红外吸收光谱法试题与答案.

红外吸收光谱法试题与答案.
红外吸收光谱法试题与答案.

红外吸收光谱法

一、选择题

1. CH 3—CH 3的哪种振动形式是非红外活性的(1)

(1)υC-C (2)υC-H (3)δasCH (4)δsCH

2.

化合物中只有一个羰基,却在1773cm -1和1736 cm -1处出现两个吸收峰,这是

因为(3)

(1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻

3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体

4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1

5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1)

(2)—C ≡C — (3)

(4)—O —H

二、解答及解析题

1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍,每个球从静止位置伸长1cm ,哪一个体系有较大的势能。 答:M

h hv E k

2π=

= ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器,同紫外可见分光光度法有哪些相似和不同之处? 答:

相同:红外光谱和紫外光谱都是分子吸收光谱。

不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV;

而红外光谱是分子的振动能级跃迁引起的,同时伴随转动能级跃迁,一般振动能级间隔约为0.05~1eV 。

3. 红外吸收光谱图横坐标、纵坐标各以什么标度? 答:波长和波数为横坐标,吸收度或百分透过率为纵坐标

4. C-C (1430cm-1),C-N (1330cm-1),C-O (1280cm-1)当势能V=0和V=1时,比较

C-C ,C-N ,C-O 键振动能级之间的相差顺序为(○

2) ①C-O >C-N >C-C ; ②C-C >C-N >C-O ; ③C-N >C-C >C-O ; ④C-N >C-O >C-C ; ⑤C-O >C-C >C-N

5. 对于CHCl3、C-H 伸缩振动发生在3030cm-1,而C-Cl 伸缩振动发生在758 cm-1 (1)计算CDCl3中C-D 伸缩振动的位置; (2)计算CHBr3中C-Br 伸缩振动的位置。

答:(1)'

1307v k =-

, C-H :=??

? ??=2

13073030k 5.37 C-D 的伸缩振动频率为

'1307v k =-

=1307*√5.37=3028cm-1

6. C-C 、C=C 、C ≡C 的伸缩和振动吸收波长分别为

7.0μm ,6.0μm 和4.5μm 。按照键力常数增加的顺序排列三种类型的碳-碳键。

答:

v 1307=- M v K *2

13072

?????

??=

-

, C-C 、

C=C 、C ≡C 对应的为1v -、2v -、3v -,

由题知1v -

>2v -

>3v -

。所以1K >2K >3K

7. 写出CS2分子的平动、转动和振动自由度数目。并画出CS2不同振动形式的示意图,指出哪种振动为红外活性振动?

答:分子自由度=3N=3*3=9,转动自由能=2; 振动自由能=3N-5=9-5=4 ,平动自由能=3N-(3N-5)=5。

8. 下列各分子的碳-碳对称伸缩振动在红外光谱中是活性的还是非活性的。

(1)CH 3-CH 3;活性 (2)CH 3-CCl 3;活性 (3)CO 2;非活性(4)HC ≡CH 非活性

(5) 活性 (6) 非活性

9. Cl 2、H 2S 分子的振动能否引起红外吸收而产生吸收谱带?为什么?预测可能有的谱带数。 答:Cl2不能,振动自由度数=1,为红外非活性;H2S 能,振动自由度数=3,可能的谱

带数3。

10. CO 2分子应有4种基本振动形式,但实际上只在667cm-1和2349cm-1处出现两个基频吸

收峰,为什么?

