基于同态加密的数据安全解决方案

全同态加密算法研究与实现

全同态加密算法研究与实现素质拓展报告 FHE 的应用价值早就被众人所熟知,但是直到目前为止,还没有真正实用的FHE 方案。2009 年,Gentry 首次创造性地提出基于理想格的第一个 FHE 方案之后,FHE 的研究再一次成为了众多密码学家和公司关注的焦点。因此,FHE方案的构造是当前密码学领域的主要研究的问题之一。 在以前的基于“译码难题(其中包括格上难题)”陷门的非对称同态密码方案的构造过程中,密码学家所考虑的是如何将有限的双同态的“限”做大,使得它能够接近无限的双同态。其具体做法是将密文空间的“模”尽可能的做大而能够容纳大尺寸的误差。但是,这样做的代价是密文空间的尺寸将大得难以承受。 2009 年 Gentry 创造性的提出了一个新的 FHE 方案的构造方法 [2] 。由于明文比特之间的“异或”运算和“与”运算构成了操作完备集,Gentry 基于一个对“异或”操作(或者是 mod 2 加法运算)和“与”操作(或者是 mod 2 乘法运算)同态加密 方案来实现 FHE 方案的构造,其主要构造思想是: 构造一个支持有限次“异或”操作(或者是 mod 2 加法运算)和“与”操作(或者是 mod 2 乘法运算)同态的加密方案。在构造一般的同态加密方案时,为了保证安全性,Gentry 引入了噪声。但是随着同态操作的进行,噪声的值将迅速增长,当噪声的尺寸过大时,解密会出错。 为了降低噪声的尺寸,Gentry 考虑到可以对解密运算进行“密文端的同态运算”——重加密(recrypt),从而实现压缩噪声的尺寸进而继续进行加法同态和乘法同态运算。为此,Gentry 引入了重加密和自举的概念。Gentry 的构造方法完成了一个不可思议的功能:解密算法不但能够表示成简单的布尔运算,而且该运算竟然能够进行“密文端的同态运算”;通过递归式自嵌入的方式,一般地同态加密方案可以转化为 FHE 方案。 重加密技术是通过实施“密文端的同态运算”来实现的。假设消息 m 在公钥1pk 作用下的密文为1c ,符号 D 表示解密电路。如果使用加密公钥2pk 加密1sk 后的解密密钥为1sk ←Encrypt(2pk 1sk),通常情况下,对于一个加密方案实施二次加密的过程是:首先对外层加密进行解密,而后才能对内层加密进行解密。但是, Recrypt 算法的奇妙之处正在于它能够突破这种常规,具有直接对”内层加密”实施解密的能力。当然,在这个过程中,必须保证密文的噪声不会增大或者增长不能太大。

信息安全保障措施

服务与质量保障措施

一、网站运行安全保障措施 1、网站服务器和其他计算机之间设置防火墙(硬件防火墙正在采购中),做好安全策略,拒绝外来的恶意攻击,保障网站正常运行。 2、在网站的服务器及工作站上均安装了相应的防病毒软件,对计算机病毒、有害电子邮件有整套的防范措施,防止有害信息对网站系统的干扰和破坏。 3、做好访问日志的留存。网站具有保存六月以上的系统运行日志和用户使用日志记录功能,内容包括IP地址及使用情况,主页维护者、对应的IP地址情况等。 4、交互式栏目具备有IP地址、身份登记和识别确认功能,对非法贴子或留言能做到及时删除并进行重要信息向相关部门汇报。 5、网站信息服务系统建立多机备份机制,一旦主系统遇到故障或受到攻击导致不能正常运行,可以在最短的时间内替换主系统提供服务。 6、关闭网站系统中暂不使用的服务功能,及相关端口,并及时用补丁修复系统漏洞,定期查杀病毒。 7、服务器平时处于锁定状态,并保管好登录密码;后台管理界面设置超级用户名及密码,并绑定IP,以防他人登入。 8、网站提供集中式权限管理,针对不同的应用系统、终端、操作人员,由网站系统管理员设置共享数据库信息的访问权限,并设置相应的密码及口令。不同的操作人员设定不同的用户名,且定期更换,严禁操作人员泄漏自己的口令。对操作人员的权限严格按照岗位职责设定,并由网站系统管理员定期检查操作人员权限。 9、公司机房按照电信机房标准建设,内有必备的独立UPS不间断电源,能定期进行电力、防火、防潮、防磁和防鼠检查。 二、信息安全保密管理制度 1、我公司建立了健全的信息安全保密管理制度,实现信息安全保密责任制,切实负起确保网络与信息安全保密的责任。严格按照“谁主管、谁负责”、“谁主办、谁负责”的原则,落实责任制,明确责任人和职责,细化工作措施和流程,建立完善管理制度和实施办法,确保使用网络和提供信息服务的安全。 2、网站信息内容更新全部由网站工作人员完成或管理,工作人员素质高、专业水平好,有强烈的责任心和责任感。网站相关信息发布之前有一定的审核程序。工作人员采集信息将严格遵守国家的有关法律、法规和相关规定。严禁通过我公司

整数上全同态加密方案分析

整数上全同态加密方案分析 一篇论文看完了,如果都看懂了的话,很多人觉得案例都是小菜一碟,但是在我写这个案例的时候我发觉论文看懂了,更需要案例或者说实现来进一步深入或者夯实,因为只有通过具体的实现步骤,才能发现有些在论文中的一些细节问题,反过来更可以促进对论文的理解。 整数上全同态加密方案有两篇非常经典的论文,一篇是《Fully Homomorphic Encryption over the Integers》以下简称DGHV方案,还有一篇是Gentry写的《Computing Arbitrary Functions of Encrypted Data》简称CAFED论文。入门者适合先阅读CAFED论文,这并不是说这篇论文简单,只是因为这篇文章的写法很通俗(严格意义上这篇文章并不是一篇真正的论文,是给杂志写的文章,有点科普性质),有一个很好的比喻的例子“Glovebox”贯穿于整个论文中,Gentry的文笔很好写的也很生动,对有些地方进行了背景解释,而这些解释恰好是DGHV论文中没有说的,当然一开始要想把CAFED论文彻底读懂也不是那么容易的。这个时候可以开始阅读DGHV这篇论文。这篇论文对于我来说是百读不厌,因为有些地方就算读了一百篇也不见得可以理解,而且这篇文章很适合深挖,有些很有趣的地方,例如噪声参数的设置等等。还有一篇论文就是全同态的经典论文《Fully homomorphic encryption using ideal lattices》,如果对

