力矩以力矩平衡.doc

力矩以力矩平衡.doc
力矩以力矩平衡.doc

力矩和力矩平衡

一:力矩的概念

力矩是改变转动物体的运动状态变化的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。但是,我们若将力作用在门、窗的转轴上,则无论施加多大的力都不会改变其转动状态,可见物体的转动运动状态的变化不仅与力的大小有关,还与受力的方向、力的作用点有关。力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂直,力使转动物体运动状态变化得就越明显。在物理学中力对转动物体运动状态变化的影响,用力矩这个物理量来表示,因此,力矩被定义为力与力臂的乘积。力矩概括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。

力矩是表示力对物体产生转动作用的物理量,是物体转动转动状态改变的原因。它等于力和力臂的乘积。表达式为:M=FL,其中力臂L是转动轴到F的力线的(垂直)距离。单位:Nm 效果:可以改变转动物体运动状态。转轴:物体转动时,物体上的各点都沿圆周运动,圆周的中心在同一条直线上,这条直线就叫转轴。

特点:1,体中始终保持不动的直线就是转轴。

2,体上轴以外的质元绕轴转动,转动平面与轴垂直且为圆周,圆心在轴上。

3,转轴相平行的线上各质元的运动情况完全一样。

大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB,现给B端加一个竖直向上的外力使杆刚好离开地面,求力F的大小。在这一问题中,过A点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。

针转,若以o2为轴(即对o2取矩)其力矩为M2=FL2,使物体顺时针转,

由图可知L1< L2,故M1< M2,且二者反向。由此可见,一谈力矩,必须首先明确是以

何处为轴,或对谁取矩。

力矩的方向:力矩:力臂(L)和力(F)的叉乘(M)。即:M=L×F。其中L 是从转动轴到着力点的矢量, F 是矢量力;力矩也是矢量。

补充知识:矢量积(叉乘)

1、定义:对矢量a与b,若矢量c满足

为a与b之间夹角;

2,的模,

3,的方向垂直于a与b所决定的平面,且c的指向满足右手法则;

则称为c为a与b的向量积,记为a b,即c=a b。

右手法则:伸出你的右手,从力臂(指向力的作用线)向力的方向握,那么大拇指的方向就是力矩的方向。

力矩的计算:

①先求出力的力臂,再由定义求力矩M=FL,如图中,力F的力臂为

L F=Lsinθ,则力矩M=F?L sinθ

2,把力沿平行于杆和垂直于杆的两个方向分解,平行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。如图中,力F的力矩就等于其分力F1产生的力矩,M=F sinθ? L。两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。

的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。①当臂

等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。

大小一定的力有最大力矩的条件: 1,作用在离转动轴最远的点上; 2,的方向垂直于力作用点和转轴的连线与转轴所构成的平面。

二:定转动轴物体的转动平衡转动平衡:有转动轴的物体在力的作用下,如果保持静止或匀速转动状态,我们称这个物体处于转动平衡。

平衡条件:作用于物体上的全部外力对固定转动轴所取力矩的代数和为零。沿着转轴观察,力矩的转动效应不是使物体沿顺时针转,就是逆时针转,

若使物体沿顺时针转的力矩为正,则使物体沿逆时针转的力矩就为负。当不好判断力是使物体沿哪个方向转动时,可以将力分解带沿杆和垂直于方向沿杆的分力力矩为零(或者垂直于面和平行与面或者轴,其中平行与面或者轴的分力力矩为

零)

当作用在有固定转动轴物体上的顺时针方向力矩之和与逆时针方向力矩之和相等时,物体将处于静止或匀速转动状态。有固定转动轴物体的平衡的表达式为:

M =O或M = M

力偶距:作用在物体上的大小相等.方向相等.作用线平行的两个力组成一个力偶。它对物体只有转动作用,其大小积为力偶距:力偶距=力×力偶臂.力偶臂等于两个力作用线间的距离.力偶距的正负也由它使物体转动方向来确定;逆时针为正,顺时

针为负。

利用转动平衡解题的步骤; (1确定研究对象——哪个物体; (2分析状态及受力——画示意图;分析研究对象的受力情况,找出每一个力的力臂,分析每一个力

矩的转动方向;

(3列出力矩平衡方程:∑M=0或∑M顺=∑M逆;

(4解出字母表达式,代入数据; (5作必要的讨论,写出明确的答案。

一般物体的平衡条件

此处所谈的“一般物体”是指没有固定转动轴物体。对一个“一般物体”来说,作用在它上面的力的合力为零,对任意一点的力矩之和为零时,物体才能处

于平衡状态。也就是说必须一并具有或满足下面两个关系式:

M = 0(对任意转轴)

F = 0

注意:∑M=0 或∑M顺=∑M 逆,方程转轴可以根据需要可以任意选取,

一般原则是尽量多的力力臂为零,或者让未知的力的力矩为零.

例题分析:

例题1:如图:BO是一根质量均匀的横梁,重量G1=80N,BO的一端安在B 点,可绕通过B点且垂直于纸面的轴转动,另一端用钢绳AO拉着横梁保持水平,与钢绳的夹角 = 30o,在横梁的O 点挂一个重物,重要G2=240N,求钢绳对横梁的拉力F1:

(1 )本题中的横梁是一个有固定转动轴的物体;

(2 )分析横梁的受力:拉力F1 ,重力G1 ,拉力F2 ;

(3 )找到三个力的力臂并写出各自的力矩:

解:据力矩平衡条件有:

F 1l sin -

G 1 2l -G 2l =0

得:F 1 = G 21 s +in 2G 2 =560N

例题 2:如右上图,半径为 R 的均匀圆柱体重 30 N ,在水平绳的拉力作

F 1的力

矩:

用下,静止于固定斜面上,求:(1)绳子的拉力,(2)斜面对圆柱体的支持力,(3)斜面对圆柱体的摩擦力。

解析:如右下图,圆柱体受重力、斜面的支持力和摩擦力、绳拉力四个力。此四力不是共点力。不可以将绳拉力T,摩擦力f 平移到柱体重心处。用共点力平衡条件解决较繁(将斜面对柱体的支持力N 和摩擦力 f 合成为一个力 F ,则F 、T 、G 共点,然后再将R 分解求得N 、f )。用力矩解决较好。

取接触点为轴,由力矩平衡有:

T(R+Rcos370)=GRsin370,

得T= G=10N,

3

取柱心为轴,有TR=fR,得f =R = G3=10N;

再取拉力作用点为轴,有NRsin370=f(R+Rcos370), 得N=G=30N。

例题3:如图所示,光滑圆弧形环上套有两个质量不同的小球 A 和 B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α 和β ,求两球质量之比。

解析:此题可以分别分析小球A、B 所受共点力,对每个球列共点力平衡

方程求解,但是很繁琐。若换一个角度,以O 为轴用力矩求解则较方便。如右下图,小球A 受到N1、N2、m1g 三个力作用,B 受到N1'、N3、m2g 三

个力作用。与弹簧一起看作绕过O 点的转动轴平衡问题,其中N2、N3 没有

N1和N1'的力矩互相抵消。于是有:m1gRsinα=m2gRsinβ,所以有:臂,

m1=

m2sin sin

例题4:一块均匀木板MN长L=15m,重G1=400N,搁在相距D=8m 的

两个支架A、B上,MA=NA,重G2=600N的人从A点向B点走去,如图所示。求:①人走过B点多远木板会翘起来?②为使人走到N点时木板不翘起

来,支架B应放在离N多远处?2.67m 、3m

分析和解:当木板刚翘起来时,板的重力对B 点产生的力矩和人的重力对B 点产生的力矩使板平衡,设人走过 B 端L 时木板会翘起来,则有400 4 = 600L可解得L B=2.67m, 同理,可设当人走到N 端木板刚

要翘起来时,B支架和N端的距离为L BN 则有400(7.5-L BN)=600L BN 可得L BN=3m

例题5:. 在光滑水平面上有一滑块,滑块上放有一个上端有固定转动轴的木棒,如图1。现用水平力 F 向右推滑块,但滑块仍静止。试分析滑块对木棒的弹力的变化情况。

分析与解答:

先应弄清施力 F 前的情况;因为滑块静止,目水平面是光滑的,所以木棒对滑块只有竖直向下的压力,而无摩擦力。由牛顿第三案律可知,滑块对木棒也只有支持力(弹力)。再以木棒为研究对象,对于其转动轴,木棒所受的弹

力N的力距与木棒的重力距平衡,如图2(a)所示。

施力 F 点,同样由滑块静止可知,木棒对滑块向左的静摩擦力,以与力 F 平衡。则滑块对木棒也有水平向右的静摩擦中。这样,以木棒为研究对象,对转动轴又增加了一个摩擦力 f 的逆时针方向的力距,如图(b),而木棒的重力对轴的顺时针方向的力距大小是不变的,故木棒所受滑块施的弹力将减小。

[本题交替以滑块和木棒为研究对象,结合物体的平衡条件进行受力分析, 正是要求的解题能力]

例题6:如图3 所示,有固定转动轴0的轻板与竖直墙之间夹着一个光滑重球。

在板的端点绝竖直向上的力F,使整个装置处于平衡。若缓慢使板与竖直墙的夹角θ 增大(仍小于90o), 则力F 及其对轴o 的力距M 各将如何变化?

分析与解答:以木板为研究对象,力 F 对轴o 的力距与球对木板的正压

力N 对轴的力距平衡,因此力F 对轴o 的力距M 的变化情况,取决于弹力N 对轴 o 的力距变化情况,其变化规律如何呢?这就要转移以光滑球的研究对 象并应注意抓住球的重力G 和半径R 这两个不变的因素。设球与板接触点到

轴 o 的距离为 X , x = RCot 。 2

参看图 4 可知,

G

板对球的弹力 N = G

Sin G 对板由力距平衡有,FLSin =Nx = G RCot Sin 2 L 为板长。 G GR M = FLSin = RCot = M = FLSin = Sin RCot 2 = Sin 2

2 GR LSin 2tan 2

可见随 增大,M . F 都减小。 例题7: 如图5所示,水平轻杆AB 长1.5m ,其A 端有固定转动轴, 倾斜轻杆CO 与AB 夹角为30°AC=1m 。在B 端有一小定滑轮,绕过定滑轮的 细绳左侧成竖直,并连接放在水平支持面重物 P ,其重 G=100N ;右侧细绳穿 过动滑轮后,端点固定在E 点,动滑轮上吊有重物 G1=30N 。不计滑轮质量及 摩擦。求 co 杆对 AB 杆的作用力 F 。

分析与解答:co 杆对AB 的作用力有两个方面效果,一方面向上支持, 另一方沿AB 向右推。本题所求是这两个方面效果的合力F ,力P 的方向沿 oc 杆斜向上(若计 oc 方向,这可以对 oc 杆的转动轴的合力距为零得出)。

另外,在不计绳重和摩擦的前提下,同一根绳沿各方向的拉力(张力) 是相等的,本题中定滑轮两侧绳的拉力以及动滑轮两侧的绳拉力都相等。

以动滑轮为研究对象,依题(注意 30°角及左右两侧绳的对称性)知它所

受的三个力互成 120°有

以 AB 杆为研究对象,对轴 A 有

F ACSin 30o =

G AB + T ABSin 30o

得 F= 135 N 。 例题8:如图7 所示,一根长为 L 重为G 0的均匀杆 AB ,A 端顶在粗糙 的竖直墙上,与墙的摩擦因数为 μ;B 端用一根强度足够大的绳挂在墙的 C 处。 此时杆恰好成水平,绳的倾角为 。

(1)求杆能保持水平平衡时,μ 和 应满足的条件。

(2)若P 为杆上一点,在 BP 间挂任意重物都不会使杆的 A 端下滑,求 P 点的位置应在何处。

得 f = G0

2 若以A 为轴,则 TLSin

= G L

02

得 T = G0 2Sin

又N = TCos = G0 Cot

2

要杆不 F 下滑,应有 , (2)设 P 点到 A 的距离为 X ,所挂重物 G

M B = 0;

分析与解答:(1)以B 为轴, 由力距平衡,对杆AB 如(图8)

fL =G 0 L 2

M C = 0:

G 0 (-Tan )GTan -GxTan xG 2L

= GTan - xG (+ Tan ) .... 5 L 因为 ,所以 5,式中左端 ,从而右端

应不大于零,否则式中的不等式不成,即: GTan - xG (+ Tan ) 0

同步达纲练习

1.如图 9 所示,长 L=4m 的均匀吊桥质量 m=80kg ,成水平时,并未与对岸 地面接触,这时牵引绳与桥面成 30?角。质量 m 。=50kg 的人站在桥面距轴 D 为 1m 处,用水桶打水。桶和水的质量为 m=10kg ,正以 a=0.2m/s 的速度上升。 此时牵引绳的拉力多大?