答:因为S V A 道对称伸缩振动无红外活性

面外弯曲、面内弯曲的频率均在6671

c m ,两振动发生简并。 11. 羰基化合物Ⅰ、Ⅱ、Ⅲ、Ⅳ中,C=O 伸缩振动出现最低者为(Ⅳ)

Ⅰ、 ; Ⅱ、

Ⅲ、 Ⅳ、

12. 化合物中只有一个羰基,却有两个C=O 的吸收带,分别在1773cm-1和

1736 cm-1,这是因为:(D/E)

A. 诱导效应

B.共轭效应

C.空间效应

D.偶合效应

E.费米共振

F.氢键效应

12. 下列5组数据中,哪一种数据所涉及的红外光谱区域能包括

吸收带:(5)

(1)3000~2700 cm-1 1675~1500 cm-1 1475~1300 cm-1; (2)3000~2700 cm-1 2400~2100 cm-1 1000~650 cm-1; (3)3300~3010 cm-1 1675~1500 cm-1 1475~1300 cm-1; (4)3300~3010 cm-1 1900~1650 cm-1 1475~1300 cm-1; (5)3000~2700 cm-1 1900~1650 cm-1 1475~1300 cm-1;

13.三氟乙烯碳-碳双键伸缩振动峰在1580cm-1,而四氟乙烯碳-碳双键伸缩振动在此处无吸收峰,为什么?

答;极性共价键随着取代基电负性的不同,电子密度云发生变化,引起键的振动谱带位移,即诱导效应,造成振动吸收频率不同。

14. 试用红外光谱区别下列异构体:

(1) 和

答:在860-800有很强的峰,一般为单峰,

(2)和CH3CH2CH2CHO

答:CH3CH2CH2CHO在1380附近出现单峰。

(3)和

答:存在共轭,C=O双键吸收峰波数较低

15. 某化合物经取代后,生成的取代产物有可能为下列两种物质:

N≡C-NH2+-CH-CH2OH (Ⅰ)HN≡CH-NH-CO-CH2-(Ⅱ)取代产物在2300 cm-1和3600 cm-1有两个尖锐的谱峰。但在3330 cm-1和1600 cm-1没有吸收,=4,其产物为何物?

答:N≡C-NH2+-CH-CH2OH

16. 一种能作为色散型红外光谱仪的色散元件材料为:(2)

(1)玻璃;(2)石英;(3)红宝石;(4)卤化物晶体

17. 写出用下列分子式表示的羧酸的两种异构体,并预测它们的红外光谱。(1)C4H8O2

(2)C5H8O4

答:⑴CH?CH?CH?COOH,CH?CH(CH?)COOH;

⑵HOOC(CH?)?COOH,HOOCCH?CH(CH?)COOH。

18. 乙醇的红外光谱中,羟基的吸收峰在3333 cm-1,而乙醇的1%CCl4溶液的红外光谱中羟

基却在3650 cm-1和3333 cm-1两处有吸收峰,试解释之。

答:C—Cl的面外振动,因费米效应的影响,Vc=o产生双峰

19. 能与气相色谱仪联用的红外光谱仪有:(1)

(1)傅立叶变换红外分光光度计;

(2)快速扫描红外分光光度计;

(3)单光束红外分光光度计;

(4)双光束红外分光光度计。

20. 某一液体化合物,分子量为113,其红外光谱见下图。NMR在δ1.40ppm(3H)有三重

峰,δ3.48ppm(2H)有单峰,δ4.25ppm(2H)有四重峰,试推断该化合物的结构。

答:C2H5OOC-CH2-CN

21. 下图为分子式C6H5O3N的红外光谱,写出预测的结构。

答:

22. 某化合物A,分子式为C8H16,它的化学性质如下:

(1)

(2)

(3)

(4)

化合物E的NMR谱中δ0.9ppm处有9个质子产生的单峰。其红外光谱见下图,试确定

A、B、C、D、E各化合物结构。

答:A: (CH3)3C-C(C2H5)=CH2 ;

B:;

C:(CH3)3C-CBr(C2H5)CH3 ;

D:(CH3)3C-C(CH3)=CHCH3;

E:(CH3)3CCOCH3。

23. 分子式为C9H10O的某个化合物,其红外光谱上显示有羰基、对位二取代苯环两个结构

单位。试问分子中所有的不饱和单位是否均由该两已知结构单位给出?剩余单位的分子式是什么?剩余结构单位可能有什么?

