驱动桥设计说明书

驱动桥设计说明书
驱动桥设计说明书

设计题目:桑塔纳志俊驱动桥设计

姓名付晶

学院交通学院

专业机械设计制造及其自动化

班级11级5班

学号20112814601

指导教师孙宏图王昕彦

4. 驱动桥设计 (1)

4.1 确定驱动桥的结构形式 (1)

4.2 主减速器和差速器齿轮主要参数的选择与计算 (5)

4.2.1 主减速器齿轮主要参数的选择 (5)

4.2.2 直齿锥齿轮差速器齿轮基本参数 (5)

4.3 齿轮的结构设计、图样及技术要求 (7)

4.3.1 齿轮的结构设计 (7)

4.3.2 齿轮的图样及技术要求 (13)

4. 驱动桥设计

4.1 确定驱动桥的结构形式

4.1.1驱动桥的功能

驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

4.1.2驱动桥的分类:

驱动桥分非断开式(整体式)---用于非独立悬架

断开式---用于独立悬架

非断开式(整体式)驱动桥

定义:非断开式驱动桥也称为整体式

驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。它由驱动桥壳1,主减速器,差速器和半轴组成。

优点:结构简单,成本低,制造工艺性好,维修和调整易行,工作可靠。

用途:广泛载货汽车、客车、多数越野车、部分轿车用于上。

断开式驱动桥

定义:驱动桥采用独立悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平面相对于车体有相对运动的则称为断开式驱动桥。为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。

优点:可以增加最小离地间隙,减少部分簧下质量,减少车轮和车桥上的动载两半轴相互独立,抗侧滑能力强可使独立悬架导向机构设计合理,提高操纵稳定性

缺点:结构复杂,成本高

用途:多用于轻、小型越野车和轿车

4.1.3驱动桥的组成

驱动桥由主减速器、差速器、半轴及桥壳组成。

主减速器

1)主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速皮。主减速器类型较多,有单级、双级、双速、轮边减速器等。

单级主减速器由一对减速齿轮实现减速的装置,称为单级减速器。其结构简单,重量轻,东风BQl090型等轻、中型载重汽车上应用广泛。

2)双级主减速器对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。

为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿因拄齿轮。

主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。

2.差速器

差速器用以连接左右半轴,可使两侧车轮以不同角速度旋转同时传递扭矩。保证车轮的正常滚动。有的多桥驱动的汽车,在分动器内或在贯通式传动的轴间也装有差速器,称为桥间差速器。其作用是在汽车转弯或在不平坦的路面上行驶时,使前后驱动车轮之间产生差速作用。

3.半轴

半轴是将差速器传来的扭矩再传给车轮,驱动车轮旋转,推动汽车行驶的实心轴。由于轮毂的安装结构不同,而半轴的受力情况也不同。所以,半轴分为全浮式、半浮式、3/4浮式三种型式。

全浮式半轴

一般大、中型汽车均采用全浮式结构。半轴的内端用花键与差速器的半轴齿轮相连接,半轴的外端锻出凸缘,用螺栓和轮毂连接。轮毂通过两个相距较远的圆锥滚子轴承文承在半轴套管上。半轴套管与后桥壳压配成一体,组成驱动桥壳。用这样的支承形式,半轴与桥壳没有直接联系,使半轴只承受驱动扭矩而不承受任何弯矩,这种半轴称为“全浮式”半轴。所谓“浮”意即半轴不受弯曲载荷。

全浮式半轴,外端为凸缘盘与轴制成一体。但也有一些载重汽车把凸缘制成单独零件,并借花键套合在半轴外端。因而,半轴的两端都是花键,可以换头使用。

2)半浮式半轴

半浮式半轴的内端与全浮式的一样,不承受弯扭。其外端通过一个轴承直接支承在半轴外壳的内侧。这种支承方式将使半轴外端承受弯矩。因此,这种半袖除传递扭矩外,还局部地承受弯矩,故称为半浮式半轴。这种结构型式主要用

于小客车。

3)3/4浮式半轴

3/4浮式半轴是受弯短的程度介于半浮式和全浮式之间。此式半轴目前应用不多,只在个别小卧车上应用,如华沙M20型汽车。

4.桥壳

(1)整体式桥壳:整体式桥壳因强度和刚度性能好,便于主减速器的安装、调整和维修,而得到广泛应用。整体式桥壳因制造方法不同,可分为整体铸造式、中段铸造压入钢管式和钢板冲压焊接式等。

