而数学则像尼罗河三角洲中纵横交错的河网。但若是反过来想一想,既然物理学界对前沿问题具有更广泛的共识,我们就不难明白,格罗斯教授所提出的问题对未来物理学发展的重要意义。有趣的是,这25个问题中,有1/3落在物理学的边缘地带,其中3个与计算机科学相关,3个与生物学相关,4个与哲学和社会学相关。格罗斯教授的演讲,最初是为美国加州大学卡维利理论物理研究所成立25周年庆典而准备的,该庆典云集了物理学各领域的世界一流学者。此后数月,格罗斯教授先后在欧洲核子中心(CERN)、中国科学院理论物理研究所、浙江大学等地作过内容相近的讲演。这里的译文,系根据格罗斯教授所提供的讲稿译出,中科院理论物理所网站有免费下载的讲演录相(https://www.360docs.net/doc/2018525729.html,/ Video/2005/000.asf),读者也可以参考。 作者简介:大卫·格罗斯(David Gross),美国国家科学院院士,加州大学圣巴巴拉分校(University of California at Santa Barbara)卡维利理论物理研究所(Kavli Institute for Theoretical Physics )所长。格罗斯教授是量子色动力学的奠基人之一,当代弦理论专家,因发现强相互作用中的渐近自由现象2004年与弗兰克·维尔切克(Frank Wilczek)和戴维·波利策(David Politzer)分享了当年度的诺贝尔物理学奖。 这份讲稿来自于我在2004年10月7日卡维利理论物理研究所(KITP)25周年庆祝会议上所作的演讲。在这次会议中,与会者被邀请提出一些可能引导物理学研究的问题,广泛地说,在未来25年可能引导物理学研究的问题,讲稿中的一部分内容就来自于与会者所提出的问题。 1、宇宙起源 第1个问题关于宇宙的起源。这个问题不仅对于科学而且对于哲学和宗教都是一个永久的问题。现在它是理论物理学和宇宙学亟待解决的问题:“宇宙是如何开始的?” 根据最新的观察,我们知道宇宙正在膨胀。因此,如果我们让时光倒流,宇宙将会收缩。如果我们应用爱因斯坦方程和我们关于粒子物理学的知识,我们可以或多或少对哪儿会出现“初始奇点”做出近似的推断。在“初始奇点”,宇宙收缩成为一种难以置信的高密度和高能量的状态——即通常所称的“大爆炸”。我们不知道在大爆炸点(at the big bang)发生了什么,我们所知的基础物理的所有方法——不仅是广义相对论和标准模型,甚至包括我所知的弦理论——都失灵了。 1[①]作者简介:大卫·格罗斯(David Gross),美国国家科学院院士,加州大学圣巴巴拉分校(University of California at Santa Barbara)卡维利理论物理研究所(Kavli Institute for Theoretical Physics )所长。格罗斯教授是量子色动力学的奠基人之一,当代弦理论专家,因发现强相互作用中的渐近自由现象2004年与弗兰克·维尔切克(Frank Wilczek)和戴维·波利策(David Politzer)分享了当年度的诺贝尔物理学奖。