答:是;C2H6;两个甲基

24. 请由下列事实,估计A为何物?在化合物C的红外光谱中2720 cm-1、2820 cm-1、1715

cm-1、1380 cm-1有特征吸收带,化合物E红外光谱中3500 cm-1有一强吸收带,化合物A不能使溴水褪色。

答:A:B:

25.无色液体,分子量89.09,沸点131℃,含C、H和N。红外光谱特征吸收为(cm-1):

2950(中)、1550(强)、1460(中)、1438(中)、1380(强)、1230(中)、1130

(弱)、896(弱)、872(强),试推断未知物为何物?

答:CH3CH2CH2NO2

26. 某化合物,沸点为159~161℃,含氯而不含氮和硫,它不溶于水、稀酸、稀碱以及冷的

浓硫酸,但能溶于发烟硫酸,它与热的硝酸银醇溶液不发生沉淀。用热的高锰酸钾溶液处理时,可使化合物慢慢溶解,如此所得溶液用硫酸酸化,得到一个中和当量为157±1的沉淀物,其红外显示1600、1580、1500、742 cm-1有强峰,试推测其结构。

答:

27. 有一种液体化合物,其红外光谱见下图,已知它的分子式为C4H8O2,沸点77℃,试推

断其结构。

答:CH3COOC2H5

28. 一个具有中和当量为136±1的酸A,不含X、N、S。A不能使冷的高锰酸钾溶液褪色,

但此化合物的碱性溶液和高锰酸钾试剂加热1小时后,然后酸化,即有一个新化合物(B)沉淀而出。此化合物的中和当量为83±1,其红外光谱见下图,紫外吸收峰λmax甲醇=256nm,问A为何物?

答:A:B:

29. 不溶于水的中性化合物A(C11H14O2),A与乙酰氯不反应,但能与热氢碘酸作用。A

与次碘酸钠溶液作用生成黄色沉淀。A经催化加氢得化合物B(C11H16O2),而B在Al2O3存在下经加热反应得主要产物C(C11H14O)。小心氧化C得碱溶性化合物D (C9H10O3)。将上述的任一种化合物经强烈氧化可生成化合物E,中和当量为152±1,红外光谱如下图所示。试推断A的结构。

答:A:B:

C:

D:E:

30.一个化合物分子式为C4H6O2,已知含一个酯羰基和一个乙烯基。用溶液法制作该化合

物的红外光谱有如下特征谱带:3090cm-1(强),1765cm-1(强),1649cm-1(强),1225cm-1(强)。请指出这些吸收带的归属,并写出可能的结构式。

答:Ω=2

3090 不饱和CH—

1765 脂羰基

1649 碳碳双键

1225 乙烯醚

其可能结构式为 CH3COOCH=CH2

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外光谱解析法

如何分析一张已经拿到手的xx谱图呢? 你可以按如下步骤来: (1)首先依据谱图推出化合物碳架类型: 根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2其中: F: 化合价为4价的原子个数(主要是C原子), T: 化合价为3价的原子个数(主要是N原子), O: 化合价为1价的原子个数(主要是H原子), 例如: 比如苯: C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界: 高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm^-1 烯1680~1640 cm^-1

芳环1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! ……………………………………………………………………………………………………… 1.烷烃: C-H伸缩振动(3000-2850cm^-1) C-H弯曲振动(1465-1340cm^-1) 一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。 2.烯烃: 烯烃C-H伸缩(3100~3010cm^-1) C=C伸缩(1675~1640 cm^-1) 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃: 伸缩振动(2250~2100cm^-1) 炔烃C-H伸缩振动(3300cm^-1附近)。 4.芳烃:3100~3000cm^-1芳环上C-H伸缩振动 1600~1450cm^-1 C=C骨架振动