(2)分段式驱动桥壳:分段式桥壳一般分为两段,由螺栓1将两段连成一体。分段式桥壳比较易于铸造和加工。

4.1.4驱动桥的设计

应当满足如下基本要求:

1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。

2.外形尺寸要小,保证有必要的离地间隙。

3.齿轮及其他传动件工作平稳,噪声小。

4.在各种转速和载荷下具有高的传动效率。

5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。

6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。

7.结构简单,加工工艺性好,制造容易,拆装、调整方便。

4.2 主减速器和差速器齿轮主要参数的选择与计算

车辆采用单电机驱动,将电机前置,共有两轴,其中前轴为驱动轴。这种动力源前置前轮驱动的布置有以下几个优点:

前桥轴荷大,有明显的不足转向特性;前轮是驱动轮,所以越障能力高;结构紧凑,前后轴之间不需要传动轴,可降低地板高度,有利于提高乘坐舒适性;后面有做够的空间作为行李箱;将动力源横置能缩短汽车的总成,加上取消了传动轴等因素的影响,汽车消耗的材料明显减少,使整备质量减轻。

?主减速器的确定

4.2.1电动轿车的动力性能要求

采用交流感应电机驱动的电动轿车的整车的动力性能指标为:

?最高车速vam ≥100 km/ h;

?最大爬坡度im ≥30 %;

?起步换挡由静止全力加速到100 km/ h 的加速时间tf ≤10 s;

电动轿车传动系统匹配设计

整车参数如表1所示:

4.2.2电机参数和减速器传动比的选择:

电动汽车机电传动系统常工作在起步、停车、加减速、爬坡等瞬变过程中,电机经常处于过载非额定工作状态. 因此,城市电动汽车电机既要满足持续功率的要求,又要满足最大过载转矩和瞬时功率的要求.

电机功率选择:

电动汽车驱动电机一般具有两种功率,即瞬时功率和持续功率.

持续功率Pe 满足车辆以最高车速匀速

行驶的条件为:

当最高车速vam ≥100 km/ h 时,根据式(1) ,得到Pe ≥20 5 kW.

电机的瞬时功率Pem满足车辆爬坡性能要求为:

当车辆以车速va ≥40 km/ h,坡度im ≥30 %爬坡时由上式得瞬时功率Pem≥55.7kw.

根据以上电机持续功率和瞬时功率的计算结果选择专门为电动汽车设计的三相交流笼型感应电机,其主要技术参数:持续功率为30 kW(3 600 r/ min) ;电机极对数为2;瞬时最大功率为100 kW(3600 r/ min) ;基准转速为3600r/ min;最高转速为10 000 r/ min;最大转矩为265 N·m;额定转矩为80 N·m. 这种30 kW 交流感应电机能够平滑调速,低速输出恒转矩,高速输出恒功率,以满足车辆行驶性能要求.

传动比的选择:

?由Vam和nm 确定主减速器传动比的上限,

②由电动机最高转速对应的最大输出转矩Tnm和最高车速对应的行驶阻力Fvm确定速比i0 的下限,

(4)

式中:

(5)

③由Tam和αm 对应的行驶阻力Fam确定速比i0 的下限,

(6)

式中:(7)

由以上结果可见, i0 在717~1112 范围内可满足动力性能的要求,采用直接挡固定速比减速器是可行的。

4.2.3 匹配结果

当传动比取9.0

①最高车速

(8)

经计算,最高车速≤111.2km/h。

?最大爬坡度

由(6)、(7)可得:

(9) 当vam = 40 km/ h 时,最大坡度i0≤50%满足要求。

③加速时间.

车辆从静止起步全力加速到最大车速的加速时间为

(10)式中:δ为汽车旋转质量换算系数,取δ=113; ne 为电机额定转速, ne =3 600 r/ min;电机的瞬时最大输出功率Pem =100 kW; Ft 为车轮驱动力; Tv 为电机输出最大恒功率时的输出转矩; vrm为电机额定转速下的车速。

经计算,加速时间tf=3.69+4.17=7.86s

以上都满足性能要求。

结论:由以上相关计算,最后确定主传动比为9.0

4.3 齿轮的结构设计、图样及技术要求

主减速器的结构形式

4.3.1、主减速器结构方案分析:

(一)减速传动方案

1.螺旋锥齿轮传动

2.双曲面齿轮传动

3.圆柱齿轮传动

4.蜗轮蜗杆传动

(二)单级主减速器

优点:结构最简单、质量小、制造容易、拆装简便缺点:只能用于转矩传递小扭矩的发动机

只能用于主传动比较小的车上,i0 < 7

如下图:

(三)双级主减速器

特点:

尺寸大,质量大,成本高

与单级相比,同样传动比,可以增大离地间隙

用于中重型货车、越野车、大型客车

如下图:

传动形式:

一级螺旋齿轮或双曲面齿轮、二级圆柱齿轮

一级行星齿轮、二级螺旋或双曲面齿轮

一级圆柱、二级螺旋或双曲面齿轮

布置形式:

纵向水平、垂向轮廓尺寸小、质心低,纵向尺寸大用于长轴距汽车

斜向

利于传动轴布置

提高桥壳刚度

垂向

纵向尺寸小,万向传动轴夹角小

适用于短轴距贯通式驱动桥

垂向尺寸大,降低了桥壳刚度

由于设计主减速器的传动比为9.0,经过选择,故采用双级主减速器,最后形式确定为圆柱齿轮---锥齿轮双级主减速器。第一级为圆柱齿轮传动,传动比为4,第二级为锥齿轮传动,传动比为2.25。

4.3.2 圆柱齿轮传动的主要参数

材料选用20CrMnTi,采用渗碳淬火,硬度为56—62HRC,取60HRC,查表=1500MPa,取=1.2,=1.0,

简化设计公式:a=476*(u+1),

其中u=4, k取1.6,取0.4,

得,=*=1250MPa,

得,a476*(4+1)=88.3mm

故取a=90mm

再根据经验公式=(0.007)a=0.631.8mm,

取标准模数=1.5mm,

初选?=,

齿数:= =24, ==96

精确计算螺旋角:?=arcos=0

分度圆直径:=mm, =mm

齿顶圆直径:=+2ha*40mm, =148mm

齿宽:b=*a=36mm

取b1=42mm, b2=36mm

当量齿数: =/=24, =96

模数:m=1.5mm

4.3.3锥齿轮传动的主要参数

1)传动比为2.25;

2)两齿轮齿数之和尽量避免公因数;

3)主、从动齿轮齿数之和应小于40;

4)对于乘用车,Z1尽量取少些;

5)1.7/3.3

综合以上因素,取Z1=12,Z2=27

计算转矩的计算

从动锥齿轮计算转矩

(2-4) 式中:

—按发动机最大转矩和最低档传动比确定从动锥齿轮的计算转矩N·m;

—发动机最大转矩;由上节电机参数中可知= 265N·m n—计算驱动桥数,n=2;

i f—变速器传动比(=1)

i0—主减速器传动比

i1—变速器最低挡传动比(=1)

=9.0

η—变速器传动效率,η=0.95 ;

—由于猛接离合器而产生的动载系数,=2.0;

将以上取值代入式(2-4),有:

Tce=4388.4N.M

计算

(2-5)

-按驱动打滑确定从动轮的计算转矩

-满载状态下一个驱动桥的静载荷=1600*9.8*0.5=7840N

-汽车最大加速度时的后轴负荷转移系数,乘用车取=1.2

-轮胎与路面间的附着系数,对于一般的公路用车,可取0.85

-车轮的滚动半径=0.297m

-主传动器从动齿轮到车桥之间的传动比=1

—变速器传动效率,=0.95 ;

将以上取值代入(2-5)得到:

所以主动锥齿轮计算转矩为

=[,]min=2500N·m

根据经验公式==176.4mm,

==176.4/27=6.53,

同时满足,==13.6*0.4=5.44, 故取=6.5,

==175.5mm

齿数:z1=12, z2=27

齿面宽:b1=29.923mm, b2=27.203mm

锥距:R=96.026mm

分度圆直径:d1=78mm, d2=175.5mm

齿顶高:ha1=ha*m=6.5mm, ha2=ha1=6.5mm

齿根高:hf1=(ha*+c*)m=7.8mm, hf2=hf1=7.8mm

齿顶圆直径:da1=d1+2ha1cos&1=79.4mm, da2=188.4mm

齿根圆直径:df1=d1-2hf1cos&1=76.3mm, df2=160.0mm

4.4差速器直齿锥齿轮的图样及技术要求

4.4.1差速器的功能原理

2-1 差速原理图

1、2—半轴齿轮3—外壳4—行星齿轮5—行星齿轮轴6—从动齿轮

机械摩擦片式限滑差速器的差速原理与普通对称式锥齿轮差速器的差速原理一样,本质上是行星齿轮机构。差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,

设其角速度为;半轴齿轮1和2为从动件,其角速度为和。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星齿轮的中心点为C。A、B、C三点到差速器旋转轴线的距离均为。