物理研究性学习论文

物理学与世界进步论文 摘要:物理学是一科探究一切物质的运动规律及其组成揭示它们之间的联系和各种运动之间的关系的广博而丰富的学问。物理学的进展密切联系着人类社会的进步和发展,物理学在自身的发展进步中积累的思想方法是人类思想领域的瑰宝。对物理的研究或学习要永远抱着一颗敬畏和永不止步的心。 关键词:物理学、牛顿、工业革命、物理思想、物理与战争、中国的物理 物理学是一科探究一切物质的运动规律及其组成揭示它们之间的联系和各种运动之间的关系的广博而丰富的学问。作为自然科学的一门重要基础科学,物理学历来是人类物质文明发展的动力和基础。同时作为人类追求真理、探索未知世界奥秘的强有力工具,物理学又是一种方法论和哲学观。在人类文明漫长的岁月中,这种古老而又生机勃勃的学科为我们造就了一个个光辉的里程碑。 物理学的进展密切联系着人类社会的进步和发展,从电话的发明到当代互联网络实现的实时通信;从蒸汽机车的制造成功到磁悬浮列车的投入运行;从晶体管的发明到高速计算机技术的成熟等等。这些无不体现着物理学对社会进步与人类文明的贡献。当今时代,物理学前沿领域的重大成就又将会引领着人类文明进入一片新天地。 在历史的滚滚长河中,涌现了一大批物理学先驱,大师,他们性格可能或好或坏,但无可争议的是他们为人类进步和社会发展做出了巨大贡献。牛顿在担任皇家学会会长期间发生了一些不好的事,甚至到晚年还开始研究神学,但也有许多人认为牛顿还是有许多用当时科学和他的学识无法解释的事,所以才开始研究神学,以得到解释,但不管怎么说牛顿是经典物理学的创始人之一,为人类的进步和社会的发展做出过巨大贡献是无可争议的。 物理学作为自然科学的一门重要基础学科,它的研究成果和研究方法可以直接应用于化学、生物、地理、气象等自然科学,大大加速了自然科学的发展和分化独立,甚至形成了新的独立学科或分支学科.如天体物理学、空间物理学、地球物理学、流体力学、生物物理、物理化学、量子化学等等,使人们更全面地探索、认识自然界的规律。作为现代科学基石的物理学,在科学文化和创立现代世界的技术文化中同样扮演了重要角色,物理学是文化不可分割的一部分。物理学的成就直接发展了各种各样的工程技术,形成了今天门类齐全、多样的工业体系.今天的许多高新技术也仍然是以物理学的研究成果为基础的.这些工程技术的发展应用,极大地提高了社会生产力水平,改变了人类的生活、生产方式,创造了辉煌的物质文明.比如,机械、建筑科学就是经典力学原理的实际运用.今天的电力、电子工业是电磁学发展的结果,光学特别是激光技术使得光纤通信、互联网、激光医学等蓬勃发展,在万有引力定律基础上发展起来的航天技术使得人类的足迹不断地向宇宙深处延伸。 在近代一次又一次的世界大变革中,好像没有中国的身影,特别是物理学中更是不见了以往“天朝上国”的身姿,这和中国自古传统以及和中国以人为核心的思想有关,当然最大的关系是,中国自古的教育体系有关,我们也无法去评价他的好坏,他阻碍了中国的科学发展,但不得不说,中国能在历史长河中一直保持自身的完整性,也是这种教育模式的功劳。但其实在中国物理并不是没有发展,而是一直得不到壮大和正视。 在中国,早在2300年之前,有关物理的名词就出现了。与今日之含义相比较,那时的含义要宽泛得多。它泛指人类对自然界及人类自身的理性认识。中国古代思想家认为自然界的规律和人文社会的规律是统一的,人文社会的法则也应该归结为天地、自然的法则;后来有人把这个观点概括为“天人合一”。从这点来看,当时的物理学与哲学是混为一体的。 中国古代的学者很关注对自然现象的观察和理解。在儒家经典著作之一的《大学》中,曾把对人的教育过程描写为:“物格而后知至,知至而后意诚,意诚而后心正,心正而后身修,

《星际穿越》中的物理学

《物理学基础与前沿专题》课程论文 题目:《星际穿越》中的物理学 姓名:林亚南 学号:SY140954 年级:2014 院系:理学院 专业:学科教学(物理)专业 任课教师:邹斌 2014年 12月 30 日

《星际穿越》中的物理学 一、为什么宇宙飞船要旋转 这是一个比较简单的问题。首先简单解释一下对于在太空飞行的宇航员来说何谓“失重”。 下面是一些关键点: (1)太空里仍有万有引力; (2)当宇航员(和飞船)只在万有引力的作用下加速时,宇航员就会有失重感; (3)对于宇航员来说,这种感觉就像重力“消失”了; (4)但人类并不怎么能感觉到重力,因为它作用于我们身体的每一个部分。 事实上,我们将重量和接触到的外力,例如地面支撑我们的力,联系起来。我们称这种力为“表观重量”(apparent weight)。 飞船当然受到引力,但引力都用来改变飞船的速度了。宇航员感到的“失重”,失去的其实是表观重量。而解决失重感的方法,就是对物体施加某种力,使之具有表观重量。 图1 地球上与飞船上的宇航员所受的力 上面的图中有两个宇航员。左边那个站在地球上,右边那个站在宇宙飞船里。如果宇航员处于引力非常小的地方(如深空),唯一使他“感受到重量”的方法办法就是令地面对他施加支持力。这种情况下,右边的宇航员也能像左边的一样感受到重量。 那么要如何在太空里对宇航员施加这个力呢这就要从力的性质入手了。大家对

