劳斯-霍尔维茨稳定性判据

劳斯-霍尔维茨稳定性判据
劳斯-霍尔维茨稳定性判据

第三章控制系统的时域分析法

3.2 劳斯-霍尔维茨稳定性判据

稳定性是控制系统最重要的问题,也是对系统最基本的要求。控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。

常用的稳定性分析方法有:

1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性.

2. 根轨迹法:这是一种利用图解来系统特征根的方法。它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。

3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。这一方法在工程上是得到了比较广泛的应用。

4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。

一、稳定性的概念

稳定性的概念可以通过图3-31所示的方法加以说明。考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。

因此,系统的稳定性定义为,系统在受到外作用力后,偏离了最初的工作点,而当外作用力消失后,系统能够返回到原来的工作点,则称系统是稳定的。

设系统在初始条件为零时,在单位理想脉冲作用下,这时系统的脉冲响应为c(t)。若

t →∞时,脉冲响应

这时,线性系统是稳定的。

设系统的特征方程D(s)=0的根为si,由于单位脉冲传递函数的拉氏变换为1,系统输出的拉式变换为:

瞬态响应项表现为衰减、临界和发散三种情况之一,它是决定系统稳定性的关键。由于输入量只影响到稳态响应,并且两者具有相同的特性,即如果输入量r(t)是有界的:

| r(t)|<∞,t ≥0

则稳态响应也必定是有界的。则系统稳定性可以归结为,系统在任何一个有界输入的作用下,其输出是否有界的问题。

一个稳定的系统定义为,在有界输入的作用下,其输出响应也是有界的。这叫做有界输入有界输出稳定,又简称为BIBO稳定。

线性系统的稳定性可以根据闭环极点在S平面内的位置来确定。设单输入单输出线性系统的微分方程为,即

则系统的稳定性由上式左端决定,或者说系统稳定性可按齐次微分方程式

来分析。这时,在任何初始条件下,若满足

则称系统(3.58)是稳定的。

为了决定系统的稳定性,可求出式(3.59)的解。由数学分析知道,式(3.59)的特征方程式为

设上式有k个实根-pi (i =1,2,…,k),r对共轭复数根(-σj±jωj) (j=1,2,…,r),k+2r = n,则齐次方程式(3.59)解的一般式为

式中系数Aj,Bj和Cj由初始条件决定。

从式(3.62)可知:

(1) 若-pi <0,-s j <0 (即极点都具有负实部),则式(3.60)成立,系

统最终能恢复至平衡状态,所以系统是稳定的。

(2) 若-pi或- s j 中有一个或一个以上是正数,则式(3.60)不满足。当

t→∞时,c(t)将发散,系统是不稳定的。

(3) 只要-pi中有一个为零,或- s j 中有一个为零(即有一对虚根),则式(3.60)不满足。当t→∞时,系统输出或者为一常值,或者为等幅振荡,不能恢复原平衡状态,这时系统处于稳

定的临界状态。

总结上述,可以得出如下结论:线性系统稳定的充分必要条件是它的所有特征根均为负实数,或具有负的实数部分。或它的所有特征根,均在S平面面的左半部分(见图3-32)。

表3.4列举了几个简单系统稳定性的例子。需要指出的是,对于线性定常系统,由于

系统特征方程根是由特征方程的结构(即方程的阶数)和系数决定的,因此系统的稳定性与输入信号和初始条件无关,仅由系统的结构和参数决定。

如果系统中每个部分都可用线性定常微分方程描述,那么,当系统是稳定时,它在大偏差情况下也是稳定的。如果系统中有的元件或装置是非线性的,但经线性化处理后可用线性化方程来描述,则当系统稳定时,我们只能说这个系统在小偏差情况下是稳定的,而在大偏差时不能保证系统仍是稳定的。

判断系统稳定性的条件是根据系统特征方程的根。但求解高阶特征方程的根是相当麻烦的,往往需要求助于计算机。实际上,我们只希望了解特征方程的根在S平面上分布情况。所以,人们就希望能在不求解特征方程的情况下,来确定系统的稳定性。下面就介绍常用的劳斯判据和赫尔维茨判据。

3.2 劳斯-霍尔维茨稳定性判据

二、劳斯判据

(一)系统稳定性的初步判别

已知系统的闭环特征方程为

式中所有系数均为实数,且an>0,则系统稳定的必要条件是系统特征方程的所有系数均为正数。证明如下:

设式(3.63)有n个根,其中k个实根-pj(j=1,2,…,k),r对复根- s i ±jwi (i=1,2,…,r),n = k+2r。则特征方程式可写为

假如所有的根均在左半平面,即- pj <0,-σi<0 ,则pj >0 ,σi >0 。所以将各因子项相乘展开后,式(3.63)的所有系数都是正数。

根据这一原则,在判别系统的稳定性时,首先检查系统特征方程的系数是否都为正数,假如有任一系数为负数或等于零(缺项),则系统就是不稳定的。但是,假若特征方程的所

有系数均为正数,并不能肯定系统是稳定的,还要做进一步的判别。因为上述所说的原则只是系统稳定性的必要条件,而不是充分必要条件。

(二) 劳斯判据

这是1877年由劳斯(Routh)提出的代数判据。

1. 若系统特征方程式

设an > 0,各项系数均为正数。

2. 按特征方程的系数列写劳斯阵列表:

表中

直至其余bi项均为零。

按此规律一直计算到n -1行为止。在计算过程中,为了简化数值运算,可将某一行中的各系数均乘一个正数,不会影响稳定性结论。

3. 考察阵列表第一列元素的符号。假若劳斯阵列表中第一列所有元素均为正数,则该系统是稳定的,即特征方程所有的根均位于S平面的左半平面。假若第一列元数有负数,则第一列元素的符号的变化次数等于系统在S平面右半平面上的根的个数。

例3.3 系统特征方程为

试用劳斯判据判别系统的稳定性。

解从系统特征方程看出,它的所有系数均为正实数,满足系统稳定的必要条件。列写劳斯阵列表如下

第一列系数均为正实数,故系统稳定。事实上,从因式分解可将特征方程写为

其根为-2,-3,,均具有负实部,所以系统稳定。

例3.3 系统特征方程为

试用劳斯判据判别系统的稳定性。

解从系统特征方程看出,它的所有系数均为正实数,满足系统稳定的必要条件。列写劳斯阵列表如下

第一列系数有两次变号(+1到-6,-6到+5),故系统不稳定,且有两个正实部的根。

例3.4 已知系统特征方程式为

解列写劳斯阵列表

劳斯阵列表第一列有负数,所以系统是不稳定的。由于第一列元素的符号改变了两次(5→-11→174),所以,系统有两个具有正实部的根。

4. 两种特殊情况

在劳斯阵列表的计算过程中,如果出现:

(1) 劳斯表中某行的第一列的元素为零,其余各列系数不为零(或没有其余项),或不全为零,这时可用一个很小的正数e来代替这个零,从而使劳斯阵列表可以继续运算下去(否则下一行将出现∞)。第一列零元素的存在(其他元素为正),则说明系统特征方程有一对虚根,系统处干临界状态;如果第一列元素存在符号变化,则系统不稳定,不稳定根的个数由符号变化次数决定。

例3.5 设系统特征方程为

解劳斯阵列表为

由于e的上下两个系数(2和2)符号相同,则说明有一对虚根存在。上述特征方程可因式分解为

例3.5 设系统特征方程为

解劳斯阵列表为

(2) 若劳斯阵列表中某一行(设为第k行)的所有系数均为零,则说明在根平面内存在一些大小相等,并且关于原点对称的根。在这种情况下可做如下处理:

a. 利用第k-1行的系数构成辅助多项式,它的次数总是偶数的;

b. 求辅助多项式对s的导数,将其系数代替第k行;

c. 继续计算劳斯阵列表;

d. 令辅助多项式等于零可求得关于原点对称的根。

例3.6 系统特征方程为

解劳斯阵列表为

从上表第一列可以看出,各系数均未变号,所以没有特征根位于右半平面。

由辅助多项式,求得一对共轭虚根为±j4。

例3.7 系统特征方程式为

解劳斯阵列表如下:

劳斯阵列表第一列变号一次,故有一个根在右半平面。由辅助多项式:

可得S1, 2 = ±1,s3, 4 = ±j2,它们均关于原点对称,其中一个根在S平面的右半平面。

(三) 劳斯判据的应用

应用劳斯判据不仅可以判别系统稳定性,即系统的绝对稳定性,而且也可检验系统是否有一定的稳定裕量,即相对稳定性。另外劳斯判据还可用来

分析系统参数对稳定性的影响和鉴别延滞系统的稳定性。

1. 稳定裕量的检验

如图3-33所示,令

即把虚轴左移σ1 。将上式代入系统的特征方程式,得以z为变量的新特征方程式,然后再检验新特征方程式有几个根位于新虚轴(垂直线s= -σ1 )的右边。如果所有根均在新虚轴的左边(新劳斯阵列式第一列均为正数),则说系统具有稳定裕量σ1 。

例3.8 检验特征方程式是否有根在右半平面,并检验有几个根在直线s = -1的右边。

解劳斯阵列表为

第一列无符号改变,故没有根在S平面右半平面。

再令s= z-1,代入特征方程式,得

则新的劳斯阵列表

从表中可看出,第一列符号改变一次,故有一个根在Z平面的右半平面,即直线s= -1(即新座标虚轴)的右边,因此稳定裕量不到1。

2. 分析系统参数对稳定性的影响

设一单位反馈控制系统如图3-34所示,其闭环传递函数为

系统的特征方程式为

列写劳斯阵列表:

若要使系统稳定,其充要条件是劳斯表的第一列均为正数,即K > 0,30 - K > 0

所以0 < K < 30,其稳定的临界值为30。

由此可以看出,为了保证系统稳定,系统的K值有一定限制。但是为了降低稳态误差,则要求较大的K值,两者是矛盾的。为了满足两方面的要求,必须采取校正的方法来处理。

例3.9 系统特征方程式为

求系统稳定时,参数T的范围?

解劳斯表为

由劳斯表可以看出,要使系统稳定,必须

即T > 25时,系统稳定。

劳斯-霍尔维茨稳定性判据

第三章控制系统的时域分析法 3.2 劳斯-霍尔维茨稳定性判据 稳定性是控制系统最重要的问题,也是对系统最基本的要求。控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。 常用的稳定性分析方法有: 1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性. 2. 根轨迹法:这是一种利用图解来系统特征根的方法。它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。 3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。这一方法在工程上是得到了比较广泛的应用。 4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。 一、稳定性的概念 稳定性的概念可以通过图3-31所示的方法加以说明。考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。

3-4试用劳斯判据确定具有下列特征方程是的系统稳定性

3-4试用劳斯判据确定具有下列特征方程是的系统稳定性。 部根。不稳定。 变化两次,系统有两实劳斯表第一列元的符合解: 2001200209 10 200920)1(01 2 323S S S S S S S -=+++ 统稳定。 有有正部实根。所以系没有变化两次,系统没劳斯表第一列元的符合解: )(55.135151685810 51618820 12 3 4 234S S S S S S S S S =++++ 部根。不稳定。变化两次,系统有两实劳斯表第一列元的符合解: )(1612318165381261 310 1236301 2 3 4 52345S S S S S S S S S S S -=+++++ 3-5设单位负反馈系统的开环传递函数为 ) 12.0)(11.0()(++= S S K S G 试确定系统稳定时k 的取值范围。

1500002.03.03.002.03.03.0102.00 3.002.0)(:01 2 3 23<>--=+++=K K K K S K K S K S S K S S S S D 于是系统稳定,则有的闭环特征方程为: 又开环传递函数的系统解 3-6已知系统的闭环特征方程为 0)2)(5.1)(1=++++K S S S 试由劳斯判据确定使得系统闭环特征根的实部均小于-1的最大k 值。 (临界稳定)。 的最大值为依题意得程为: 此时系统的闭环特征方变换 解:根据题意可作线性75.0K 75.000 075.05.175.05.15 .0105.05.1)1)(5.0()(1 01 23231∴<>--=+++=+++=+=-=K K K K Z K Z K Z Z K Z Z Z K Z Z Z S D S Z Z S 3-7 设单位负反馈系统的开环传递函数如下: (1) ) 12.0)(11.0(10)(++=S S G (2)()) 22)(1(450)(2++++=s s S S s S G (3)())15.0(120)(2++= S s S G (1)解:根据误差系数公式有:

劳斯判据判定稳定性

劳斯判据 即Routh-Hurwitz判据 一、系统稳定的必要条件 判据是判别系统特征根分布的一个代数判据。 要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件: 1)特征方程的各项系数都不等于零。 2)特征方程的各项系数的符号都相同。 此即系统稳定的必要条件。 按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。 二、系统稳定的充要条件 系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。 运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。 运用判据的关键在于建立表。建立表的方法请参阅相关的例题或教材。运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。 在应用判据还应注意以下两种特殊的情况: 1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。于是表的计算无法继续。为了克服这一困难,可以用一个很小的正数代替第一列等于0的元素,然后计算表的其余各元。若上下各元符号不变,切第一列元素符号均为正,则系统特征根中存在共轭的虚根。此时,系统为临界稳定系统。 2.如果在表中任意一行的所有元素均为0,表的计算无法继续。此时,可以利用该行的上一行的元构成一个辅助多项式,并用多项式方程的导数的系数组成表的下一行。这样,表中的其余各元就可以计算下去。出现上述情况,一般是由于系统的特征根中,或存在两个符号相反的实根(系统自由响应发散,系统不稳

定),或存在一对共轭复根(系统自由响应发散,系统不稳定),或存在一对共轭的纯虚根(即系统自由响应会维持某一频率的等幅振荡,此时,系统临界稳定),或是以上几种根的组合等。这些特殊的使系统不稳定或临界稳定的特征根可以通过求解辅助多项式方程得到。 三、相对稳定性的检验 对于稳定的系统,运用判据还可以检验系统的相对稳定性,采用以下方法: 1)将s平面的虚轴向左移动某个数值,即令s=z-(((为正实数),代入系统特征方程,则得到关于z的特征方程。 2)利用判据对新的特征方程进行稳定性判别。如新系统稳定,则说明原系统特征方程所有的根均在新虚轴之左边,(越大,系统相对稳定性越好。

劳斯判据总结

3-1 稳定性 1、稳定性的概念 2、判别系统稳定性的基本原则 线性系统稳定的充要条件为:所有特征根均为负数或具有负的实数部分;即:所有特征根均在复数平面的左半部分。 由于特征根就是系统的极点,因此,线性系统稳定的充要条件也可表述为:系统的极点均在s 平面的左半平面。 显然,稳定性与零点无关。当有一个根落在右半部,系统不稳定。当有根落在虚轴上(不包括原点),此时为临界稳定,系统产生持续振荡。 3-2 劳斯稳定判据 劳斯判据 劳斯判据步骤如下: 1)列出系统特征方程: 553(0 0122110->=++???+++---a a S a S a S a S a n n n n n 检查各项系数是否大于0,若是,进行第二步。 可见,i a ,1,2,i =是满足系统稳定的必要条件。 2)按系统的特征方程式列写劳斯表 3)考察劳斯阵列表中第一列各数的符号,如果第一列中各数a 0、

a 1、 b 1、 c 1、……的符号相同,系统稳定;如果符号不同,系统不稳 定,且符号改变的次数等于系统具有的正实部特征根的个数。 通常00a >,因此,劳斯稳定判据可以简述为劳斯表中第一列的各数均大于零。 如果劳斯表中第一列系数的符号有变化,其变化的次数等于该特征方程式的根在S 的右半平面上的个数,相应的系统为不稳定。 ※※ 劳斯判据特殊情况 · I) 劳斯表某一行中的第一项等于零,而该行的其余各项不等于零 用一个很小的正数ε来代替零这一项,据此算出其余的各项,完成劳斯表 如果第一列ε上面的系数与下面的系数符号相同,则表示该方程中有一对共轭虚根存在,相应的系统也属不稳定。 · II )劳斯表中出现全零行 表示相应方程中含有一些大小相等符号相反的实根或共轭虚根。利用系数全为零行的上一行系数构造一个辅助多项式,并以这个辅助多项式导数的系数来代替表中系数为全零的行,完成劳斯表的排列。这些大小相等、符号 相反的根可通过求解辅助方程得到,而且其根的数目总是偶数的。 例如:控制系统的特征方程为 0161620128223456=++++++s s s s s s 列劳斯表

劳斯法分析系统稳定性及不稳定性的改进方法

邢台学院物理系 《自动控制理论》 课程设计报告书 设计题目:劳斯法分析系统的稳定性及不稳定性的改进 措施 专业:自动化 班级:_ 学生姓名: 学号: 4 指导教师: 2013年3月24日