当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半

径上的A、B、C三点的圆周速度都相等,如图(2-1),其值为。于

是==,即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。

当行星齿轮4除公转外,还绕本身的轴5以角速度自转时,如图2-1,啮

合点A的圆周速度为,啮合点B的圆周速度为。于是

即:

(2-1)

若角速度以每分钟转数表示,则

(2-2)

式(2-2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与

行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。

有式(2-2)还可以得知:①当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;②当差速器壳的转速为零(例如中央制动器制动传动轴时),若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相同的转速反向转动。

4.4.2 差速器的选择

根据要求,选择普通锥齿轮差速器。

普通差速器主要是由十字轴,半轴齿轮,行星齿轮,差速器左,右半轴等组成,动力由输入法兰输入,半轴齿轮输出,通过半轴齿轮传递到论边,带动车论转动。

其工作原理如图所示:

当n =0时(即行星轮不自转),差速器作整体回转,车辆作直线运行,转

速为n ,当车辆右转弯时,n 不等于0时,即行星轮以转速n 自转。它将加快半轴齿轮1的转速。同时又使半轴齿轮2转速减慢。此时半轴齿轮1增

高的转速为n ,半轴齿轮2减低的转速为n ,即

n =n + n

n= n - n

由于Z1=Z2,故n +n =2n 。从上述可知,可实现左,右半轴齿轮转

速不相等,其转速差为n -n =2 n 。从而实现左,右两车轮差速,减少

轮胎的磨损。

假设左,右车轮由于转弯或者其他原因引起左,右车轮切线方向产生一个附加阻力△P ,它们方向相反。以P 表示行星轮轴上作用力,则左,右半轴齿轮给行星齿轮的反作用力为P/2,两半轴齿轮r 相同,则传递给左,右半轴的扭矩均为Pr/2。故直线行驶时左,右驱动轮扭矩相等(r 为半轴齿轮的半径)。

当机械转弯时,行星轮随着差速器内的十字轴公转外,同时还绕其自

身轴自转。使他转动的力矩为2△Pr1(r 为行星齿轮半径),慢慢的附加阻力△P 和P/2。而快侧△P 与P/2方向相反,故慢侧所受的扭矩大,快侧所受的扭矩小。即:

M =(P/2-△P )r

M =(P/2+△P )r

若以2△Pr=M 表示差速器内摩擦力矩,以Pr=M 表示差速器传递的扭矩,则:

M + M = M

M - M = M

由上面的分析可知,如果不计摩擦力矩,即M =0,则M = M ,故可以认为动锥齿轮的扭矩平均分给左,右半轴,如果考虑到内摩擦,则快侧

车轮力矩下,慢车轮力矩大,在普通差速器中,内摩擦较小,M /(M + M )=0.55~0.6,这就是平英团差速器“差速不差扭”的传扭特性。

普通差速器的“差速不差扭”的传扭特性,会给机械行驶带来不利的影响,如一车轮陷入泥泞时,由于附着立不够,就会发生打滑。这时另外一

驱动桥差速器设计说明书

摘要 汽车驱动桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能。汽车差速器位于驱动桥内部,为满足汽车转弯时内外侧车轮或两驱动桥直接以不同角度旋转,并传递扭矩的需求,在传递扭矩时应能够根据行驶的环境自动分配扭矩,提高了汽车通过性。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。 随着汽车技术的成熟,轻型车的不断普及,人们根据差速器使用目的的不同,设计出多种类型差速器。与国外相比,我国的车用差速器开发设计不论在技术上,还是在成本控制上都存在不小的差距,尤其是目前兴起的三维软件设计方面,缺乏独立开发与创新能力,这样就造成设计手段落后,新产品上市周期慢,材料品质和工艺加工水平也存在很多弱点。 本文认真地分析了国内外驱动桥中差速器设计的现状及发展趋势,在论述汽车驱动桥的基本原理和运行机理的基础上,提炼出了在差速器设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等关键技术;阐述了汽车差速器的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了轻型车差速器总成及半轴的结构型式;轻型车差速器的结构设计强度计算运用了理论分析成果;最后运用CATIA软件对汽车差速器进行建模设计,提升了设计水平,缩短了开发周期,提高了产品质量,设计完全合理,达到了预期的目标。 关键词:驱动桥;差速器;半轴;结构设计;