下面这个公式应该十分熟悉: 这个公式表明物体会在其受到的(净)合力下加速。力和速度都是矢量,现在我们只研究极短时间内物体的运动状况。在这个极短的时间段内,物体的平均加速度是: 图2 宇宙飞船中的宇航员的速度 做圆周运动需要加速度,这一点其实我们早就知道了——每次开车转弯时,你都能感受到这股沿着角加速度方向的力。宇宙飞船在旋转时的原理亦是如此。宇航员(在旋转飞船里)受到的表观重量只取决于两点——圆周的半径和旋转的速度(通常用角速度ω表示)。以合适的速度做匀速圆周运动,飞船里的宇航员也可以获得表观重量。下面是在旋转飞船里的表观重量的表达式(用重力加速度g 来衡量): 大的宇宙飞船(半径r比较大)不需要转得太快。如果飞船比较小,就要转快一些。 图3 《星际穿越》中的宇宙飞船 二、宇航员能活着穿过虫洞吗 (一)虫洞是什么 虽然爱因斯坦和他的助手纳森·罗森(Nathan Rosen)最早不这么叫它,但是虫洞最初的确是他们的智慧结晶。当时他们正在试图用各方法来解爱因斯坦的广义相对论方程,以及用一个纯粹的数学模型来解释整个宇宙,包括重力,以及构成物质的各种粒子。其中包括的一种方法是将空间描述成两个几何面,其间由“桥”连接,而在我们的感知中,这些桥就是粒子。

物理学最前沿八大难题资料

物理学最前沿八大难 题

物理学最前沿八大难题 当今科学研究中三个突出的基本问题是:宇宙构成、物质结构及生命的本质和维持,所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 我们可以从物理学最前沿的八大难题来了解最新的物理学动态。 难题一:什么是暗能量 宇宙学最近的两个发现证实,普通物质和暗物质远不足以解释宇宙的结构。还有第三种成分,它不是物质而是某种形式的暗能量。 这种神秘成分存在的一个证据,来源于对宇宙构造的测量。爱因斯坦认为,所有物质都会改变它周围时空的形状。因此,宇宙的总体形状由其中的总质量和能量决定。最近科学家对大爆炸剩余能量的研究显示,宇宙有着最为简单的形状——是扁平的。这又反过来揭示了宇宙的总质量密度。但天文学家在将所有暗物质和普通物质的可能来源加起来之后发现,宇宙的质量密度仍少了2/3之多! 难题二:什么是暗物质 我们能找到的普通物质仅占整个宇宙的4%,远远少于宇宙的总物质的含量。这得到了各种测算方法的证实,并且也证实宇宙的大部分是不可见的。

最有可能的暗物质成分是中微子或其他两种粒子: neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据说是没有较为有效的测量方法。又这三种粒子都不带电,因此无法吸收或反射光,但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。如果找到它们的话,很可能让我们真正的认识宇宙的各种情况。 难题三:中微子有质量 不久前,物理学家还认为中微子没有质量,但最近的进展表明,这些粒子可能也有些许质量。任何这方面的证据也可以作为理论依据,找出4种自然力量中的3种——电磁、强力和弱力——的共性。即使很小的重量也可以叠加,因为大爆炸留下了大量的中微子,最新实验还证明它具有超过光速的性质。 难题四:从铁到铀的重元素如何形成 暗物质和可能的暗能量都生成于宇宙初始时期——氢、锂等轻元素形成的时候。较重的元素后来形成于星体内部,核反应使质子和中子结合生成新的原子核。比如说,四个氢核通过一系列反应聚变成一个氢核。这就是太阳发生的情况,它提供了地球需要的热量。当然也还有其它的种种核反应。 当核聚变产生比铁重的元素时,就需要大量的中子。因此,天文学家认为,较重的原子形成于超新星爆炸过程中,有大量现成的中子,尽管其成因还不很清楚。另外,最近一些科学家已确定,至少一些最重的元素;如金、铅等,是形