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

红外光谱分析法模拟试题及答案解析

红外光谱分析法模拟试题及答案解析 (1/29)单项选择题 第1题 一种能作为色散型红外光谱仪色散元件的材料为( )。 A.玻璃 B.石英 C.卤化物晶体 D.有机玻璃 下一题 (2/29)单项选择题 第2题 醇羟基的红外光谱特征吸收峰为( )。 A.1000cm-1 B.2000~2500cm-1 C.2000cm-1 D.3600~3650cm-1 上一题下一题 (3/29)单项选择题 第3题 红外吸收光谱的产生是由于( )。 A.分子外层电子、振动、转动能级的跃迁 B.原子外层电子、振动、转动能级的跃迁 C.分子振动、转动能级的跃迁 D.分子外层电子的能级跃迁 上一题下一题 (4/29)单项选择题 第4题 红外吸收峰的强度,根据( )大小可粗略分为五级。 A.吸光度A B.透射比t C.波长λ D.波数ν 上一题下一题 (5/29)单项选择题 第5题 用红外吸收光谱法测定有机物结构时,试样应该是( )。 A.单质 B.纯物质 C.混合物 D.任何试样 上一题下一题 (6/29)单项选择题 第6题 一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰,下列化合物最可能的是( )。

A.CH3—CHO B.CH3—CO—CH3 C.CH3—CHOH—CH3 D.CH3—O—CH2—CH3 上一题下一题 (7/29)单项选择题 第7题 对高聚物多用( )法制样后再进行红外吸收光谱测定。 A.薄膜 B.糊状 C.压片 D.混合 上一题下一题 (8/29)单项选择题 第8题 一般来说,( )具有拉曼活性。 A.分子的非对称性振动 B.分子的对称性振动 C.极性基团的振动 D.非极性基团的振动 上一题下一题 (9/29)单项选择题 第9题 在红外光谱的光源中,下列( )波长是氩离子激光器最常用的激发线的波长。 A.285.2nm B.422.7nm C.488.0nm D.534.5nm 上一题下一题 (10/29)单项选择题 第10题 若样品在空气中不稳定,在高温下容易升华,则红外样品的制备宜选用( )。 A.压片法 B.石蜡糊法 C.熔融成膜法 D.漫反射法 上一题下一题 (11/29)单项选择题 第11题 液体池的间隔片常由( )材料制成,起着固定液体样品的作用。 A.氯化钠 B.溴化钾 C.聚四氟乙烯 D.金属制品

红外光谱分析法习题含答案

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

红外光谱习地的题目答案详解

红外光谱习题 一. 选择题 1.红外光谱是(AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是(ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是(C )

红外光谱法答案详解

习题 1、下列两个化合物,C=O的伸缩振动吸收带出现在较高的波数区的是哪个为什么 答案: a(共轭效应)>b(空间位阻效应让共轭效应减小)。 2、下图为不同条件下,丁二烯(1,3)均聚物的红外光谱图, 试指出它们的键结构。 3、有一化合物C7H8O,它出现以下位置的吸收峰:3040;3380;2940;1460;690;740;不出现以下位置吸收峰:1736;2720;1380;1182.试推断其结构式 作业 1、试述分子产生红外吸收的条件。 2、何谓基团频率影响基团频率位移的因素有哪些 3、仅考虑C=O受到的电子效应,在酸、醛、酯、酰卤和酰胺类化合物中,出现C=O伸缩振动频率的大小顺序应是怎样 4、从以下红外特征数据鉴别特定的苯取代衍生物C8H10: ①化合物A:吸收带在约790和695cm-1处。 ②化合物B:吸收带在约795cm-1处。 ③化合物C:吸收带在约740和690cm-1处。 ④化合物D:吸收带在约750cm-1处。 5、分别在95%乙醇和正已烷中测定2-戊酮的红外光谱,试预测C=O的伸缩振动吸收峰在哪种溶剂中出现的较高为什么 8. 某化合物的化学式为C6H10O,红外光谱如下图所示,

试推断其结构式。 答案: μ=1+6-5=2说明可能是不饱和烃 3000以上无小尖峰,说明双键不在端碳上 1680-羰基1715连接双键导致共轭移到低波位 1618-碳碳双键 1461-CH- 1380、1360-分裂说明异丙基存在 1215、1175-双峰强度相仿验证双甲基在端碳 816-三取代呈链状 。 9. 某化合物的化学式为C8H14O3,红外光谱如下图所示,试推断其结构式。 答案: μ=1+8-7=2 3000以上无小尖峰,1370峰没分裂,说明没有cc双键