邢台学院物理系课程设计任务书 专业:自动化班级: 2013 年 3 月 24 日

摘要 劳斯判据,Routh Criterion,又称为代数稳定判据。劳斯于1877年提出的稳定性判据能够判定一个多项式方程中是否存在位于复平面右半部的正根,而不必求解方程。由此劳斯获得了亚当奖。劳斯判据,这是一种代数判据方法。它是根据系统特征方程式来判断特征根在S平面的位置,从而决定系统的稳定性,由于不必求解方程,为系统的稳定性的判断带来了极大的便利。 劳斯稳定判据是根据闭环特征方程式的各项系数,按一定的规则排列成所谓的劳斯表,然后根据表中第一列系数正,负符号的变化情况来判别系统的稳定性。 本次课程设计以劳斯判据为例,研究控制系统的稳定性分析问题,并对结构性不稳定系统的改进措施进行分析。 关键词:劳斯判据特征方程式正根稳定性劳斯表系数结构性

目录 1 劳斯稳定判据 1.1 劳斯稳定判据原理 1.2 实际例题分析 1.3 全零行与临界稳定 2 结构性不稳定系统的改进措施 2.1 改变环节的积分性质 2.2 加入比例微分环节 3 总结及体会 参考文献

1 劳斯判据 1.1 劳斯判据原理 劳斯判据是根据闭环特征方程式的各项系数,按一定的规则排列成所谓的劳斯表,然后根据表中第一列系统正,负号的变化情况来判断系统稳定性。 根据特征方程的各项系数排列成下列劳斯表。 c c a a c c c c a a c c c c a a c c s a a a a a c a a a a a c a a a a a c s a a a s a a a s n n n n 13 4317133413 33 15132413 23 1313143 1 7061331 5 041231 3 0211325311420-=-=-=-=-=-=--- 若特征方程式的各项系数都大于零(必要条件),且劳斯表中第一列元素均为正值,则所有的特征根均位于s 左半平面,相应的系统是稳定的。否则系统为不稳定或临界稳定,实际上临界稳定也属于不稳定。劳斯表中第一列元素符号改变的次数等于该特征方程的正实部根的个数。 1.2 实际例题分析 例题1:某系统的特征方程为:0100s 24s 8s )s (D 23=+++=,判断系统稳定性。 解:系统的特征方程为 0100s 24s 8s )s (D 23=+++= 劳斯表: s 3 1 24 s 2 8 100 s 1 92 s 0 100 第一列同号,所以系统稳定。 例题2:设闭环系统传递函数为5 4322017123)(2 34523++++++++=s s s s s s s s s G ,判定该系统是否稳定。 解:系统特征方程为054322345=+++++s s s s s 劳斯表 : s 5 1 1 4

试用劳斯判据确定具有下列特征方程是的系统稳定性

3-4试用劳斯判据确定具有下列特征方程是的系统稳定性。 部根。不稳定。 变化两次,系统有两实劳斯表第一列元的符合解: 2001200209 10 200920)1(01 2 323S S S S S S S -=+++ 统稳定。 有有正部实根。所以系没有变化两次,系统没劳斯表第一列元的符合解: )(55.135151685810 51618820 12 3 4 234S S S S S S S S S =++++ 部根。不稳定。变化两次,系统有两实劳斯表第一列元的符合解: )(1612318165381261 310 1236301 2 3 4 52345S S S S S S S S S S S -=+++++ 3-5设单位负反馈系统的开环传递函数为 ) 12.0)(11.0()(++= S S K S G 试确定系统稳定时k 的取值范围。

1500002.03.03.002.03.03.0102.00 3.002.0)(:01 2 3 23<>--=+++=K K K K S K K S K S S K S S S S D 于是系统稳定,则有的闭环特征方程为: 又开环传递函数的系统解 3-6已知系统的闭环特征方程为 0)2)(5.1)(1=++++K S S S 试由劳斯判据确定使得系统闭环特征根的实部均小于-1的最大k 值。 (临界稳定)。 的最大值为依题意得程为: 此时系统的闭环特征方变换 解:根据题意可作线性75.0K 75.000 075.05.175.05.15 .0105.05.1)1)(5.0()(1 01 23231∴<>--=+++=+++=+=-=K K K K Z K Z K Z Z K Z Z Z K Z Z Z S D S Z Z S 3-7 设单位负反馈系统的开环传递函数如下: (1) ) 12.0)(11.0(10)(++=S S G (2)()) 22)(1(450)(2++++=s s S S s S G (3)())15.0(120)(2++= S s S G (1)解:根据误差系数公式有:

相关文档
最新文档