物理学前沿论文

物理学前沿课程作业 题目:一、超导材料的研究与发展 光催化反应机理 二、TiO 2 姓名:谭琳 学号:S130720032

一、超导材料的研究与发展 1、 引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。 2、 分类 2.1按成分分为: 元素超导体、合金和化合物超导体,有机高分子超导体三类。 2.2按Meissner 效应分为: 第一类超导体: 超导体在磁场中有一同的规律,如图a 所示:当HH c 时,B=μH ,即在超导态内能完全排除外磁场,且只有一个值。除钒、铌、钌外,元素超导体都是第一类超导体。 第二类超导体: 如图b 所示,第二类超导体的特点是:当H0而B< μH ,磁场部分穿透。当H>H c2时,B= μH ,磁场完全穿 透。也就是在超导态和正常态之间有一种混合态存在,H c 有两个值H c1和H c2 。钒、铌、钌及大多数合金或化合物超导体都是属于第二类导体。 3、 性质 3.1零电阻性 超导材料处于超导态时电阻为零,能够 无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维

物理学前沿简介

放射物理与防护绪论 物理学是自然科学中基本的学科,是研究物质运动最一般规律和物质基本结构的学科。在尺寸标度上涉及从基本粒子到整个宇宙,在时间标度上从飞秒级的短寿命到宇宙纪元。物理学确立的新概念和理论,已经成为人类对周围世界认识的不可分割的部分,直接影响到社会生产和生活,对社会发展起着推动作用。一、物理学的发展 纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段。 (一)物理学萌芽时期 在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。 在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直进、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的著作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。电磁学方面,发现了摩擦起电、磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、元气论、阴阳五行说、以太等假设。 在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。 总之,从远古直到中世纪(欧洲通常把五世纪到十五世纪叫做中世纪)末,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件

物理学前沿问题探究

课程名称:前进中的物理学 论文题目:物理学前沿问题探究 学号: 姓名: 年级: 专业: 学院: 完成日期:

物理学前沿问题探究 我是南开大学物理学院的学生,自然对物理学的前沿问题较一般的同学有更多的了解,对这方面也更感兴趣,我希望能更多地了解这方面的知识,以使自己对物理学的未来有一个更清晰的认识。 物理学——一门非常严肃的科学,源自哲学,由于数学方法的引进而成为一门独立的科学,其终极目的是探知宇宙的精神。 我们的物理学发展到现在已经为我们认识和改造世界提供了一件又一件法宝: 光学显微镜,使生物学拥有了细胞学说; 蒸汽机,引发了工业革命; 引力理论,成为了太空航行的理论依据; 电力的发现,让化学出现了新的分支——电化学; 能量守恒定律,使人们不在盲目建造永动机; 热力学第二定律,指出了时间的方向性; 电子显微镜,使生命科学进入分子生物学时代; 电子计算机,引领世界进入信息时代; 将来,量子通信,量子计算机,必将使世界进入全新的量子时代! 我相信物理学必将继续引领世界前进的步伐,但是其基础是一个个前沿难题的解决或新发现,物理领域有着大量的前沿课题,相信我们年轻的一代,以及其他未来的科学家必将在这些方面有所建树。 下面我将对这些疑难问题做一个概述: 1、关于整个宇宙和天体的创生和演化 宇宙起源问题、黑洞的研究、宇宙年龄问题、宇宙有怎样的结构、暗物质、暗能量、类星体的结构、引力波的存在问题、太阳系诞生问题、地-月创生和演化、生命起源于哪里、外星生命是否存在、宇宙加速膨胀之谜…… 2、微观世界中物质结构和基本粒子的相互作用及其运动规律 物质深层结构之谜(质子自旋危机)、概率论和决定论的争论、统一场论的最终导出(大统一、超统一)、超弦、真空不空问题、量子计算机、量子隐形传态、量子非局域性、量子论与相对论之矛盾、狭义相对论与超光速疑难…… 3、宏观范围内的非线性复杂性问题 自组织与耗散结构、分形与分维、多体问题、混沌理论、孤立波、