格不熟悉的话,可以读这篇文章的前面三分之一,因为有详细的全同态的定义、层级全同态、允许电路、增强解密电路、bootstrable、重加密原理,以及如何通过递归实现全同态的,尤其是递归实现全同态的过程,在论文中还是值得反复理解的。剩下的当然还有Gentry 的博士论文,也可以分阶段阅读。 这篇文章就算是一个阅读笔记吧,分为两个部分,一个是实现过程,另一个是方案的参数分析。 一、方案实现过程 1、全同态加密方案 至于什么是全同态等等形式化定义我就不说了,请参阅论文。 全同态加密用一句话来说就是:可以对加密数据做任意功能的运算,运算的结果解密后是相应于对明文做同样运算的结果。有点穿越的意思,从密文空间穿越到明文空间,但是穿越的时候是要被蒙上眼睛的。另外上面的那句话是不能说反的,例如:运算的结果加密后是相应于对明文做同样运算结果的加密,这样说是不对的,因为加密不是确定性的,每次加密由于引入了随机数,每次加密的结果都是不一样的,同一条明文对应的是好几条密文。而解密是确定的。 全同态具有这么好的性质,什么样的加密方案可以符合要求呢?往下看: Enc(m):m+2r+pq Dec(c):(c mod p)mod2=(c–p*「c/p」)mod2=Lsb(c)XOR Lsb(「c/p」)

信息安全保证措施

1.1.信息系统及信息资源安全保障措施 1.1.1. 管理制度 加强信息系统运行维护制度建设,是保障系统的安全运行的关键。制定的运行维护管理制度应包括系统管理员工作职责、系统安全员工作职责、系统密钥员工作职责、信息系统安全管理制度等安全运行维护制度。 1.1. 2. 运行管理 1.1. 2.1.组织机构 按照信息系统安全的要求,建立安全运行管理领导机构和工作机构。建立信息系统“三员”管理制度,即设立信息系统管理员、系统安全员、系统密钥员,负责系统安全运行维护和管理,为信息系统安全运行提供组织保障。 1.1. 2.2.监控体系 监控体系包括监控策略、监控技术措施等。在信息系统运行管理中,需要制定有效的监控策略,采用多种技术措施和管理手段加强系统监控,从而构建有效的监控体系,保障系统安全运行。 1.1.3. 终端安全 加强信息系统终端安全建设和管理应该做到如下几点: (1)突出防范重点:安全建设应把终端安全和各个层面自身的安全放在同等重要的位置。在安全管理方面尤其要突出强化终端安全。终端安全的防范重点包括接入网络计算机本身安全及用户操作行为安全。 (2)强化内部审计:对信息系统来说,如果内部审计没有得到重视,会对安全造成较大的威胁。强化内部审计不但要进行网络级审计,更重要是对内网里用户进行审计。 (3)技术和管理并重:在终端安全方面,单纯的技术或管理都不能解决终端安全问题,因为终端安全与每个系统用户相联系。通过加强内部安全管理以提高终端用户的安全意识;通过加强制度建设,规范和约束终端用户的操作行为;通过内部审计软件部署审计规则,对用户终端系统本身和操作行为进行控制和审计,做到状态可监控,过程可跟踪,结果可审计。从而在用户终端层面做到信息系统安全。 1.1.4. 物理层安全 物理层的安全设计应从三个方面考虑:环境安全、设备安全、线路安全。采

同态加密方案

若一个加密方案对密文进行任意深度的操作后解密,结果与对明文做相应操作的结果相同,则该方案为完全同态加密方案。 通常一个公钥加密方案有三个算法:KeyGen算法(密钥生成),Enc算法(加密),Dec算法(解密)。但是在全同态加密中,除了上述三个算法之外,还包含第四个算法:Evaluate算法(密文计算),这个算法的功能是对输入的密文进行计算。 KeyGen算法(密钥生成)用于生成公钥和密钥,公钥用于加密,私钥用于解密。还可能生成另外一种公钥,即密文计算公钥,我们把它称之为Evk。 密文计算公钥Evk的作用是在执行Evaluate算法时用到,而且Evk 的形式与使用的全同态方案直接相关。例如,如果是通过启动技术(Bootstrapple)获得全同态加密,即每次密文计算前要用同态解密约减密文的噪音,这时Evk就是对密钥的每一位加密后生成的密文,即密钥有多少位,Evk里包含的公钥就有多少个。Evk中每个公钥的大小就是使用Enc加密后产生密文的大小。