简解:水桶加速上升,由牛顿第二定律得 F-mg=ma , F=100N 对轴 o ,M=o 即:

代入 4式得

由 1.2 得:

要杆F 不下滑,需

T=1079N

2. 如图 10 所示,质量为 m 的均匀杆与地面接触为一固定转动轴,杆与光 滑球接触占距 0 为 L/3。求竖直墙对球的弹力 T 。

简解:对杆

3. 质量为 M 边长为a 的均匀正方体放在水平

地面上,均匀光滑直棒 AB 长 为 L ,重为 G ,它的

一端 A 处有一水平轴,使 AB 放在立方体上,接触点为 C , 杆对立方体的压力最大?此时立方体所受地面的摩擦力多大?

简解:设杆与地面成 o 角时,AC 距离为 x

=45o

时N 最大,则

力矩 有固定转动轴物体的平衡练习题

1.如图所示,轻杆 BC 的 C 端铰接于墙,B 点用绳子拉紧,在 BC 中点O 挂重物

G .当以C 为转轴时,绳子拉力的力臂是( D )

对球体静止,水平方向有

对轴 A :M =

(A) OB

(B) BC

(C) AC

(D) CE

(A)

力对物体的转动作用决定于力矩的大小和方向 (B)

力矩等于零时,力对物体不产生转动作用 (C)

力矩等于零时,力对物体也可以产生转动作用 (D) 力矩的单位是“牛·米”,也可以写成“焦” 3.有大小为F 1=4N 和 F 2=3N 的两个力,其作用点距轴O 的距离分别为L 1=30cm 和 L 2=40cm ,则这两个力对转轴O 的力矩 M 1和 M 2的大小关系为( D )

(A)

因为F 1>F 2,所以M 1>M 2 (B )因为

F 1

(C )因为F 1L 1=F 2L 2,所以 M 1=M 2 (D )无法判断M 1和 M 2的大小

4. 如图所示是单臂斜拉桥的示意图,均匀桥板 aO 重为 G ,三根平行钢 索与桥面成 30°角,间距 ab =bc =cd =dO .若每根钢索受力相同,左侧 桥墩对桥板无作用力,则每根钢索的拉力大小是(D )

5. 如图所示,直杆 OA 可绕O 轴转动,图中虚线与杆平行.杆的A 端分别受到 F 1、F 2、F 3、F 4四个力的作用而静止,它们与OA 杆在同一竖直平面内,则它 们对O 点的力矩 M 1、M 2、M 3、M 4的大小关系是(

A )

(A )M 1=M 2=M 3=M 4

(B )M 1>M 2>M 3>M 4

(C )M 1>M 2=M 3>M 4 AB

2.关于力矩,下列说法中正确的是(

(A )

G

(D)M1

6.如图所示的杆秤,O 为提纽,A 为刻度的起点,B 为秤钩,P 为秤砣.关于杆秤

的性能,下列说法中正确的是( AD ) (A)不称物时,秤砣移至 A 处,杆秤平衡

(B)不称物时,秤砣移至B 处,

杆秤平衡

(C)称物时,OP的距离与被测物的质量成正比

(D)称物时,AP 的距离与被测物的质量成正比

7.如图所示是一根弯成直角的杆,它可绕O 点转动.杆的OA 段长30cm,AB 段长40cm.现用F=10N 的力作用在杆上,要使力F对轴O逆时针方向的力矩最大,F 应怎样作用在杆上?画出示意图,并求出力F的最大力矩. 图略,5N·m

10.如图所示,质量为m 的运动员站在质量为m 的均匀长板AB 的中点,板位于水平地面上,可绕通过 A 点的水平轴无摩擦转动.板的 B 端系有轻绳,轻绳

的另一端绕过两个定滑轮后,握在运动员的手

中.当运动员用力拉绳子时,滑轮两侧的绳子都

保持在竖直方向,则要使板的 B 端离开地面,

运动员作用于绳的最小拉力是多少?2mg

11.如图所示,均匀杆AB 每米重为30N,将A 端支起,在离A 端0.2m 的C 处挂一重300N 的物体,在B端施一竖直向上的拉力F,使杆保持水平方向平衡,问杆长为多少时,所需的拉力F 最小?最小值为多大? 2m, 60N

12.右图所示是用电动砂轮打磨工件的装置,砂轮的转轴通过图中O 点垂直于纸

面,AB是一长度l=0.60m、质量m1=0.50kg 的均匀刚性细杆,可绕过 A 端的固定轴在竖直面(图中纸面)内无摩擦地转动,工件C 固定在AB 杆上,其质量m2=1.5kg,工件的重心、工件与砂轮的接触点P 以及O 点都在过AB中点的竖直线上,P到AB杆的垂直距离d=0.1m,AB杆始终处于水平位置,砂轮与工件之间的动摩擦因数μ=0.6.

(1)当砂轮静止时,要使工件对砂轮的压力F0=100N,则施于 B 端竖直向下

的力FB应是多大?

(2)当砂轮逆时针转动时,要使工件对砂轮的压力仍为 F0=100N ,则施于 B

端竖直向下的力 FB′应是多大 ?