红外光谱峰值分析的方法修订稿

红外光谱峰值分析的方 法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

傅里叶红外光谱分析 第一节?一般原理 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱。 第二节紫外光谱 一、紫外光谱的基本原理 用波长范围200 nm~800 nm的光照射含有共轭体系的的不饱和化合物的稀溶液时,部分波长的光被吸收,被吸收光的波长和强度取决于不饱和化合物的结构。以波长l为横座标,吸收度A为纵座标作图,得紫外光谱,或称电子光谱。 是化合物紫外光谱的特征常数。 紫外光谱中化合物的最大吸收波长λ max 可见-紫外光谱适用于分析分子中具有π键不饱和结构的化合物。 二、紫外光谱在有机结构分析中的应用 随着共轭体系的延长,紫外吸收向长波方向移动,且强度增大(π→π*),因此可判断分子中共轭的程度。 利用紫外光谱可以测定化合物的纯度或含量。 第三节红外光谱 一、红外光谱的基本原理 用不断改变波长的红外光照射样品,当某一波长的频率刚好与分子中某一化学键的振动频率相同时,分子就会吸收红外光,产生吸收峰。用波长(λ)或波长的倒数—波数(cm-1)为横坐标,百分透光率(T%)或吸收度(A)为纵坐标

做图,得到红外吸收光谱图(IR)。分子振动所需能量对应波数范围在400 cm-1~4000 cm-1。 二、红外吸收峰的位置和强度 分子中的一个化学键可有几种不同的振动形式,而产生不同的红外吸收峰,键的振动分为两大类。 伸缩振动,用n表示,原子间沿键轴方向伸长或缩短。 弯曲振动用δ表示,形成化学键的两个原子之一与键轴垂直方向作上下或左右弯曲。 组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。 红外光谱的吸收峰分为两大区域: 4000 cm-1~1330 cm-1区域:特征谱带区,是红外光谱分析的主要依据。 1330 cm-1~650 cm-1区域:指纹区。每一化合物在指纹区都有它自己的特征光谱,对分子结构的鉴定能提供重要信息。 红外吸收峰的强弱用下列符号表示:v (很强);s(强);m(中强);w s (很弱);b(宽峰)。 (弱);v w 凡能使键增强的因素,引起峰位向高波数方向移动,反之,则向低波数方向移动。 三、各类化合物的红外光谱举例 (一)烃类化合物 注:烷烃,即饱和烃,是只有碳碳和碳氢键的链烃。烷烃的为CnH2n+2。

红外光谱分析

红外光谱分析 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。 红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。 由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。 分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库,人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。 下面将对红外光谱分析的基本原理做一个简单的介绍。 红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动-转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。 红外辐射是在 1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。一直到了1903年,才有人研究了纯物质的红外吸收光谱。二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及生产实践中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 红外光谱法的特点: 1?气态、液态和固态样品均可进行红外光谱测定;

红外光谱题库

F题目:红外 1009 在红外光谱分析中,用KBr制作为试样池,这是因为:( ) (1) KBr 晶体在4000~400cm-1范围内不会散射红外光 (2) KBr 在4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在4000~400 cm-1范围内无红外光吸收 (4) 在4000~400 cm-1范围内,KBr 对红外无反射 1022 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的?为什么?( ) 1023 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的,为什么? 1068 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与光谱最近于一致?