当然还有其他情况,例如,如果使用密钥交换与模交换技术获得全同态加密,典型代表就是BGV方案。这时Evk中包含的就是L–1个矩阵,L是方案中电路的深度,该矩阵用于密钥转换。每次密文计算后,都需要使用Evk中的公钥将维数扩张的密文向量转换成正常维数的密文向量。 当然还有一种情况就是不需要Evk,例如在Crypto13会议的论文GSW13中,Gentry使用的密文是矩阵(方阵),所以密文乘积或相加不会产生密文维数改变的事情,所以在密文计算时没有用到公钥,这也是该论文可以产生基于身份或基于属性全同态加密方案的根本原因。 Enc算法(加密)和我们平常意义的加密是一样的,但是在全同态加密的语境里,使用Enc算法加密的密文,一般称之为新鲜密文,即该密文是一个初始密文,没有和其他密文计算过。所以新鲜密文的噪音称之为初始噪音。 Dec算法(解密)不仅能对初始密文解密,还能对计算后的密文解密。但由于部分同态加密方案中密文存在噪音,例如在整数上的全同态加密方案里,密文乘积的噪音是噪音之积,密文加法的噪音是噪音之和。所以当密文计算到一定程度,其噪音将超过上限,所以对这样的密文解密将可能失败。全同态加密的关键就是对噪音的控制,使之能对任何密文解密。 最后一个算法:Evaluate算法(密文计算),这个算法是整个全同态加密四个算法中的核心。可以做个这样的比喻:前面三个算法是大楼的地基,后面这个Evaluate算法就是大楼。这个比喻在后面会体会到它

数据传输安全解决方案

数据传输安全解决方案 传输安全解决方案 (1) 一.总体框架 (2) 二.安全需求 (3) 2.1 应用集成和政务集成中的安全需求 (3) 2.2 OA 产品的安全需求 (4) 1.安全电子邮件 (4) 2.电子签章 (5) 3.数字水印 (5) 4.防拷屏 (5) 5.安全加密文档 (5) 2.3方案中解决的安全问题和需求 (6) 三 PKI 方案 (7) 3.1 PKI 简介 (7) (1) 提供用户身份合法性验证机制 (7) (2) 保证敏感数据通过公用网络传输时的保密性 (8) (3) 保证数据完整性 (8) (4) 提供不可否认性支持 (8) 3.2 非对称密钥加密技术简介 (8) 3.3 PKI 的组成部分 (9) 3.3.1 认证和注册审核机构(CA/RA) (10) 3.3.2 密钥管理中心 (11) 3.3.3 安全中间件 (12) 四. PMI 部分 (13) 4.1 什么是PMI (13) 4.2 为什么需要PMI (14) 4.3 PMI 发展的几个阶段 (15) 4.4 PMI 的安全体系模型 (16) 二十一世纪是信息化世纪,随着网络技术的发展,特别是Internet 的全球化,信息共享的程度进一步提高。数字信息越来越深入的影响着社会生活的各个方面,各种基于互联网技术的网上应用,如电子政务、电子商务等也得到了迅猛发展。网络正逐步成为人们工作、生活中不可分割的一部分。由于互联网的开放性和通用性,网上的所有信息对所有人都是公开的,所以网络上的信息安全问题也日益突出。目前政府部门、金融部门、企事业单位和个人都日益重视这一重要问题。如何保护信息安全和网络安全,最大限度的减少或避免因信息泄密、破坏等安全问题所造成的经济损失及对企业形象的影响,是摆在我们面前亟需妥善解决的一项具有重大战略意义的课题。 网络的飞速发展推动社会的发展,大批用户借助网络极大地提高了工作效率,创

个人信息的保护和安全措施

个人信息的保护和安全措施 一、广电公众平台将尽一切合理努力保护获得的用户个人信息,并由专门的数据安全部门对个人信息进行保护。为防止用户个人信息在意外的、未经授权的情况下被非法访问、复制、修改、传送、遗失、破坏、处理或使用,广电公众平台已经并将继续采取以下措施保护用户的个人信息: 通过采取加密技术对用户个人信息进行加密保存,并通过隔离技术进行隔离。在个人信息使用时,例如个人信息展示、个人信息关联计算,广电公众平台会采用包括内容替换、加密脱敏等多种数据脱敏技术增强个人信息在使用中安全性。设立严格的数据使用和访问制度,采用严格的数据访问权限控制和多重身份认证技术保护个人信息,避免数据被违规使用。 二、保护个人信息采取的其他安全措施 1、通过建立数据分类分级制度、数据安全管理规范、数据安全开发规范来管理规范个人信息的存储和使用。 2、建立数据安全专项部门,负责安全应急响应组织来推进和保障个人信息安全。 3、个人信息安全事件的通知 1)如发生个人信息引发的安全事件,广电公众平台将第一事件向相应主管机关报备,并即时进行问题排查,开展应急措施。 2)通过与全量用户发送通知提醒更改密码。还可能通过电话、短信等各种方式触达用户知晓,在公共运营平台运营宣传,制止数据

泄露。 尽管已经采取了上述合理有效措施,并已经遵守了相关法律规定要求的标准,但广电公众平台仍然无法保证用户的个人信息通过不安全途径进行交流时的安全性。因此,用户个人应采取积极措施保证个人信息的安全,如:定期修改账号密码,不将自己的账号密码等个人信息透露给他人。 网络环境中始终存在各种信息泄漏的风险,当出现意外事件、不可抗力等情形导致用户的信息出现泄漏时,广电公众平台将极力控制局面,及时告知用户事件起因、广电公众平台采取的安全措施、用户可以主动采取的安全措施等相关情况。

大数据安全保障措施

(一)数据产生/采集环节的安全技术措施 从数据安全角度考虑,在数据产生/采集环节需要实现的技术能力主要是元数据安全管理、数据类型和安全等级打标,相应功能需要内嵌入后台运维管理系统,或与其无缝对接,从而实现安全责任制、数据分级分类管理等管理制度在实际业务流程中的落地实施 1、元数据安全管理 以结构化数据为例,元数据安全管理需要实现的功能,包括数据表级的所属部门、开发人、安全责任人的设置和查询,表字段的资产等级、安全等级查询,表与上下游表的血缘关系查询,表访问操作权限申请入口。完整的元数据安全管理功能应可以显示一个数据表基本情况,包括每个字段的类型、具体描述、数据类型、安全等级等,同时显示这个数据表的开发人、负责人、安全接口人、所属部门等信息,并且可以通过这个界面申请对该表访问操作权限。 2、数据类型、安全等级打标 建议使用自动化的数据类型、安全等级打标工具帮助组织内部实现数据分级分类管理,特别是在组织内部拥有大量数据的情况下,能够保证管理效率。打标工具根据数据分级分类管理制度中定义的数据类型、安全等级进行标识化,通过预设判定规则实现数据表字段级别的自动化识别和打标。下图是一个打标工具的功能示例,显示了一个数据表每个字段的数据类型和安全等级,在这个示例中,“C”表示该字段的数据类型,“C”后面的数字表示该字段的安全等级。