应用物理专业前沿小论文

实现光存储的关键——电磁感应透明(EIT)技术 辽宁大学 2015级 应用物理学 强子薇 151006132

【摘要】 自上世纪60年代激光发明以来,人们对光的性质的研究已经从经典光学拓展到非线性光学和量子光学等领域。由于激光的高度相干性和高强度等特点,光与物质的相互作用被广泛而渗入地研究。光与原子相互作用是量子信息科学的一个重要研究领域,自从频率与原子共振跃迁线匹配的激光器问世以后,这一领域的研究进展迅速。原子相干效应可以使原子共振跃迁频率附近的光学性质如吸收和折射(线性极化率)、非线性极化率等发生奇特的变化,产生电磁感应透明现象,即EIT(electromagneti-cally induced transparency )。1999年Harvard大学Hau 等人利用电磁感应透明(EIT)技术在450nK的超冷原子中实现了17m/s的极慢光速。基于EIT的慢光技术具有实现光存储的巨大潜力。 【关键词】 电磁感应(EIT)透明量子干涉慢光技术光存储 【正文】 一、慢光的产生 慢光原理:让我们来用相速度和群速度这两个概念来说明慢光的产生。一般而言,光在介质中的速度和介质折射率有关,而光的传播速度又可以分为单一频率光波传播的相速度都和许多频率成分组成的光波波包传播的群速度。相速度是指单色平面波在介质中其等相位面的传播速度。对于色散介质因不同频率的单色平面波将以不同的相速度在介质中传播。对由多个单色平面波构成的波包络,其传播速度用群速度。 从本质上说,控制群速度就是控制介质的色散特性,要想实现大的群速度改变,就得产生强色散曲线。而获得强色散曲线的其中一类方法便是在介质中通过控制光的吸收和增强来改变介质的色散特性。对普通介质来说,当光脉冲的能量不等于介质中原子的电子能级的能量差(即光是远离共振)时,发生“正常”色散。即在色散曲线中,折射率n随频率的增加而单调增加,这意味着折射率对频率的偏导大于零。因此,这种“正常”色散减小了群速度。[6] 由介质极化率的微观机理可知,在介质共振频率处存在大的折射率改变,可有效减慢光的传播速度,但与此同时,介质共振频率处存在强吸收,使得光波很难透过介质而被实验观察,因而在很长一段时间内对慢光的研究都停滞不前。 转机出现在上世纪80年代,人们意识到叠加的电子态被激发时介质的光学性质可以发生极大的变化。这种叠加态的激发涉及到量子光学中极其重要且影响深远的物理概念——量子干涉。由于量子干涉对介质的色散性质的改变,原本共振处的反常色散变为正常色散,这能引起介质折射率的加强及非线性效应的改变。介质色散改变的同时,其吸收特性也发生了变化。光可以透过高吸收的光密介质,不但没有损耗甚至出现放大,而且是无粒子数反转的放大。基于此的EIT 技术可以克服瓶颈,克服介质共振频率处的强吸收。 二、EIT技术的原理 电磁波本身是一种能量,感光材料一般都是混合物,其中的一种材料会吸收电磁波的能量,(原子吸收电磁能量会导致电子跃迁而改变化学性能),发生反应,由不透明变成透明,或者由透明变成不透明。这点和变色镜的道理是一样的,因为光也是一种电磁波,都是能量的形式存在的物质。最简单的变色镜原理:玻璃