1072 羰基化合物 R C O O R ( I ) ,R C O R ? ( ¢ò) , R C O N H R ( I I I ) , A r S C O S R ( I V ) 中,C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 1075 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 1088 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C 、H 、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 1097 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括 CH 3- CH 2-CH = O 的吸收带 ( ) 1104 请回答下列化合物中哪个吸收峰的频率最高? ( ) (1) R C O R (2)C O R (3)C O (4) F C O R 1114 在下列不同溶剂中,测定羧酸的红外光谱时,C =O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 1179 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 1180 CO 2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ← → (2) →← → (3)↑ ↑ (4 ) O =C =O O = C =O O = C =O O = C = O ↓ 1181 苯分子的振动自由度为 ( ) (1) 18 (2) 12 (3) 30 (4) 31 1182 双原子分子在如下转动情况下 (如图),转动不形成转动自由度的是 ( )

近红外光谱分析技术的数据处理方法

引言 近红外是指波长在780nm~2526nm范围内的光线,是人们认识最早的非可见光区域。习惯上又将近红外光划分为近红外短波(780nm~1100nm)和长波(1100 nm~2526 nm)两个区域.近红外光谱(Near Infrared Reflectance Spectroscopy,简称NIRS)分析技术是一项新的无损检测技术,能够高效、快速、准确地对固体、液体、粉末状等有机物样品的物理、力学和化学性质等进行无损检测。它综合运用了现代计算机技术、光谱分析技术、数理统计以及化学计量学等多个学科的最新研究果,并使之融为一体,以其独有的特点在很多领域如农业、石油、食品、生物化工、制药及临床医学等得到了广泛应用,在产品质量分析、在线检测、工艺控制等方面也获得了较大成功。近红外光谱分析技术的数据处理主要涉及两个方面的内容:一是光谱预处理方法的研究,目的是针对特定的样品体系,通过对光谱的适当处理,减弱和消除各种非目标因素对光谱的影响,净化谱图信息,为校正模型的建立和未知样品组成或性质的预测奠定基础;二是近红外光谱定性和定量方法的研究,目的在于建立稳定、可靠的定性或定量分析模型,并最终确定未知样品和对其定量。 1工作原理 近红外光谱区主要为含氢基团X-H(X=O,N,S,单健C,双健C,三健C等)的倍频和合频吸收区,物质的近红外光谱是其各基团振动的倍频和合频的综合吸收表现,包含了大多数类型有机化合物的组成和分子结构的信息。因为不同的有机物含有不同的基团,而不同的基团在不同化学环境中对近红外光的吸收波长不同,因此近红外光谱可以作为获取信息的一种有效载体。近红外光谱分析技术是利用被测物质在其近红外光谱区内的光学特性快速估测一项或多项化学成分含量。被测样品的光谱特征是多种组分的反射光谱的综合表现,各组分含量的测定基于各组分最佳波长的选择,按照式(1)回归方程自动测定结果:组分含量=C0+C1(Dp)1+C2(Dp)2+…+Ck(Dp)k(1)式中:C0~k为多元线性回归系数;(Dp)1~k为各组分最佳波长的反射光密度值(D=-lgp,p为反射比)。该方程准确的反映了定标范围内一系列样品的测定结果,与实验室常规测定法之间的标准偏差SE为:SE=[Σ(y-x)2/(n-1)]1/2(2)式中:x表示实验室常规法测定值,y表示近红外光 谱法测值,n为样品数。 2光谱数据的预处理 仪器采集的原始光谱中除包含与样品组成有关的信息外,同时也包含来自各方面因素所产生的噪音信号。这些噪音信号会对谱图信息产生干扰,有些情况下还非常严重,从而影响校正模型的建立和对未知样品组成或性质的预测。因此,光谱数据预处理主要解决光谱噪音的滤除、数据的筛选、光谱范围的优化及消除其他因素对数据信息的影响,为下步校正模型的建立和未知样品的准确预测打下基础。常用的数据预处理方法有光谱数据的平滑、基线校正、求导、归一化处理等。 2.1数据平滑处理 信号平滑是消除噪声最常用的一种方法,其基本假设是光谱含有的噪声为零均随机白噪声,若多次测量取平均值可降低噪声提高信噪比。平滑处理常用方法有邻近点比较法、移动平均法、指数平均法等。 2.1.1邻近点比较法 对于许多干扰性的脉冲信号,将每一个数据点和它旁边邻近的数据点的值