数据类型、安全等级标识示例 (二)数据传输存储环节的安全技术措施 数据传输和存储环节主要通过密码技术保障数据机密性、完整性。在数据传输环节,可以通过HTTPS、VPN 等技术建立不同安全域间的加密传输链路,也可以直接对数据进行加密,以密文形式传输,保障数据传输过程安全。在数据存储环节,可以采取数据加密、硬盘加密等多种技术方式保障数据存储安全。 (三)数据使用环节的安全技术措施 数据使用环节安全防护的目标是保障数据在授权范围内被访问、处理,防止数据遭窃取、泄漏、损毁。为实现这一目标,除了防火墙、入侵检测、防病毒、防DDoS、漏洞检测等网络安全防护技术措施外,数据使用环节还需实现的安全技术能力包括: 1、账号权限管理 建立统一账号权限管理系统,对各类业务系统、数据库等账号实现统一管理,是保障数据在授权范围内被使用的有效方式,也是落实账号权限管理及审批制度必需的技术支撑手段。账号权限管理系统具体实现功能与组织自身需求有关,除基本的创建或删除账号、权限管理和审批功能外,建议实现的功能还包括:一是权限控制的颗粒度尽可能小,最好做到对数据表列级的访问和操作权限控

数据安全解决方案(DOC)

绿盾信息安全管理软件 解决方案 广东南方数码科技有限公司 2013年3月 ?版权所有·南方数码科技有限公司

一、背景简介 (4) 二、现状 (4) 三、绿盾简介 (5) 3.1系统架构 (5) 3.2系统概述 (5) 3.3绿盾主要功能 (6) 四、绿盾功能介绍 (6) 1、文件自动加密 (6) 1.1 文件自动加密 (6) 1.2文件外发途径管理 (7) 1.3文件审批流程 (8) 1.4文件自动备份 (8) 1.5离线管理 (8) 1.6终端操作员管理 (9) 2外网安全管理 (10) 2.1网页浏览监控 (10) 2.2上网规则 (10) 2.3 流量统计 (10) 2.4 邮件内容监控 (10) 3、内网安全管理 (11) 3.1屏幕监控 (11) 3.2实时日志 (11) 3.3聊天内容记录 (11) 3.4程序窗口变化记录 (11) 3.5文件操作日志 (11) 3.6应用程序限制 (11) 3.7远程操作 (12) 3.8资源管理器 (12) 4、设备限制 (12) 5、USB存储设备认证 (12)

五、绿盾优势 (12) 1、产品优势 (12) 2、功能优势 (13) 2.1高强度的加密体系 (13) 2.2完全透明的文件自动、实时加密 (13) 2.3文件外发管理功能 (13) 2.4灵活的自定义加密策略 (14) 2.5强大的文件备份功能 (14) 2.6全面的内网管理功能 (14) 2.7良好的平台兼容性 (14) 3、技术优势 (14) 3.1驱动层加密技术 (14) 3.2自主研发性能优越的数据库 (15) 3.3可自定义的受控程序 (15) 4、实施优势 (16) 六、服务体系 (16) 1、技术支持服务内容 (16) 2、响应时间 (16) 3、维护 (16)

全同态加密

全同态加密 丁津泰 一、引言 人们普遍认为全同态密码是密码学中的圣杯。Craig Gentry 在近期提出的解决方案虽然在实际应用中效率不高,但在该领域仍是一个重大突破。自那以后,人们又在提高全同态密码的效率问题上取得了很大的进步。 在一个加密体系中,Bob通过加密明文得到密文,Alice解密密文得到明文。 在全同态密码体系中,第三方可以在不知道明文内容的情况下,针对密文做一系列计算,解密的结果和对明文进行相同计算的所得相同。云计算是全同态密码的一个主要应用方向。Alice可以将她的数据存储在云端——例如,一个通过英特网连接的遥远的服务器。由于云端的存储和计算能力都要远远优于Alice的终端设备,因此她可以使用云端服务器来处理她的数据。不过,Alice还是无法信任云端,因为有些数据是很敏感的(例如,病人的医疗记录),所以她更希望云端在不知道数据本身的前提下处理数据、计算结果。因此,Alice将数据加密,传送给云端,云端在不知道原始数据的前提下对加密后的数据进行一系列数学运算。 使用全同态密码,云端可以在不知道“关键字”的前提下,使用搜索引擎搜索用户需要的内容。更精确的讲,全同态密码有如下特点:密文ci 解密得到明文mi ,其中ci , mi 是环上的元素,在这个环上,只有加法操作和乘法操作: Decrypt c i + c j=m i+ m j Decrypt c i×c j=m i× m j 这就表示解密是双重同态的(Doubly homomorphic)也就是说,解密在加法和乘法上同态。全同态意味着不论函数 f 是一个由多少(即便很多个)加法和乘法组成的环,都有如下的公式成立: Decrypt f c1,…,c n= f m1,…,m n 如果云端可以高效的计算出f c1,…,c n的结果,并且这种计算是在不知道明文m1,…,m n的前提下进行的,那么这个加密体系是安全且高效的。 全同态加密既适用于公钥加密体系,也可用于对称加密体系。 1978年,在RSA密码系统发明后不久,Rivest, Adleman, 以及Dertouzos 三人提出了全同态加密体系——所谓的“隐私同态”。在他们的论文中这样写到,