Automobile driving axle is one of the main components of cars, its basic function is increased by the transmission shaft or directly by coming from torque, again will torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function. Auto differential drive to meet internal, located in car wheel or when turning inside and outside two axles directly with different point of view, and transfer the rotating torque transmission torque in demand, according to the environment should be driving torque, improve the automatic assignment car through sex. Its quality, performance will have a direct impact on the security of the vehicle, economy, comfort and reliability. As car technology maturity, the increasing popularity of small, people of different purposes according to differential, the design gives a variety of types differential. Compared with foreign countries, China's automotive differential development design whether in technology, or in the cost control there are large gap, especially at present the rise of 3d software design, lack of independent development and innovation ability, thus causing design means backward, new products listed cycle slow, materials quality and craft processing level also has many weaknesses. This paper conscientiously analyzes the differential drive axle design at home and abroad in the present situation and development trend of automobile driven axle, this basic principle and operation mechanism, carry on the basis of the differential practiced a meet the design should be mastered in smooth and automobile driving through sexual, noise reduction technology application and parts of standardization, parts of generalization, serialization of products, and other key technology; Expounds the basic principle and automotive differential system analysis; According to economic, applicable, comfortable, safe and reliable design principles and analysis comparison, determine the small differential assembly and half shaft structure type; Small differential structure design strength calculation using theoretical analysis results; Finally using CATIA software modeling design of automotive differential, promoted design level, shorten the development cycle, improve the product quality, design completely reasonable, can achieve the desired goals. Key words:Differential mechanism;Differential gear;Planetary gear;Semiaxis;

五十铃轻型货车驱动桥的设计

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键字:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed,bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given ,firstly determine the overall vehicle parametres in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear,the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle,we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ univertiality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

江淮帅铃汽车驱动桥设计说明书

第1章绪论 1.1 本课题的目的和意义 本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这

不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350N·m 以上,百公里油耗是一般都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过 程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。 1.2 驱动桥的分类 1.2.1 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最

纸桥的设计与制造方案

纸桥的设计与制作 (天津市科技活动方案样张之一) 一、题目纸桥的设计与制作 二、适用对象D段(七、八年级) 三、适用主体学校 四、活动目标 1.态度目标: ⑴采取分组的活动形式,培养学生的合作精神和有序的工作能力;通过成品展示、竞赛等活动,培养学生的既合作又竞争意识; ⑵在制作过程中,培养学生不畏艰难,不循旧规,敢于创新的精神。 2.科学方法、能力目标: ⑴学习科技制作、理解桥的主要结构的作用,通过纸桥的设计与制作使学生在探索中理解,材料的强度与它的几何形状有关。 ⑵在纸的多种承重实验研究、纸桥设计等过程中鼓励学生独立思考、发展学生的创造性思维能力。 ⑶培养学生与他人合作共同研究的能力。 3.知识目标: ⑴通过对桥的造型设计,培养学生的审美意识和环境美意识,提高创作模型的技能、技巧及可观赏性。 ⑵学习简单的技术设计。 五、活动方式: 活动以班为单位,分为若干活动小组(四名学生为一组),开展分组竞赛,作品在课上评定。 六、所需活动时间4——5学时 七、背景材料 1.知识背景: ⑴压力与压强 知道压力的概念,压力是指垂直压在物体表面上的力。 理解压强的的概念,压强是物体单位面积受到的压力。 固体的压强跟受力面积有关,截面积对压力有直接影响,截面积越大,压力越小