红外光谱分析方法的优点

分析成本极低。由于在整个测量过程中无需任何化学试剂,仪器定标完成后测量是一近红外光谱分析方法的优点为: (1)扫描速度极快 Fourier变换仪器是在整扫描时间内同时测定所有频率的信息,一般只要1s左右即可。因此,它可用于测定不稳定物质的红外光谱。而色散型红外光谱仪,在任何一瞬间只能观测一个很窄的频率范围,一次完整扫描通常需要8、15、30s等。 (2)具有很高的分辨率 通常Fourier变换红外光谱仪分辨率达0.1~0.005 cm-1,而一般棱镜型的仪器分辨率在1000cm-1处有3 cm-1 ,光栅型红外光谱仪分辨率也只有0.2cm-1 。 (3)灵敏度高 因Fourier变换红外光谱仪不用狭缝和单色器,反射镜面又大,故能量损失小,到达检测器的能量大,可检测10-1g数量级的样品 优点 1 应用范围广。红外光谱分析能测得所有有机化合物,而且还可以用于研究某些无机物。因此在定性、定量及结构分析方面都有广泛的应用。 2 特征性强。每个官能团都有几种振动形式,产生的红外光谱比较复杂,特征性强。除了及个别情况外,有机化合物都有其独特的红外光谱,因此红外光谱具有极好的鉴别意义。 3 提供的信息多。红外光谱能提供较多的结构信息,如化合物含有的官能团、化合物的类别、化合物的立体结构、取代基的位置及数目等。 4 不受样品物态的限制。红外光谱分析可以测定气体、液体及固体,不受样品物态的限制,扩大了分析范围。 5 不破坏样品。红外光谱分析时样品不被破坏。 6分析速度快。近红外光谱分析仪一旦经过定标后在不到一分钟的时间内即可完成待测样品多个组分的同步测量,如果采用二极管列阵型或声光调制型分析仪则在几秒钟的时间内给出测量结果,完全可以实现过程在线定量分析。 近红外光谱分析模型 7对样品无化学污染。待测样品视颗粒度的不同可能需要简单的物理制备过程(如磨碎、混合、干燥等),无需任何化学干预即可完成测量过程,被称为是一种绿色的分析技术。 8仪器操作和维护简单,对操作员的素质水平要求较低。通过软件设计可以实现极为简单的操作要求,在整个测量过程中引入的人为误差较小。 9 测量精度高。尽管该技术与传统理化分析方法相比精度略逊一筹,但是给出的测量精度足够满足生产过程中质量监控的实际要求,故而非常实用。 10项非常简单工作,所以几乎没有任何损耗。 缺点 1 不适合分析含水样品,因为水中的羟基峰对测定有干扰; 2 定量分析时误差大,灵敏度低,故很少用于定量分析; 3 在图谱解析方面主要靠经验。

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1、 CH 3—CH 3的哪种振动形式就是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2、 化合物中只有一个羰基、却在1773cm -1与1736 cm -1 处出现两个吸收峰、这就是因为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3、 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4、 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5、 下列官能团在红外光谱中吸收峰频率最高的就是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数就是弹簧A 的力常数的两倍、每个球从静止位置伸长1cm 、哪一个体系有较大的势能。 答:M h hv E k 2π== ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器、同紫外可见分光光度法有哪些相似与不同之处? 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光 能、能引起分子振动与转动的 能及跃迁、产生的吸收光谱一般在中红外区、称为红外光谱 当物质分子吸收一定波长的光能、分子外层电子或分子轨道电子由基态跃迁到激发态、产生的吸收光 谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱与紫外光谱都就是分子吸收光谱。 不同:紫外光谱就是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱就是分子的振动能级跃迁引起的、同时伴随转动能级跃迁、一般振动能级间隔约为0、05~1eV 。 3. 红外吸收光谱图横坐标、纵坐标各以什么标度? 答:波长与波数为横坐标、吸收度或百分透过率为纵坐标

相关文档
最新文档