12、(1)40N(2)30N

解析:(1)当砂轮静止时,把AB 杆和工件看成一个物体,

F B 的力矩 F B l 由力矩的平衡,得

F 0 l =(m 1 +m 2)g l +F B l

解得

F B = 1[F 0 -(m 1 +m 2)g ]

2 ○2

代入数据得

F B = 40N ○3

(2)当砂轮转动时,除重力、支持力和 F B 的力矩外,还有砂轮作用于 工件的摩擦力的力矩F 0d 。

由力矩的平平衡;得

1 l F 0 =F 0d +(m 1 +m 2)g +F B +F B l

2 2 ○4

解得

1d F B = 1[F 0 -(m 1 +m 2)g ]-F 0 d

B 2 0 1 2 0 I ○5

代入数据得F B = 30N

它受到的外力对 A 轴的力矩有:重力的力矩(

(m 1+m 2)g 2l )

砂轮对工件的支持力的力矩

F 0 2 ○6

有固定转动轴物体的平衡A卷

一、填空题

1.如图所示,均匀杆OB 长为l、重为G1,B 端所挂物体重为G2,杆可绕过O 点的水平轴在竖直平面内自由转动.B 端用轻绳AB 系于地面,杆与地面成60。角,轻绳与地面成30°角,则轻绳AB 拉力对O 点的力臂为,挂物体的轻绳对杆的拉力对O 点的力矩大小为,轻绳AB 的拉力大小为

答案:2l,G22l,G2+G21

2.如图所示,在半径为R 的轮边缘最高点A 处

用力F使轮滚上台阶,轮与台阶的接触点为

P ,要使力F 最小,则力F 的方向应是

,在使轮滚动过程中,力 F 的力矩是(填

“顺时针”或“逆时针”)的.若轮的质量为

h =

M,台阶高为2则 F 的大小至少为

答案:与AP连线垂直向右上方,

顺时针,

3.如图所示,OAB为均匀直角尺,重为2G,且OA=AB,直角尺可绕过O点的水平轴在竖直平面内自由转动.为使杆的OA部分保持水平,则在 B 端施加的最小作用力应为;若施力于A 端,则最小作用力为.

32

答案:4

4.如图所示,悬挂起来,恰好处于水平平衡.如果A 棒的密度是B 棒的2 倍,那么 A 棒的重力是B 棒的重力的倍.

答案:

5. 如图所示,等边的直角拐尺每边的质量均为 m ,拐角处用铰链铰于天花板上, 左端用细绳与放在地面上的质量也为 m 的物体相连.平衡时绳子保持竖直,那 么绳子拉力的大小为 ,物体对地面的压力大小为 .

6. 如图所示,是人手臂骨骼与肌肉的生理结构示意图,

手上托着重为 G 的物体.(1)在方框中画出前臂受力示 意图(把手、手腕、尺骨和桡骨看成一个整体,它们所

g ( 3 -1) mg (3 - 3)

答案: 2 , 2

7. 如图所示,杆CO 长为0.5m ,C 端铰于墙上,O 端用轻绳OE 系于墙上,并 在 O 端下面挂一个光滑轻滑轮,滑轮下用轻绳跨过滑轮悬挂两个物体,物体

A 重 2N ,物体

B 重 5N ,物体 B 放在地面上,两绳都恰竖直,整个装置处于 静止状态,则绳 OD 对杆的拉力对 E 点的力矩为

答案:2N·m

8. 如图所示,力矩盘转轴在其圆心O 点,重心在

G 点(恰在 O 点的正下方),半径 OA 恰水平.现在 A 点加一竖直向下的拉力使盘 缓慢转动,直到A 点到达最低点前,在此过程中,竖直向下的拉力的大小将

,该拉力的力矩大小将

“不变”或“减小”) .(填“增大”、

受重力不计,图中 O 点看作固定转动轴,O 点受力可以不画);(2)根据图中标 尺估算出手臂的二头肌此时的收缩力大小约为

答案:8G

答案:增大,增大

二、选择题

9.如图所示,T 字形轻质支架abO 可绕过O 点的水平轴在竖直平面内自由转动,支架受到图示方向的F1、F2和F3的作用,则关于O点( )

A.F1 和F3的力矩同方向.

B.F2和F3的力矩同方向.

C.若三个力矩不平衡,为使它平衡,在a

点施力可使力最小.

D.为使加在a点的2N的力产生最大力矩

可使此力方向与ab杆垂直. 答案:A、C

10.如图所示,一均匀杆AB,能绕过A 端的

水平轴在竖直平面内转动.在杆的另一端 B 用一始终竖直向上的力拉杆,当杆沿逆时针缓慢转过一个小角度时,拉力 F 的大小及拉力的力矩M 的大小与原

来相比是( )

A. F 变大,M 变

大.

B. F 变大,M 不

变.

C. F 不变,M 变

11.如图所示,均匀直杆AB 的A 端装有垂直于纸面的水平转动轴,B端搁在

小车上,杆与车的水平上表面间滑动摩擦系数为μ,小车静止时,杆对车的压

12.如图所示,长为lm 的轻杆OA 可绕过O 点的水平轴自由转动,在A 端挂

一个质量为M 的物体.现将长也为lm 的轻绳系在杆上的某点B,另一端系于

墙上.为使杆保持水平,选取适当的B 点位置,能使绳子拉力最小,此时绳子拉力的大小与B 点到O 点的距离分别是( )

A.Mg,3m .

B.Mg,

m

C.2Mg,2m .

D.2Mg,2

答案:D

13.如图所示,密度为ρ、边长为L 的均匀立方体,表面光滑,静止在水平面上,并抵住一个小木桩.有风与水平方向成45°角斜向上地吹到立方体的一个面上,产生压强为p,则使立方体刚要翻动的p户值为( )

2L g

A. 2L g .

B. 3

2L g

C.L g .

D. 2

答案:C

15.如图所示,用单位长度质量为P 的材料制成的长方形框架ABCD,已知AB =a,BC=b,可绕过AB 边的水平轴自由转动.现在CD 边的中点施加一个水

平力F,为使框架静止时与竖直方向成α角,

则力 F 的大小应为( )

A.pg(a+b)tgα.

B.pg(a+b)ctgα.

g (a + 2b)tg

C. 2.

D.pg(a+2b)ctgα. 答案:A

三、计算题

17.如图所示,力矩盘因偏心,在距轴心水平距离6cm的A 处挂10g 钩码后盘

转过30°静止在如图

位置.若在 A 点处挂30g 钩码,则圆盘与最初相比要转过

多大角度才能平衡?

答案:60°

18.如图所示,ABO 为直角轻杆,O 为水平转轴,在B 点用细绳吊一个重为G =12N 的小球并靠在BO 杆上.已知AB=30cm,BO=40cm,细绳BC 长L=

20cm,小球半径,=10cm,在杆的A 端加外力F,使OB 杆在竖直方向保持静止.问:(1)力F竖直向下时大小为多少?(2)力F的最小值是多少?