⑵拱形桥:拱起了腰的纸条可以驮起一盒火柴,这说明,向上拱起的物体最能承受外来的压力,它的强度要比没有拱起时大。火柴盒压在纸拱桥上,给予纸拱的是一种静态外力,它和作用在装甲车上的子弹冲击力不同。纸拱桥这种抵抗静态外力的本领,就叫静强度。 我们的祖先很早就发现了拱形物体的这种性质,并且把它运用到建筑上去。各地发掘出的东汉古墓,多数有“拱”式结构,可见一千几百年前我国的筑拱技术已经相当普及了。 现存的最古老的石拱桥是我国的赵州桥。赵州桥是隋朝石匠李春设计监造的,自公元616年建成,到现在已经有1300多年的历史了。这座石桥横跨在河北赵县城南洨河上,有着一个弧形的桥洞,犹如跨在河上的长虹。在漫长的岁月里,赵州桥经受了地震的摇撼,洪水的冲击,车马的压轧,仍然屹立在洨河上。(图一)赵州桥不但有个弧形的大拱,而且在桥肩还有4个小拱。当山洪暴发时,小拱可以把洪水泄走。赵州桥坚固的秘密正在拱上。 我国科技人员和工人继承并发展了拱桥建筑的传统,运用现代强度理论以及工程学,创造了双曲拱桥。双曲拱桥的外形同一般的空腹式拱桥好像没有什么区别。但是你如果走到桥下一看,就会发现它的肚皮是凹的,好像由几条自行车的挡泥板拼起来的,真是拱中有拱。这种桥的优点是造价低,载重负荷大,施工方便,节省材料。宏伟的南京长江大桥的公路引桥便是这种双曲拱桥。 双曲拱比单曲拱能承受更大的载荷,主要是因为双曲拱不仅在一个方向上呈拱形,而且在与其垂直的另一方向也呈拱形。自行车的挡泥板就是这种双曲拱形的。当它受力时,力使沿着两个拱的方向更均匀地传递;某一局部受力过大时,双曲拱能迅速自行调整平衡,使整个双拱曲不会因局部受力过大而损坏。 拱形结构除了能用于建造桥梁外,另一个重大的用处就是建造水坝。特别是双曲拱形坝,由于拱形顶所受的水压力能通过拱体均匀地传递给河岸,依靠坚固的两岸来维持的稳定,它与完全靠自身重量来维持平衡的重力坝相比,不仅可以减少体积,节约材料,而且还有一定的弹性,对地基的局部变形具有一定的适应能力,有较好的抗震性能。 我们的脚上就长着“双曲拱桥”,它就是人的足弓正常的脚都可以区分出三个足弓:两个纵向的纵弓和一个横断面上的横弓。 ⑶桥的历史与发展现状: 我国古代桥梁多用木、石、藤、竹及至皮革之类的天然材料,锻铁出现以后有了简单的铁链桥。它们的强度都很低。木、藤、竹,皮革类易腐烂,能够保留至今的古代桥梁多为石桥。中国古代著名石桥有:1河北赵州安济桥、2北京泸沟桥、3泉州安平桥。 1900-1949年,这一时期中国的桥梁建设几乎处于停滞状态,特别是由中国自行建设的桥梁工程更是寥寥无几。其中代表桥梁是1943年由我国老一辈桥梁工程专家茅以升老先生主持设计并建设的杭州钱塘江大桥。(图二) 钱塘江大桥位于杭州闸口六和塔附近,是由我国工程师自行设计并监造的第一座双层式公、铁两用桥。全桥长1453米,正桥长1072米,两岸引桥长381米。于1931年11月11日举行开工典礼,1935年通

商用车驱动桥设计说明书

商用车驱动桥设计 摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率的需要时,必须要搭配一个高效、可靠的驱动桥。本文参照传统驱动桥的设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支撑轴承进行了寿命校核。本文还是采用传统的锥齿轮作为商用车的主减速器。 关键词:商用车,驱动桥,主减速器,螺旋锥齿轮

THE DESIGNING OF BUSINESS AUTOMOBILE REAR DRIVE AXLES ABSTRACT Drive axle is one of automobile four important assemblies. Its performance directly influence on the entire automobile, especially for the heavy truck. When using the big power engine with the big driving torque to satisfy the need of high speed, heavy-loaded, high efficiency, high benefit. Today heavy truck must exploit the high driven efficiency single reduction final drive axle. Becoming the heavy traditional designing method of the drive axle: first, make up the main parts structure and the key designing parameters; then reference to the similar driving axle structure, decide the entire designing project; finally check the strength of the axle drive bevel pinion, bevel gear wheel, the differential planetary pinion, differential side gear, full-floating axle shaft and the banjo axle housing, and the life expection of carrier bearing. The designing takes spiral bevel gear as the gear type of business automobile’ final drive. KEY WORDS: business automobile, drive axle, final drive , spiral bevel gear

车辆工程毕业设计14CA1040轻型货车驱动桥设计

本科学生毕业设计 CA1040轻型货车驱动桥设计 学院名称:汽车与交通工程学院 专业班级:车辆工程 学生姓名: 指导教师: 职称:实验师

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。轻型货车在商用货运汽车生产中占有很大的比重,为满足目前当前载货汽车的高速度、高效率、高效益的需要,必须要搭配一个高效、可靠的驱动桥。因此设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本课题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。 驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键词:驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT Drive axle is at the end of the power train, and its basic function is increasing the torque and reducing the speed, bearing the force between the road and the frame or body. Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance. According to the design parameters given ,firstly determine the overall vehicle parameters in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear, the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle, we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ universality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words: Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

纸桥制作说明书

XX 学院 2012/2013学年第1学期 《力学综合训练》课程大作业报告 桥梁模型的设计与制作 院(系) XX 学院 专业班级 XX 班 学生姓名 Andy 组 别 第14组 指导老师 XXX 成 绩:(教师填写)______________ 2013年 01月 10日