物理学前沿学习心得

物理学前沿学习心得 专业班级:物联网13-01 姓名:司文哲 学号:311309080116

物理学前沿这门课是我看名字就选的一门选修课,因为本身对于物理拥有极大的兴趣,喜欢物理这门学科,并且还因为对物理前沿的知识感到好奇和前沿物理学的研究对世界的改变让我感到惊奇而选的这门课。在上前几节课的时候,一直听老师讲的是有关物理学历史的问题,这让我有困惑和不解,为什么报了个物理学前沿却在这听物理学历史,后来在一节课中老师也说到这个问题,然后思考过后,才觉得对于物理学的历史学习还是很有必要的,有助于整个对物理学的发展有个看法和了解,这样对物理学前沿问题才会感到有兴趣。经过4个星期的上课,多多少少也了解了点屋里前沿知识的大概皮毛,这篇心得就把老师提到的几个21世纪物理学的发展方向以及各个前沿的基本概念、前景总结一下,也算是对物理学前沿这门课程的学习总结。 在查阅物理前沿的资料之前,我先对有一节课老师放的宇宙的视频说一点我对宇宙的看法和认识,我觉得我们生活在繁杂世界中,纷纷扰扰,喜怒哀乐,总以为人才是世界的中心,殊不知这是多么渺小的想法。一个大自然就能轻轻松松把人类毁灭,更不用说浩瀚无边的宇宙了,宇宙就像心胸广袤,坐定如山的巨大长者。又如各个地方都在发生着变换,停歇不得的魔鬼。我们对宇宙的认识从华夏大地的人们认为的盖天说和巴比伦的拱形天地被大海环绕的世界,到无锡拉人从美学观念觉得地球是圆形的,认为天体和我们居住的大抵都是圆形的,再到地心说,日心说和万有引力定律的发现,再到发现银河系以外的星系,期间经过了人类多少的努力和困难,才认识到我们生活千万年的外界是什么东西,然而宇宙却千万年间一直在这里,巍然无比,让人心生敬畏。 21世纪物理学发展的前景还是非常巨大的,有许多我认为改变世界的发现还在研究当中在本篇中我查阅一些物理前沿的研究分支,作为自己简单的学习。 1.暗物质和暗能量 暗能量和暗物质是一种不可见的、能推动宇宙运动的能量,宇宙中所有的恒星和行星的运动皆是由暗能量与万有引力来推动的。根据“普朗克”探测器收集的数据,科学家对宇宙的组成部分有了新的认识,宇宙中普通物质和暗物质的比例高于此前假设(73%),而暗能量这股被认为是导致宇宙加速膨胀的神秘力量则比想象中少,占不到70%。]暗能量是宇宙学研究的一个里程碑性的重大成果。支持暗能量的主要证据有两个。一是对遥远的超新星所进行的大量观测表明,宇宙在加速膨胀。按照爱因斯坦引力场方程,加速膨胀的现象推论出宇宙中存在着压强为负的“暗能量”。暗能量是什么,它的存在意味着什么?科学家才刚开始尝试回答这些问题。暗能量对宇宙整体的作用泄漏了它的行踪,而人们逐渐意识到,暗能量不仅对整个宇宙有影响,似乎也能操控宇宙的居民,指引恒星、星系和星系团的演化进程。虽然以前并没有意识到暗能量对这些结构的影响,但天文学家们几十年来一直在研究它们的演化过程。 讽刺的是,暗能量的无处不在,反而让人们很难意识到它的存在。暗能量与物质不同,它是均匀分布的,不会在某个地方聚集成团。不论是在你家的厨房,还是在星际空间,暗能量的密度都完全一样,约为10^-26千克/立方米,相当于几个氢原子的质量。太阳系中所有的暗能量加起来,与一颗小行星的质量差不多,在行星的“舞蹈”中,几乎起不了作用。只有在巨大的空间尺度上和时间跨度上,才能体现出暗能量的影响力。 2.广义相对论 广义相对论是阿尔伯特·爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。在广义相对论中,引力被描述为

工程热物理前沿课程论文(DOC)

研究生“工程热物理前沿”论文 重庆大学动力工程学院 二O一四年一月

摘要 我国是世界上能源结构以煤为主的国家之一,也是世界上最大的煤炭消费国。随着经济的发展,能源问题成为社会与经济发展的一个长期制约因素。关系全局的主要能源问题有:能源需求增长迅速,供需矛盾尖锐;能源结构不合理,优质能源短缺;效率低下,浪费惊人;环境影响更加严重。面对时代的召唤,工程热物理等相关学科将承担起我国国民经济发展的能源与环境的重大需求,努力推进节能和科学用能已成为学科的指导思想和核心,而抓紧化石燃料的洁净技术、大力开发可再生能源和新能源技术则是工程热物理学科的发展战略重点。本文主要介绍了工程热物理学科在核能发电技术、太阳能发电技术、生物质气化技术、燃料电池技术等新能源领域,及循环流化床洁净高效燃烧技术方面取得的成绩及未来发展方向。 关键词:工程热物理,核能发电,太阳能发电,生物质气化技术,燃料电池,循环流化床

ABSTRACT China is not only one of the countries whose energy structure is coal-based, but also one of the world's largest coal consumers. With the development of economy, the energy issue is the social and economic development of a long-term relationship factors, the main energy problem has global demand is growing rapidly, energy sharp contradiction between supply and demand, The energy structure unreasonable, high-quality energy shortage, Low efficiency and waste astonishing, The environmental impact is more serious. Facing the call of The Times, engineering thermal physical related subject will assume the development of our national economy energy and environment of the great demand to promote energy conservation and science use has become disciplines guiding ideology and the core, to grasp fossil fuel clean technology, vigorously develop renewable energy and new energy technology is engineering thermal physical development of the discipline of strategic emphasis. This article mainly introduced the engineering thermal physical sciences in solar power generation technology, nuclear power technology, biomass gasification technology, fuel cell technology and other new energy field, and circulating fluidized bed clean efficient combustion technology's achievements and future development direction. Keywords:Engineering thermal physical, nuclear power, solar energy, biomass gasification, fuel cells, fluidized bed