答案:(1)4N(2)2.4N

2006典型例题分析--第6章 力矩分配法

第6章 力矩分配法 §6 – 1 基本概念 力矩分配法适用于无结点线位移的刚架和连续梁结构,是位移法求解问题的一种特殊情况,有线位移结构不能直接利用力矩分配法求解。 6-1-1 名词解释 (1)转动刚度AB S :表示抵抗转动的能力,其值等于转动端产生单位转角所需施加的力矩,单跨梁转动刚度如图6-1。 静定结构(或静定部分)的转动刚度为零,即对转动无抵抗能力。 图6-2所示结构有一个转角位移未知数,各杆的转动刚度为: 4433DA DA DC DC S i i S i i ==== 30DB DB DF S i i S === (2)分配系数Di μ:某一杆端的分配系数等于,该杆端转动刚度在同一结点各个杆端转动刚度中所占的比例值。图6-2结构的分配系数为: 0.4DA DA DA DB DC DF S S S S S μ==+++ 0.3DB DB DA DB DC DF S S S S S μ= =+++ 0.3DC DC DA DB DC DF S S S S S μ= =+++ 图6-2无侧移刚架结构 )b () c ( (a) 3AB S i =4AB S =AB S =(d) 图6-1等截面单跨梁转动刚度

2 结构力学典型例题解析 0DF DF DA DB DC DF S S S S S μ= =+++ (3)弯矩符号规定:力矩分配法在计算过程中不需要画弯矩图,只是以数值形式进行计算,因此,需要事先对力矩和弯矩符号进行规定,具体规定如下: 固端弯矩:顺时针为正。 结点外力偶:顺时针为正。 (4)固端弯矩F i j M :将转动结点固定变成位移法的基本体系,外荷载在基本体系上产生的杆端弯矩。如图6-2结构的固端弯矩为: F F F F F F 0DA DA DB BD CD FD M M M M M M ====== F 2 145kN m 8 DC M ql -= =-? F 30kN m DF M =-? (5)不平衡力矩u D M :不平衡力矩为转动结点所连杆端 的固端弯矩之和,其值等于刚臂反力矩。如图6-3为荷载引起的不平衡力矩u D M ,此时就是位移法典型方程的 1P R : F F F F 1P u D DA DB DC DF M R M M M M ==+++ 75kN m u D M =-? (6)被分配力矩M :M 等于不平衡力矩u D M 的负值; 若该转动结点有外力矩,外力矩可以直接进行分配,此时外力矩是被分配力矩的一部分。如图6-3被分配力矩为: 75kN m u D M M =-=? (7)分配弯矩Di M :某一杆端的分配弯矩Di M 等于该杆端的分配系数Di μ乘以被分配力矩 M 。如图6-3结构的分配弯矩为: 30kN m DA DA M M μ==? 22.5k N m D B D B M M μ==? 22.5kN m DC DC M M μ==? 0D F D F M M μ== (8)传递系数AB C :传递系数AB C 只与另一端(远端,即B 端)的支座情况有关,远端为定向支座时其值为-1,远端为固定支座时其值为0.5,远端为铰支座(包括自由端)时其值为0。如图6-3结构的传递系数为: 0.5DA C = 1DB C =- 0DC C = 0DF C = 图6-3不平衡力矩 F DC F M DB F

物体的受力分析及典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图b 中物体A 沿竖直面下滑,接触面粗糙。图c 中物体A 沿光滑斜面下滑。图d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。

力矩与力矩平衡

力矩和力矩平衡 一.内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二.要点大揭秘 1.转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB,现给B端加一个竖直向上的外力使杆刚好离开 地面,求力F的大小。在这一问题中,过A点垂直于杆的水平直线是杆的转轴。象这样,在解决问 题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩 平衡条件。 2.力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M=FL 单位:Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M=FL 如图中,力F的力臂为L F=Lsinθ 力矩M=F?L sinθ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的 力矩为该分力的大小与杆长的乘积。 如图中,力F的力矩就等于其分力F1产生的力矩,M =F sinθ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3.力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。 ∑M=0或∑M 顺=∑M 逆 F F2

受力分析及物体平衡典型例题解析

受力分析及物体平衡典型例题解析

专练 3 受力分析 物体的平衡 、单项选择题 1.如图 1所示,质量为 2 kg 的物体 B 和质量为 1 kg 的物体 C 用轻弹簧连接并竖直地静置于水平地面上. 再将一个质 量为 3 kg 的物体 A 轻放在 B 上的一瞬间, 弹簧的弹力大 小为(取 g =10 m/s 2)( ) A .30 N C .20 N D .12 N 答案 C 2.(2014 ·上海单科, 9)如图 2,光滑的四分之一圆弧轨道 AB 固 定在竖直平面 内, A 端与水平面相切,穿在轨道上的小球在 拉力 F 作用下,缓慢地由 A 向 B 运动,F 始终沿轨道的切线 方向,轨道对球的弹力为 F N ,在运动过程中 ( ) A .F 增大,F N 减小 B .F 减小, F N 减小 C .F 增大,F N 增大 D .F 减小, F N 增大 解析 对球受力分析,受重力、支持力和拉力,根据共点力平 衡条件,有: F N =mgcos θ和 F =mgsin θ,其中 θ为 支 持力 F N 与竖直方向的夹角;当物体向上移动时, θ 变 大,故 F N 变小, F 变大;故 A 正确, BCD 错误. 答案 A (2014 ·贵州六校联考, 15)如图 3 所示,放在粗糙水平面 上的物体 A 上叠 放着物体 B.A 和 B 之间有一根处于压 缩状态的弹簧,物体 A 、B 均处于静止状态.下列说 法中正确的是 ( ) C .地面对 A 的摩擦力向右 D .地面对 A 没有摩擦力 解析 弹簧被压缩,则弹簧给物体 B 的弹力水平向左,因此物体 B 平衡 时必 受到 A 对 B 水平向右的摩擦力, 则 B 对 A 的摩擦力水平向左, 故 A 、 B .0 3. A .B 受到向左的摩擦力 B .B 对 A 的摩擦力向右