课程大作业任务书 兹发给班学生课程大作业任务书,内容如下: 1. 设计题目:桥梁模型的设计与制作 2.应完成的项目: (1)模型设计摘要 (2)设计思路和特色的说明 (3)设计图纸(结构全图,重点部分可提供详图) (4)模型的照片 (5)本人在参赛组里的分工及本次活动的心得体会 (6)报告书写作 3. 参考资料以及说明: (1)力学综合训练要求 (2)《工程力学》,何庭惠、黄小清主编,华南理工大学出版社 (3)网上搜索“关于桥梁结构模型设计” 4. 本任务书于2012 年12 月24 日发出,应于2013 年1 月10 日前完成,然后进行考评。 指导教师签发2012 年12 月24 日

考核评语: 考核总评成绩: 指导教师签字: 年月

目录 摘要 0 一、设计思路和特色的说明 (1) 1.1设计思路 (1) 1.2特点 (2) 1.3纸桥制作原理 (2) 二、设计图纸 (3) 2.1设计图 (3) 2.2模型照片 (4) 摘要 为深入学习实践科学发展观,进一步解放思想,改革创新,推动创新型班级文化的建设进程,以综合实践活动为载体,宣传科技文化知识,丰富班级文化生活,提高我班学生文化素质,培养创新意识,激发创新思维。学校力学研究室拟定于

第十八和第十九周开展本学期素质教育活动,内容形式为“纸桥”模型制作比赛。桥梁模型要求为单跨,跨度不小于400mm,横截面宽度100至150mm之间,材料仅限于使用打印纸、透明胶纸和文具胶水,总质量不大于400克。 关键词:文化素质、设计竞赛、纸桥 一、设计思路和特色的说明 1.1设计思路: 利用平面桁架原理。桁架是平面结构中受力最合理的形式之一。 桁架由上弦、下弦、腹杆组成;腹杆的形式又分为斜腹杆、直腹杆;由于杆件本

汽车车桥设计

YC1090货车驱动桥的设计 汽车设计课程设计说明 书 题目:汽车驱动桥的设计 姓名:张华生 学号:2009094643020 专业名称:车辆工程 指导教师:伍强 日期:2011.11.28-2011.12.04

盐城工学院本科生毕业设计说明书2007 一主减速器设计 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。 驱动桥中主减速器、差速器设计应满足如下基本要求: a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。 b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。 c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。 d)在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。 e)结构简单,加工工艺性好,制造容易,拆装、调整方便。 3.1 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。 3.1.1 螺旋锥齿轮传动 图3-1螺旋锥齿轮传动 按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。 在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 为了减少驱动桥的外轮廓尺寸,主减速器中基本不用直齿圆锥齿轮而采用螺旋锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

驱动桥设计说明书

设计题目:桑塔纳志俊驱动桥设计 姓名付晶 学院交通学院 专业机械设计制造及其自动化 班级11级5班 学号20112814601 指导教师孙宏图王昕彦

4. 驱动桥设计 (1) 4.1 确定驱动桥的结构形式 (1) 4.2 主减速器和差速器齿轮主要参数的选择与计算 (5) 4.2.1 主减速器齿轮主要参数的选择 (5) 4.2.2 直齿锥齿轮差速器齿轮基本参数 (5) 4.3 齿轮的结构设计、图样及技术要求 (7) 4.3.1 齿轮的结构设计 (7) 4.3.2 齿轮的图样及技术要求 (13)

4. 驱动桥设计 4.1 确定驱动桥的结构形式 4.1.1驱动桥的功能 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 4.1.2驱动桥的分类: 驱动桥分非断开式(整体式)---用于非独立悬架 断开式---用于独立悬架 非断开式(整体式)驱动桥 定义:非断开式驱动桥也称为整体式 驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。它由驱动桥壳1,主减速器,差速器和半轴组成。 优点:结构简单,成本低,制造工艺性好,维修和调整易行,工作可靠。 用途:广泛载货汽车、客车、多数越野车、部分轿车用于上。

断开式驱动桥 定义:驱动桥采用独立悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平面相对于车体有相对运动的则称为断开式驱动桥。为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。 优点:可以增加最小离地间隙,减少部分簧下质量,减少车轮和车桥上的动载两半轴相互独立,抗侧滑能力强可使独立悬架导向机构设计合理,提高操纵稳定性 缺点:结构复杂,成本高 用途:多用于轻、小型越野车和轿车 4.1.3驱动桥的组成 驱动桥由主减速器、差速器、半轴及桥壳组成。 主减速器 1)主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速皮。主减速器类型较多,有单级、双级、双速、轮边减速器等。 单级主减速器由一对减速齿轮实现减速的装置,称为单级减速器。其结构简单,重量轻,东风BQl090型等轻、中型载重汽车上应用广泛。 2)双级主减速器对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。