网络与信息安全保障措施

网络与信息安全保障措施 信息安全保密制度 1、我公司建立了健全的信息安全保密管理制度,实现信息 安全保密责任制,切实负起确保网络与信息安全保密的责 任。严格按照“谁主管、谁负责”、“谁主办、谁负责”的原则,落实责任制,明确责任人和职责,细化工作措施和 流程,建立完善管理制度和实施办法,确保使用网络和提供 信息服务的安全。 2、网站信息内容更新全部由网站工作人员完成, 工作人员素质高、专业水平好, 有强烈的责任心和责任感。网站所有信 息发布之前都经分管领导审核批准。 工作人员采集信息将严格遵守国家的有关法律、法规和相关 规定。严禁通过我公司网站及短信平台散布《互联网信息管 理办法》等相关法律法规明令禁止的信息(即“九不准”), 一经发现,立即删除。 3、遵守对网站服务信息监视,保存、清除和备份的制度。 开展对网络有害信息的清理整治工作,对违法犯罪案件,报 告并协助公安机关查处。 4、所有信息都及时做备份。按照国家有关规定,网站将保 存60 天内系统运行日志和用户使用日志记录,短信服务系 统将保存 5 个月以内的系统及用户收发短信记录。制定并遵守安全教

育和培训制度。加大宣传教育力度,增强用户网络安全意识,自觉遵守互联网管理有关法律、法规,不泄密、不制作和传 播有害信息,不链接有害信息或网页。 安全技术保障措施 防病毒、防黑客攻击技术措施是防止不法分子利用互联网络 进行破坏活动,保护互联网络和电子公告服务的信息安全的 需要。我公司特此制定以下防病毒、防黑客攻击的安全技术 措施: 1、所有接入互联网的计算机应使用经公安机关检测合格的 防病毒产品并定期下载病毒特征码对杀毒软 件升级,确保计算机不会受到已发现的病毒攻击。 2、确保物理网络安全,防范因为物理介质、信号辐射等造 成的安全风险。 3、采用网络安全控制技术,联网单位已采用防火墙、IDS 等设备对网络安全进行防护。 4、使用漏洞扫描软件扫描系统漏洞,关闭不必要的服务端 口。 5、制订口令管理制度,防止系统口令泄露和被暴力破解。 6、制订系统补丁的管理制度,确定系统补丁的更新、安装、 发布措施,及时堵住系统漏洞。

全同态加密技术

全同态加密技术助力云计算 作者:汤姆?西蒙尼发稿时间:2010-06-21 14:20:26 点击:2442 利用加密算法,云端服务器不用解密就可以处理敏感数据。 利用一项全新的技术,未来的网络服务器无须读取敏感数据即可处理这些数据。去年,一项数学论证提出的几种可行性方案问世,这使得研究人员开始努力将方案变得更实际。 2009年,IBM公司的克雷格·金特里(Craig Gentry)发表了一篇文章,公布了一项关于密码学的全新发现——一项真正的突破。他发现,对加密的数据进行处理得到一个输出,将这一输出进行解密,其结果与用同一方法处理未加密的原始数据得到的输出结果是一样的。这听起来就像是不知道问题也能给出问题的答案一样。 这一名为“全同态加密”的技术被冠以“密码学的圣杯”的称号。对数据进行加密给计算带来了难度,但如能够在不解密的前提下进行计算则进一步提高了数据的安全性。例如,远程计算服务提供商收到客户发来的加密的医疗记录数据库,借助全同态加密技术,提供商可以像以往一样处理数据却不必破解密码。处理结果以加密的方式发回给客户,客户在自己的系统上进行解密读取。这一技术同样可以应用到网络邮件或在线办公软件套装中。 英国布里斯托尔大学密码学教授奈杰尔·斯玛特(Nigel Smart)与比利时鲁汶大学研究员弗雷德里克·韦尔科特朗(Frederik Vercauteren)正在协作,对最原始的技术方案加以修改并进行实施和测试。斯玛特说:“我们吸收了金特里的方案并对之作了简化。”在最初的方案中,金特里使用了矩阵和矢量进行加密,斯玛特与韦尔科特朗进行了改进,改用整数和多项式作为加密办法。“这使得数据更简单易懂,处理起来更容易。”斯玛特说,“从而可以真正计算这些数据。” 最初的方案依赖矩阵和矢量,每一步都要分别计算每个元,这已经足够复杂;计算完矩阵后还要处理数据本身,使得计算更加复杂。这使得矩阵和矢量加密方法实用性不强。斯玛特与韦尔科特朗改写了加密方法,免去了复杂的计算,使得金特里的理念得以在电脑上进行实施和测试。“我们确实实现了他的理念:对数据进行加密但计算过程更加简单。”斯玛特说,“我们可以处理30个顺序操作。” 但是这一方案也有其局限性。随着计算步骤的增加,连续加密的计算结果质量在下降,用斯玛特的话说就是数据“变脏了”。不能进行任意计算,意味着现有的算法版本还未能实现全同态。 针对这个问题,金特里开发了一种算法,能够定期对数据进行清理,实现系统的自我纠正,从而实现全同态。然而,金特里的算法要求系统实现一定量的计算,斯玛特目前还无法实施。金特里表示,他与IBM的同事Shai Helevi已经对斯玛特的方案进行了修改,正在进行测试,今夏晚些时候将宣布改进结果。