化学平衡难点(平衡转化率、等效平衡)讲解与练习【经典】3

化学平衡·难点讲解与习题 一、等效平衡 一、概念 在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的含量(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(包括“相同的平衡状态”)。 概念的理解: (1)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。 (2)“等效平衡”与“完全相同的平衡状态”不同:“完全相同的平衡状态” 是指在达到平衡状态时,任何组分的物质的量分数(或体积分数)对应相等,并且反应的速率等也相同,但各组分的物质的量、浓度可能不同。而“等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同。 (3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)只要起始浓度相当,就达到相同的平衡状态。 二、等效平衡的分类 在等效平衡中比较常见并且重要的类型主要有以下三种: I类:恒温恒容下对于反应前后气体体积发生变化的反应来说(即△V≠0的体系):等价转化后,对应各物质起始投料的物质的量与原平衡起始态相同。 II类:恒温恒容下对于反应前后气体体积没有变化的反应来说(即△V=0的体系):等价转化后,只要反应物(或生成物)的物质的量的比例与原平衡起始态相同,两平衡等效。 III类:恒温恒压下对于气体体系等效转化后,只要反应物(或生成物)的物质的量的比例与原平衡起始态相同,两平衡等效。 解题的关键,读题时注意勾画出这些条件,分清类别,用相应的方法求解。我们常采用“等价转换”的方法,分析和解决等效平衡问题 三、例题解析 I类:在恒温恒容下,对于化学反应前后气体体积发生变化的可逆反应,只改变起始加入物质的物质的量,如果通过可逆反应的化学计量数之比换算成化学方程式的同一边物质的物质的量与原平衡相同,则两平衡等效。 例1:在一定温度下,把2 mol SO2和1 mol O2通入一定容积的密闭容器中,发生如下反应,

力与物体的平衡典型例题与习题

力与物体的平衡 题型一:常规力平衡问题 解决这类问题需要注意:此类题型常用分解法也可以用合成法,关键是找清力及每个力的方向和大小表示!多为双方向各自平衡,建立各方向上的平衡方程后再联立求解。 [例1]一个质量m 的物体放在水平地面上,物体与地面间的摩擦因数为μ,轻弹簧的一端系在物体上,如图所示.当用力F 与水平方向成θ角拉弹簧时,弹簧的长度 伸长x ,物体沿水平面做匀速直线运动.求弹簧的劲度系数. [解析]可将力F 正交分解到水平与竖直方向,再从两个方向上寻求平衡关系!水平方向应该是力F 的分力Fcos θ与摩擦力平衡,而竖直 方向在考虑力的时 候,不能只考虑重力和地面的支持力,不要忘记力F 还有一个竖直方向的分力作用! 水平: F cos θ=μF N ① 竖直:F N + F sin θ=mg ② F =kx ③ 联立解出:k = ) sin (cos θμθμ+x mg [变式训练1] 如图,质量为m 的物体置于倾角为θ的斜面上,先用平行于斜面的推力F 1作用于物体上,能使其能沿斜面匀速上滑,若改用水平推力作用于物体上,也能使物体沿斜面匀速上滑,则两次力之比F 1/F 2=? 题型二:动态平衡与极值问题 解决这类问题需要注意: (1)三力平衡问题中判断变力大小的变化趋势时,可利用平行四边形定则将其小和方向均不变的一个力,分别向两个已知方向分解,从而可从图中或用解析法判断出变力大小变化趋势,作图时应使三力作用点O 的位置保持不变. (2)一个物体受到三个力而平衡,其中一个力的大小和方向是确定的,另一个力的方向始终不改变,而第三个力的大小和方向都可改变,问第三个力取什么方向这个力有最小值,当第三个力的方向与第二个力垂直时有最小值,这个规律掌握后,运用图解法或计算法就比较容易了. [例2] 如图2-5-3所示,用细线AO 、BO 悬挂重力,BO 是水平的,AO 与竖直方向成α角.如果改变BO 长度使β角减小,而保持O 点不动,角α(α < 450)不变,在β角减小到等于α角的过程中,两细线拉力有何变化? [解析]取O 为研究对象,O 点受细线AO 、BO 的拉力分别为F 1、F 2,挂重力的细线拉力 F 3 = mg .F 1、F 2的合力F 与F 3大小相等方向相反.又因为F 1的方向不变,F 的末端作射线平 行于F 2,那么随着β角的减小F 2末端在这条射线上移动,如图2-5-3(解)所示.由图可以看出,F 2先减小,后增大,而F1则逐渐减小. [变式训练2]如图所示,轻绳的一端系在质量为m 的物体上,另一端系在一个圆环上,圆环套在粗糙水平横杆MN 上,现用水平力F 拉绳上一点,使物体处在图中实线位置.然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来位置不动,则在这一过程中,水平拉力F 、环与横杆的摩擦力f 和环对杆的压力N 的变化情况是( ) A.F 逐渐减小,f 逐渐增大,N 逐渐减小 B.F 逐渐减小,f 逐渐减小,N 保持不变 图2-5-3

力矩平衡

1.力矩 力的三要素是大小、方向和作用点。由作用点和力的方向所确定的射线称为力的作用线。力作用于物体,常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于外力作用线与轴的距离——力臂(d )。 力与力臂的乘积称为力矩,记为M ,则M Fd =,如图1,O 为垂直于纸面的固定轴,力F 在纸面内。 力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴转动没有作用。若力F 不在与轴垂直的平面内,可先将力分解为垂直于轴的分 量F ⊥和平行于轴的分量F ∥,F ∥对转动不起作用,这时力F 的力矩为M F d ⊥=。通常规定 绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。 某个力的力矩定义为力臂与力的叉乘,即M r F =? 力矩M 是矢量,其方向通常按右手螺旋定则确定:力矩M 同时垂直于力臂r 与力F ,当右手螺旋从r 的方向转到F 的方向时大拇指的方向即为M 的方向. 叉乘a ×b =c c 称“矢量的叉积”,它是一个新的矢量。叉积的大小:c =absinα,其中α为a 和b 的夹角。意义:c 的大小对应由a 和b 作成的平行四边形的面积。叉积的方向:垂直a 和b 确定的平面,并由右手螺旋定则确定方向,如图所示。显然,a ×b ≠b ×a ,但有:a ×b =-b ×a 【注意】转轴可以随意选取,力矩计算的核心技巧是巧选转轴,总的原则是 未知力作用线不能通过转轴,其次是其他未知力作用线尽量过轴。 通常不考虑形变的物体都称作刚体, 刚体平衡必须满足两个条件其 一:力的矢量和等于零,即0Fi ∑= 这就保证了刚体没有平动. 其二:作用于刚体的力对于矩心O 的合力矩也为零,即0Mi ∑= 知识点睛 10.1力矩平衡 第10讲 力矩平衡