轻型货车驱动桥设计

目录 1 前言 (1) 本课题的来源、基本前提条件和技术要求 (1) 本课题要解决的主要问题和设计总体思路 (1) 预期的成果 (2) 2 国内外发展状况及现状的介绍 (3) 3 总体方案论证 (4) 4 具体设计说明 (7) 主减速器的设计 (7) 主减速器的结构型式 (7) 主减速器主动锥齿轮的支承型式及安装方法 (10) 主减速器从动锥齿轮的支承型式及安装方法 (11) 主减速器的基本参数的选择及计算 (11) 差速器的设计 (14) 差速器的结构型式 (14) 差速器的基本参数的选择及计算 (16) 半轴的设计 (17) 半轴的结构型式 (17) 半轴的设计与计算 (17) 驱动桥壳结构选择 (20) 5 结论 (22) 参考文献 (23)

1 前言 本课题是进行轻型货车汽车后驱动桥的设计。设计出小型轻型货车汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。 本课题的来源、基本前提条件和技术要求 a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。 b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。 c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。 本课题要解决的主要问题和设计总体思路 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁,它要求有足够的强度和刚度,同时还要尽量的减轻

4吨轻型载货汽车驱动桥的设计

任务书 学生姓名系部专业、班级 指导教师姓名职称从事 专业 是否外聘□是√否 题目名称4吨轻型载货汽车驱动桥设计 一、设计(论文)目的、意义 汽车驱动桥是汽车的主要部件之一,其基本功用是增大由传动轴或变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能;同时驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力、横向力及其力矩。驱动桥质量、性能的好坏直接影响整车的安全性、经济性、舒适性、可靠性。要求所设计的驱动桥结构合理,绘制的图纸格式规范,图面质量好,撰写的设计说明书内容完整,格式规范。设计能使学生综合运用所学专业知识,熟练CAD绘图技能。 二、设计(论文)内容、技术要求(研究方法) 设计内容: 1.选题的背景、目的及意义; 2.4吨轻型载货汽车后驱动桥的总体结构设计; 3.主减速器总成的设计; 4.差速器的设计; 5.半轴的设计; 6.桥壳的设计。 技术要求: 驱动形式:4×2; 总质量:4195kg; 装载质量:2500kg; 发动机最大功率:74kw; 发动机最大转矩:184N*m; 最高车速:115km//h; 变速器传动比:6; 最小转弯半径:12.5; 要求:单级主减速器; 生产纲领:成批生产。

三、设计(论文)完成后应提交的成果 CAD绘制驱动桥装配图、零件图折合0号图纸3张以上,设计说明书15000字以上。 四、设计(论文)进度安排 (1)知识准备、调研、收集资料、完成开题报告第1~2周(2.28~3.11) (2)整理资料、提出问题、撰写设计说明书草稿、绘制装配草图第3~5周(3.14~4.1) (3)理论联系实际分析问题、解决问题,进行驱动桥的总体结构设计,主减速器总成的设计,差速器的设计,半轴的设计,桥壳的设计,CAD绘制部分图纸等内容,中期检查第6~8周(4.4~4.22)(4)改进完成设计,改进完成设计说明书,指导教师审核,学生修改第9~12周(4.25~5.20) (5)评阅教师评阅、学生修改第13周(5.23~5.27) (6)毕业设计预答辩第14周(5.30~6.3) (7)毕业设计修改第15~16周(6.6~6.17) (8)毕业设计答辩第17周(6.20~6.24) 五、主要参考资料 1.徐灏主编.《新编机械设计师手册》.机械工业出版社 2.陈立德主编.《机械设计基础》.高等教育出版社 3.王宝玺主编.《汽车制造工艺学》(3).机械工业出版社,2007.5 4.陈秀宁,施高义编.《机械设计课程设计》.浙江大学出版社 5.刘惟信主编.《汽车设计》.清华大学出版社, 6.李硕根,杨兴骏编.《互换性与技术测量》.中国计量出版社 7.汽车构造、汽车理论、汽车设计书籍 8.轻型载货汽车驱动桥资料 9.网络资源,超星数字图书馆 10.近几年相关专业CNKI网络期刊等 六、备注 指导教师签字: 年月日教研室主任签字: 年月日

相关文档
最新文档