两个实用同态加密方案

两个“实用的”全同态加密方案 一、方案说明 1、 该方案为对称方案。 2、 该方案仅仅需要线性代数知识。 3、 不需要噪音消除工作。 4、 明文为有限域上的实数。 5、 密文为向量,但同态操作不膨胀。 6、 安全性基于近似最大公约数问题(AGCD)。 二、方案简单描述 1、 参数选择(Setup):设2l n ≤-为已知,例如5n =,3l =。 2、 密钥生成(KeyGen):有如下几个工作。 - 随机选择向量()1 01,n n q k k k +=∈ ,,k Z ,()011l l q θθθ-=∈ ,, ,Z Θ。 - 对明文q m ∈Z ,令()1 01Enc(,),,,n n q c m c c c +==∈ k Z ,满足 m ?=k c ,称为低级加密。其具体方式为: 其中,121212,,,,,h m h r r r r s r s r s r v r v r v - 和rr 都是q Z 上的随机数。1 ()m ij j j S i s rs ==?∑。ij s 是什么不知道。 - 令011[Enc(,),Enc(,),Enc(,),Enc(,1)]l θθθ-Φ= k k k k 。 - 输出密钥:PK {,}=k Θ,评估公钥PEK {p Enc(,k k ),0,}ij i j i j n ==≤≤k 。 3、 加密(Encryption):对q m ∈Z ,选择01,,l q r r r ∈ Z ,使??? 01l m r r r =+++ ,计算: ()()()()()()()()() 001111Enc ,Enc ,Enc ,Enc ,1m l l l c r r r r θθθ--=?⊕?⊕⊕?⊕? k k k k 4、 解密(Decryption):对密文m c ,计算得到m m ?=k c 。 证明:首先根据()Enc ,i θk 的定义,有0 ,0,1,2,1n i i ij i k i l θθ===?=-∑ ,0 11n i i i k ==?=∑。 故:111 00110001,1,,1,l l l m i i l i i l i in l n i i i r r r r r r θθθ---===?? ?=??+??+??+? ??? ∑∑∑ k c k

信息安全及数据质量保障方案

信息安全及数据质量保障方案 信息安全的实质就是要保护信息系统或信息网络中的信息资源免受各种类型的威胁、干扰和破坏,即保证信息的安全性和信息数据的质量。为贯彻遵守《中华人民共和国安全生产法》等相关法律法规规定以及国家、地方关于安全生产的方针、政策,落实安全生产责任制,加强对生产(特别是工程施工和维护服务)的安全管理,保障从业人员安全和健康,减少经济损失,制定信息安全及数据质量保障方案有其必要。 概述 在安防信息安全方面,IP产品和系统在安防市场得到了广泛的应用。在安防系统保障信息安全或数据安全,主要有如下两方面: 1、数据本身的安全,主要是指采用密码算法对数据进行主动保护,如数据保密、数据完整性、登陆安防管理系统双向身份认证等; 2、数据保护的安全,主要是采用安全的数据信息存储手段对数据的保护,如通过磁盘阵列、数据备份、异地容灾等手段保证数据保存的安全,数据安全是一种主动的保护措施。 数据安全的基本特点:信息不能被其他不应获得者获得。在数据的存储过程中需要有保密性相关的设定,防止数据外泄。视频监控系统中的系统日志文件和视频录像文件显而易见需要防止外泄;数据完整性指在传输、存储信息数据的过程中,确保信息或数据不被未授权的篡改或在篡改后能够被迅速发现。在前端视频流通过IP传输网络传输到视频存储系统,以及视频存储网络的各个环节都必须考虑相应的防护措施;

威胁数据安全的主要因素:威胁数据安全的主要因素包括:存储设备物理损坏、操作失误、非法侵入、病毒感染、信息窃取、自然灾害、电源故障、电磁干扰。随着视频监控技术与计算机信息技术的不断融合,视频监控系统的数据信息安全也成为产品研发、系统设计及实施过程必须认真考虑的环节之一。 要正确实施视频监控系统的数据信息安全,按照安防行业应用特点结合信息安全技术是较好的选择。 我公司将在如下几方面做好信息安全及数据质量的保障 为确保企业信息安全,要坚持积极防御,综合防范的方针,全面提高信息安全防护能力。实施对企业的信息安全管理,建设信息安全管理体系,建立完善的安全管理制度,将信息安全管理自始至终贯彻落实于信息管理系统的方方面面,企业信息安全才能得以实现。企业信息安全的解决方案,具体表现在以下三个方面: 一、制定信息数据安全制度: 在IT安全技术防范的规则中,制定正确的安全制度保证日常数据信息的使用合规。 1、对应用系统使用、产生的介质或数据按其重要性进行分类,对存放有重要数据的介质(硬盘、移动存储设备),必须备份2份数量,并分别存放在不同的安全地方(防火、防高温、防震、防磁、防静电及防盗),建立严格的保密保管制度; 2、保留在机房内的重要数据,应为系统有效运行所必需的最少数量即一套,除此之外禁止保留在机房内; 3、根据数据的保密规定和用途,确定使用人员的存取权限、存取方式和审

同态加密

同态加密 1.背景 加密的目的是保护数据的机密性。加密分为对称加密和非对称加密。对称加密是指加密和解密用的同一个密钥;而非对称加密在加密时用的是公钥,解密时用的是私钥。非对称加密体制是基于数学难问题(比如大整数分解、离散对数),加密解密操作比对称加密要慢很多。 如果对加密数据(即密文)的操作是在不可信设备(untrusted device)上进行的,我们希望这些设备并不知道数据的真实值(即明文),只发回给我们对密文操作后的结果,并且我们可以解密这些操作后的结果。举一个简单的例子,n个学生和1个老师通信,每个学生都有1个数据要发给老师,老师需要知道这n个数据之和,而学生们不想让老师知道每个数据的真实值。为了解决这个问题,Rivest等在1978年提出了同态加密的思想。 2.定义 同态加密[1]的定义如下:

其中,M表示明文的集合,C表示密文的集合,←表示可以从右式计算得出左式。 特别地,有 分别为加法同态、乘法同态。 所谓同态加密,是指在密文空间对密文的操作等同于在明文空间对明文操作后加密(据我自己的理解)。同态加密在数据聚合(data aggregation)、隐私保护等方面有着重要的应用。 现在可以用同态加密解决前面提出的问题:每个学生可以用加法同态加密函数将各自数据加密,再将这密文发给老师;老师只需要把n个密文相加,再将相加后的结果(即密文之和)解密,即可得到n个数据之和(即明文之和)。这样就保护了n个数据不被老师所知道,而且老师也得到了n个数据之和。

3.几个概念 在[1]中,介绍了Semantics Security、polynomial security、nonmalleability几个概念。 (1)Semantics Security指对具有一定计算能力的敌手而言,密文没提供任何有关明文的有用信息。比如,对加密操作c=E(m),c表示密文、E表示加密操作、m表示明文,敌手有可能猜到c而并不知道m。(2)polynomial security定义:敌手选择两个明文,我们随机地选取其中的一个明文,并提供该明文相应的密文给敌手;敌手在多项式时间内,并不能得出我们所选取的明文是两个中的哪一个。 (3)Nonmalleability定义:敌手知道密文c’对应的明文m’与明文m的关系是困难的。 Goldwasser和Micali证明了Semantics Security与 polynomial security等价,Bellare和Sahai 证明了 polynomial security与nonmalleability等价。 同态加密不具有nonmalleability,加操作的deterministic同态加密方案是不安全的。满足同态加密的已有方案:RSA,ElGmal, Paillier cryptosystem。

数据安全设计处理方案.doc

数据安全处理设计方案 一、说明: 为保证税务数据的存储安全,保障数据的访问安全,对数据库的用户采取监控机制,分布式处理各种应用类型的数据,特采取三层式数据库连接机制。 二、作用机理: 1、对于整个系统而言,均采用统一的用户名称、用户密码进行登陆。这个阶 段的登陆主要用于获取数据库的对应访问用户、密码及其对应访问权限。 2、登陆成功后,读取用户本地机的注册信息、密码校验信息,然后到通用用 户对应的数据表中去读取对应的记录。该记录主要为新的用户名和密码。 3、获取对应权限、用户和密码后,断开数据库连接,然后按新的数据库用户 和密码进行连接。 4、连接成功后,开始个人用户的登陆。 三、核心内容: 该安全方案的核心内容为:三层式数据访问机制、数据加密处理机制。 三层式数据访问机制的内容: 第一层:通用用户方式登陆。对于通用用户而言,所有用户均只有一个表的访问权限,并且对该表只能读取和修改。 第二层:本地注册(或安装)信息的读取和专用数据库用户密码的对应获取。 根据安装类型,获取对应的(数据库)用户和密码,此用户一般有多个表的操作权限。 第三层:断开通用连接,以新的用户和密码进行登陆。登陆成功后,再用个人用户帐号和密码进行登陆处理。 数据加密处理机制主要对数据库的访问密码和个人密码进行加密处理。采用当前较为流行的基数数据加密机制,主要方式为:采用数据基数数组方式进行加密与解密。变动加解密机制时,只需修改对应的基数位置或基数值即可。实现方式简单方便,而解密则极为困难。 四、数据库设计: 系统主要涉及到的数据库为用户登陆数据库表。这张表与数据库的使用用户表数据内容类似,主要保存类用户信息。

同态加密综述

信息系统安全题目: 同态加密综述 姓名:### 学号:2013202110076 武汉大学 二○一三年十月

同态加密综述 概念 2009年,IBM公司的克雷格·金特里(Craig Gentry)发表了一篇文章,公布了一项关于密码学的全新发现:一项真正的突破。他发现,对加密的数据进行处理得到一个输出,将这一输出进行解密,其结果与用同一方法处理未加密的原始数据得到的输出结果是一样的。这听起来就像是不知道问题也能给出问题的答案一样。 记加密操作为E,解密为E';明文为m,加密得e,即 e = E(m),m = E'(e)。已知针对明文有操作f,针对 E 可构造F,使得F(e) = E(f(m)),这样 E 就是一个针对 f 的同态加密算法。 来源 2009年9月,Craig Gentry 的论文发表于STOC。一名IBM研究员解决了一项棘手的数学问题,该问题自从几十年前公钥加密发明以来一直困扰着科学家们。该项创新为“隐私同态(privacy homomorphism)”或“全同态加密(fully homomorphic encryption)”领域的重要技术突破,使得加密信息,即刻意被打乱的数据仍能够被深入和无限的分析,而不会影响其保密性。 IBM研究员Craig Gentry设计了这一解决方案。他使用被称为“理想格ideal lattice”的数学对象,使人们可以充分操作加密状态的数据,而这在过去根本无法设想。经过这一突破,存储他人机密电子数据的电脑销售商就能受用户委托来充分分析数据,不用频繁与用户交互,也不必看到任何隐私数据。利用Gentry的技术,对加密信息的分析能得到同样细致的分析结果,就好像原始数据完全可见一样。 加密机理 整数上全同态加密方案有两篇非常经典的论文,一篇是《Fully Homomorphic Encryption over the Integers》以下简称DGHV方案,还有一篇是Gentry写的《Computing Arbitrary Functions of Encrypted Data》简称CAFED论文。

操作系统安全保障措施

操作系统安全保障措施集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

操作系统安全保障措施系统安全防护能力 一.文件访问控制 1.所有办公终端的命名应符合公司计算机命名规范。 2.所有的办公终端应加入公司的域管理模式,正确是使用公司的各项资源。 3.所有的办公终端应正确安装防病毒系统,确保及时更新病毒码。 4.所有的办公终端应及时安装系统补丁,应与公司发布的补丁保持一致。 5.公司所有办公终端的密码不能为空,根据《云南地方IT系统使用手册》中的密码规定严格执行。 6.所有办公终端不得私自装配并使用可读写光驱、磁带机、磁光盘机和USB硬盘等外置存储设备。