化学平衡典型计算题修订版

化学平衡典型计算题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

化学平衡计算题 知识体系和复习重点 一、化学平衡常数(浓度平衡常数)及转化率的应用 1、化学平衡常数 (1)化学平衡常数的数学表达式 (2)化学平衡常数表示的意义 平衡常数数值的大小可以反映可逆反应进行的程度大小,K 值越大,反应进行越完全,反应物转化率越高,反之则越低。 2、有关化学平衡的基本计算 (1)物质浓度的变化关系 反应物:平衡浓度=起始浓度-转化浓度 生成物:平衡浓度=起始浓度+转化浓度 其中,各物质的转化浓度之比等于它们在化学方程式中物质的计量数之比。 (2)反应的转化率(α):α= (或质量、浓度) 反应物起始的物质的量(或质量、浓度) 反应物转化的物质的量×100% (3)在密闭容器中有气体参加的可逆反应,在计算时经常用到阿伏加德罗定律的两个推论: 恒温、恒容时: ;恒温、恒压时:n 1/n 2=V 1/V 2 (4)计算模式(“三段式”) 浓度(或物质的量) aA(g)+bB(g) cC(g)+dD(g) 起始 m n O O 转化 ax bx cx dx 平衡 m-ax n-bx cx dx A 的转化率:α(A)=(ax/m )×100% C 的物质的量分数:ω(C)= ×100% 技巧一:三步法 三步是化学平衡计算的一般格式,根据题意和恰当的假设列出起始量、转化量、平衡量。但要注意计算的单位必须保持统一,可用mol 、mol/L ,也可用L 。 例1、X 、Y 、Z 为三种气体,把a mol X 和b mol Y 充入一密闭容器中,发生反应X + 2Y 2Z ,达到平衡时,若它们的物质的量满足:n (X )+ n (Y )= n (Z ),则Y 的转化率为( ) A 、%1005?+b a B 、%1005)(2?+b b a C 、%1005)(2?+b a D 、%1005) (?+a b a 技巧二:差量法 差量法用于化学平衡计算时,可以是体积差量、压强差量、物质的量差量等等。

(完整版)物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 2α β A B O

高中物理受力分析(动态平衡问题)典型例题(含答案)【经典】(可编辑修改word版)

3 5 知识点三:共点力平衡(动态平衡、矢量三角形法) 1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕 O 点转至水平位置,则此过程中球对挡板的压力 F 1 和球对斜面的压力 F 2 的变化情况是( ).答案 B A .F 1 先增大后减小,F 2 一直减小 B .F 1 先减小后增大,F 2 一直减小 C .F 1 和 F 2 都一直减小 D .F 1 和 F 2 都一直增大 2、 (单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于 O 点.现用水平力 F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平, 此过程中斜面对小球的支持力 F N 以及绳对小球的拉力 F T 的变化情况是( ).答案 D A .F N 保持不变,F T 不断增大 B .F N 不断增大,F T 不断减小 C .F N 保持不变,F T 先增大后减小 D .F N 不断增大,F T 先减小后增大 3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力 F 1、半球面对小球的支持力 F 2 的变化情况正确的是( ). 答案 B A .F 1 增大,F 2 减小 B .F 1 增大,F 2 增大 C .F 1 减小,F 2 减小 D .F 1 减小,F 2 增大 4、(单选)如图所示,一物块受一恒力 F 作用,现要使该物块沿直线 AB 运动,应该再加上另 一个力的作用,则加上去的这个力的最小值为( ).答案 B A .F cos θ B .F sin θ C .F tan θ D .F cot θ 5.(单选)如图所示,一倾角为 30°的光滑斜面固定在地面上,一质量为 m 的小木块在水平力 F 的作用下静止在斜面上.若只改变 F 的方向不改变 F 的大小,仍使木块静止,则此时力 F 与水平 面的夹角为( ).答案 A A .60° B .45° C .30° D .15° 6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力 F 作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这 一过程中( ). 答案:AD A .细线拉力逐渐增大 B .铁架台对地面的压力逐渐增大 C .铁架台对地面的压力逐渐减小 D .铁架台所受地面的摩擦力逐渐增大 7、(多选)(苏州调研)如图所示,质量均为 m 的小球 A 、B 用两根不可伸长的轻绳连接后悬挂于 O 点,在外力 F 的作用下,小球 A 、B 处于静止状态.若要使两小球处于静止状态且悬线 OA 与竖直方 向的夹角 θ 保持 30°不变,则外力 F 的大小( ).答案 BCD A .可能为 mg B .可能为 mg 3 2 C .可能为 2mg D .可能为 mg 8、(单选)如图所示,轻绳的一端系在质量为 m 的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆 MN 上.现用水平力 F 拉绳上一点,使物体处于图中实线位置,然后改变 F 的大小使 其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力 F 、环与杆 的摩擦力 F 摩和环对杆的压力 F N 的变化情况是( ).答案 D A .F 逐渐增大,F 摩保持不变,F N 逐渐增大 B .F 逐渐增大,F 摩逐渐增大,F N 保持不 变

恒温恒容的等效平衡

《恒温恒容、恒温恒压条件下的化学平衡》教学案
广州市第四十七中学 毛艳滨
[考纲要求]
1.了解化学反应的可逆性。
2.了解化学平衡建立的过程。理解化学平衡常数的含义,能够利用化学平衡常数进行简
单的计算。
2.理解外界条件(浓度,温度,压强,催化剂等)对反应速率和化学平衡的影响,认识
其一般规律。
一.课前思考:
1-1、在恒温时,一固定容积的密闭容器内发生如下反应: 2NO2(气) N2O4(气)
达到平衡时,再向容器内通入一定量 NO2(g),重新达到平衡后,与第一次平衡时相比,
NO2 的浓度:
A 不变
B 增大
C 减小
D 无法判断
1-2、在恒温时,一固定容积的密闭容器内发生如下反应: 2NO2(气) N2O4(气)
达到平衡时,再向容器内通入一定量 NO2(g),重新达到平衡后,与第一次平衡时相比,
NO2 的体积分数:
A 不变
B 增大
C 减小
D 无法判断
1-3、在恒温时,一容积可变的密闭容器内发生如下反应: 2NO2(气) N2O4(气)
达到平衡时,再向容器内通入一定量 NO2(g),重新达到平衡后,与第一次平衡时相比,
NO2 的质量百分含量:
A 不变
B 增大
C 减小
D 无法判断
1-4、一定条件下:2SO2(g)+ O2(g)
2SO3(g),△H= —akJ/mol
(1) 若在甲、乙两个容积相等的容器中,分别充入
甲:2molSO2、1molO2;
乙:1molSO2、0.5molO2;
在上述条件下充分反应,并保持容积不变,当达到平衡后,试比较:
① 甲、乙两个容器中放出的热量与 a 的关系; ② 甲、乙两个容器中 SO2 的转化率的大小关系; ③ 甲、乙两个容器中平衡常数的大小关系;
1