物理学前沿知识

《九年义务教育三年制初级中学教师教学用书第二册物理》试用修订版上海科学技术出版社华东地区初中物理教材编写协作组编2002年8月第一版第一次印刷 参考资料P346 1、物理学——前沿科学的支柱 自然界是无限广阔庭丰富多彩的。物理学是自然科学中最基本的科学,它研究物质运动的形式和规律,物质的结构及其相互作用,以及如何应用这些规律去改造自然界。因此,物理学又是许多科学技术领域的理论基础。 从本世纪开始,物理学经历了极其深刻的革命,从对宏观现象的研究发展到对微观现象的研究,从研究低速运动发展到研究高速运动,由此诞生了相对论和量子力学,并在许多科技领域中引发了深刻的变革。 物理学在认识、改造物质世界方面不断取得伟大成就,不断揭示物质世界内部的秘密;而社会的发展又对物理学提出无穷无尽的研究课题。例如,原子能的利用,使人类掌握了武器和新能源;激光技术的出现,焕发了经典光学物理的青春,使许多以往光学技术办不到的事情,现还能办到了;半导体科学技术的发展,导致了计算技术、无线电通信和自动控制的革命;超导电性、纳米固体材料和非晶态材料的出现,如金属物理、半导体物理、电介质物理、非晶态物理、表面与界面物理、高压物理、低温物理等。此外,物理学与其他学科之间的渗透,又产生了许多边缘交叉学科,如天体物理、大气物理、生物物理、地球物理、化学物理和最近发展起来的考古物理等。 我们可以说,物理现象存在于人类生活和每个角落,发生在宇宙的每一地方,物理学是推动科学技术发展的重要支柱,它是自然科学中应用广泛、影响深刻、发展迅速的一门基础科学和带头科学。 2、“无限大”和“无限小”系统物理学 “无限大”和“无限小”系统物理学是当今物理学发展一个非常活跃的领域之一。天体物理学和宇宙物理学就属于“无限大”系统物理学的范畴,它从早期对太阳系的研究,逐步发展到银河系,直至对整个宇宙的研究。热大爆炸宇宙模型作为20世纪后半叶自然科学中四大成就之一是当之无愧的。利用该模型可以成功地解释宇宙观测的最新结果,如宇宙膨胀、宇宙年龄下限、宇宙物质的层次结构、宇宙在大尺度范围内是各向同性的等重要结果。可以说,具有暴胀机制的热大爆炸宇宙模型已为现代宇宙学奠定了可靠的基础。但是到目前为止,关于宇宙的起源问题仍没有得到根本解决,还有待于科学工作者进一步的努力和探索。 原子核物理学和粒子物理学等属于“无限小”系统物理学的范畴。它从早期对原子和原子核的研究,逐步发展到对基本粒子的研究。 基本粒子是在物质结构层次中属于比原子核更深层次的物质单元,如光子、质子、中子、π介子等。迄今已确认有400余种基本粒子,它们都是通过宇宙射线和加速器实验发现的。基本粒子的性质可用一系列描述其内禀性质的物理量,如质量、电荷、自旋、宇称、同位旋、轻子数、重子数、奇异数、超荷等表征。基本粒子之间存在着弱相互作用、电磁相互作用和强相互作用(见下面介绍的“物质间的基本相互作用”)。通过这些相互作用,基本粒子可发生创生、湮没以及相互转化等现象。 按照参与相互作用的类型,通常将基本粒子区分为三大类:轻子、强子、和规范玻色子。轻子如电子、μ子和中微子等;它们仅参与弱作用和电磁作用。强子如质了、中子、π介子等,它们参与上述全部三种作用。规范玻色子如光子、中间玻色子(W±,Z0)、胶子等,它们是传递相互作用的媒介粒子,光子传递电磁作用,中间玻色子传递弱作用,胶子传递强作用,目前人们已经知道,强子都是由更小的粒子——“夸克”构成。至今已经发现了多种夸克。

物理化学-化学前沿与进展资料

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

相关文档
最新文档