7.所有办公终端不得私自转借给他人使用,防止信息的泄密和数据破坏。 8.所有移动办公终端在外出办公时,不要使其处于无人看管状态。 9.办公终端不得私自安装盗版软件和与工作无关的软件,不得私自安装扫描软件或黑客攻击工具。 10.未经公司IT服务部门批准,员工不得在公司使用modem进行拨号上网。 11.员工不允许向外面发送涉及公司秘密、机密和绝密的信息。 二。用户权限级别 1.各系统应根据“最小授权”的原则设定账户访问权限,控制用户仅能够访问到工作需要的信息。 2.从账号管理的角度,应进行基于角色的访问控制权限的设定,即对系统的访问控制权限是以角色或组为单位进行授予。

3.细分角色根据系统的特性和功能长期存在,基本不随人员和管理岗位的变更而变更。 4.一个用户根据实际情况可以分配多个角色。 5.各系统应该设置审计用户的权限,审计用户应当具备比较完整的读权限,审计用户应当能够读取系统关键文件,检查系统设置、系统日志等信息。 三.防病毒软件/硬件 1.所有业务系统服务器、生产终端和办公电脑都应当按照公司要求安装了相应的病毒防护软件或采用了相应的病毒防护手段。 2.应当确保防止病毒软件每天进行病毒库更新,设置防病毒软件定期(每周或没月)对全部硬盘进行病毒扫描。 3.如果自己无法对病毒防护措施的有效性进行判断,应及时通知公司IT 服务部门进行解决。

改进的格上基于身份的全同态加密方法与制作流程

本技术公开了一种改进的格上基于身份的全同态加密方法。该方法按照以下步骤实施:首先利用一种新型陷门函数与对偶LWE算法相结合,构造一个改进的标准模型下格上基于身份的加密方案,然后利用特征向量的思想将该方案转化为一个改进的标准模型下格上基于身份的全同态加密方案。本技术所公开的方法消除了基于身份全同态加密运算密钥的问题,且所生成的格的维数更低,具有更高的实际应用可行性。 权利要求书 1.一种改进的格上基于身份的全同态加密方法,其特征在于采用两层结构设计:首先将新型陷门函数与对偶LWE算法相结合,构造一个改进的标准模型下格上基于身份的加密方案iIBE,然后利用特征向量方法将iIBE转化为标准模型下格上基于身份的全同态加密方案IBFHE;IBFHE方案包括私钥生成中心,云服务方,消息发送方和消息接收方,它们之间采用双向通信; 所述改进的格上基于身份的全同态加密方法具体实施步骤是: 首先构造标准模型下的格上基于身份的加密方案iIBE: iIBE方案需要以下基本参数:均匀随机矩阵和其陷门其中n是安全参数,m=O(n log q),w =nk,模数q=q(n);构造一个公开矩阵其中In是n×n单位矩阵,FRD编码函数H1: 系统建立算法iIBE-Setup(1n):选取均匀随机矩阵选取n维均匀随机向量运行陷门生成算法TrapGen(1n,1m,q,H),其中为随机的可逆矩阵;输出矩阵和格Λ⊥(A)的陷门矩阵输出MPK=(A,u),MSK=R; 用户密钥提取算法iIBE-Extract(MPK,MSK,id):利用FRD编码函数H1:将用户身份id映射为一个可逆矩阵运行原像采样算法SampleL(A,Hid·G,R,u,σ),输出用户密钥e,满足Aide=u,其中

基于Numpy实现同态加密神经网络

基于Numpy实现同态加密神经网络 在分布式AI环境下,同态加密神经网络有助于保护商业公司知识产权和消费者隐私。让我们和DeepMind数据科学家、Udacity深度学习导师Andrew Trask一起,来看看如何基于Numpy实现同态加密神经网络吧。 TLDR: 在这篇文章中,我们将训练一个在训练阶段完全加密的神经网络(在未加密的数据上训练)。得到的神经网络将具备两个有益的性质。首先,保护神经网络的智能免遭窃取,使有价值的AI可以在不安全的环境中加以训练而不用冒智能遭窃的风险。其次,网络只能进行加密预测(大概对外部世界毫无影响,因为在没有密钥的情况下,外部世界无法理解预测)。这在用户和超智能间构成了一个有价值的权力失衡。如果AI是同态加密的,那么在AI看来,整个外部世界也是同态加密的。一个控制密钥的人类可以选择解锁AI本身(将AI释放到世界中)或仅仅解密AI做出的单个预测(看起来更安全)。 超智能 很多人都担忧超智能有一天会选择伤害人类。史蒂芬·霍金曾呼吁建立新的世界政府来管理我们赋予人工智能的能力,以防人工智能最终摧毁人类。这些是相当大胆的主张,我认为它们反映了科学界和整个世界对这一问题的普遍担忧。本文将是一篇介绍解决这一问题的潜在技术方案的教程,我将通过一些玩具样例代码来演示这一方法。 目标很简单。我们想要创建未来会变得非常智能的AI技术(智能到可以解决治愈癌症、终结世界上的饥饿等问题),但是这样的智能受人类的控制(基于密钥),因而其智能的应用是受限的。不受限的学习是很棒的,但知识的不受限的应用可能具有潜在危险性。 为了介绍这一想法,让我先简要介绍两个非常激动人心的研究领域:深度学习和同态加密。 一、什么是深度学习? 深度学习是用于自动化智能的工具套件,主要基于神经网络。这一计算机科学的领域,是最近AI技术爆发的主要动力,因为深度学习在许多智能任务上超越了先前的表现记录。例如,他是DeepMind的AlphaGo系统的主要组成部分。 神经网络基于输入做出预测。它通过试错法学习做出有效的预测。刚开始,它做出一个预

相关文档
最新文档