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

平衡力距力矩与杠杆原理

平衡、力距 「力學」是一門研究物體的運動規律及其應用的學科,有的將其獨立成科,有的將其歸類為物理學的一個分支。查實,古人通過對天文、自然現象的觀察及機械的製作早已對力學有研究,天文、數學及力學基本上不可分割,眾多的「數學大師」如阿基米德(Archimedes)、拉普拉斯(Laplace)、拉格朗日(Lagrange)、牛頓(Newton)、帕斯卡(Pascal)與及較近代的龐加萊(Poincar′e ),介紹他們的時候,除了稱他們為數學家外,亦有稱他們為天文學家、物理學家或力學家。 以牛頓運動定律為基礎的力學稱為「牛頓力學」或「經典力學」,而通常說的「力學」,一般就是指「牛頓力學」或「經典力學」。 「力學」亦有很多分支,按研究問題的性質,可分為:靜力學(statics)、運動學(kinematics)和動力學(dynamics)1。 本欄的主要討論對象為靜力學,討論物體在外界的作用下,機械運動狀態保持不變(平衡)的條件。一件物件能夠保持平衡(equilibrium)的條件: 1.它所受外力的矢量和(vector sum)為零; 2.這些外力對任何軸所產生的力矩(moment of force)互相抵 消。 力矩與槓杆原理 力矩是量度「力」使物體產生轉動作用的量,亦是引致物體轉動狀態改變的原因。如圖,在B 點的力F 作用到A 點的力距M 為F 的大小與力臂d 的乘積,即 M =F d  其中「力臂」是指從轉軸到力的垂直距離。 力矩愈大,使物體轉動的作用愈明顯,如使用扳手擰螺絲 帽,愈長手柄的扳手,因力臂可以更長,用相同的力,會產 生更大的力距,會更易扭動螺絲帽。如圖,槓杆的「支點」為P , 左右懸掛了物件A 與B ,槓杆 平行的條件為 F 1d 1=F 2d 2 這條件亦稱為「槓 杆原理」。 F 12d d P 1礙于筆者對物理學的認知非常少,未能道出Dynamics 和Kinetics 的分別 1

化学平衡典型计算题

化学平衡计算题 一、化学平衡常数(浓度平衡常数)及转化率的应用 1、化学平衡常数 (1)化学平衡常数的数学表达式 (2)化学平衡常数表示的意义 平衡常数数值的大小可以反映可逆反应进行的程度大小,K 值越大,反应进行越完全,反应物转化率越高,反之则越低。 2、有关化学平衡的基本计算 (1)物质浓度的变化关系 反应物:平衡浓度=起始浓度-转化浓度 生成物:平衡浓度=起始浓度+转化浓度 其中,各物质的转化浓度之比等于它们在化学方程式中物质的计量数之比。 (2)反应的转化率(α):α=(或质量、浓度) 反应物起始的物质的量(或质量、浓度)反应物转化的物质的量×100% (3)在密闭容器中有气体参加的可逆反应,在计算时经常用到阿伏加德罗定律的两个推论: 恒温、恒容时: ;恒温、恒压时:n 1/n 2=V 1/V 2 (4)计算模式(“三段式”) 浓度(或物质的量) aA(g)+bB(g) cC(g)+dD(g) 起始 m n O O 转化 ax bx cx dx 平衡 m-ax n-bx cx dx A 的转化率:α(A)=(ax/m )×100% C 的物质的量分数:ω(C)=×100% 技巧一:三步法 三步是化学平衡计算的一般格式,根据题意和恰当的假设列出起始量、转化量、平衡量。但要注意计算的单位必须保持统一,可用mol 、mol/L ,也可用L 。 例1、X 、Y 、Z 为三种气体,把a mol X 和b mol Y 充入一密闭容器中,发生反应X + 2Y 2Z ,达到平衡时,若它们的物质的量满足:n (X )+ n (Y )= n (Z ),则Y 的转化率为( ) A 、%1005?+b a B 、%1005)(2?+b b a C 、%1005)(2?+b a D 、%1005)(?+a b a 技巧二:差量法 差量法用于化学平衡计算时,可以是体积差量、压强差量、物质的量差量等等。 例2、某体积可变的密闭容器,盛有适量的A 和B 的混合气体,在一定条件下发生反应:A + 3B 2C ,若维持温度和压强不变,当达到平衡时,容器的体积为V L ,其中C 气体的体积占10%,下列推断正确的是( ) ①原混合气体的体积为1.2VL ②原混合气体的体积为1.1VL ③反应达平衡时,气体A 消耗掉0.05VL ④反应达平衡时,气体B 消耗掉0.05V L

典型共点力平衡问题例题汇总

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少?

(3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得 T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。

动态平衡试题,死结和活结

★★★★★高一物理培优讲义2 分析动态平衡问题 1.动态平衡问题:通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,从宏观上看,物体是运动变化的,但从微观上理解是平衡的,即任一时刻物体均处于平衡状态。 2.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。 3.图解法分析动态平衡问题,往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。 解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这是解答动态问题的关键 4.典型例题: 例1:半圆形支架BCD上悬着两细绳OA和OB,结于圆心O,下悬重为 G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐 渐移至竖直的位置C的过程中,如图所示,分析OA绳和OB绳所受力的 大小如何变化? 例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的 压力为F N1,球对板的压力为F N2.在将板BC逐渐放至水平的过程中,下列 说法中,正确的是() A.F N1和F N2都增大 B.F N1和F N2都减小 C.F N1增大,F N2减小 D.F N1减小,F N2增大 思考:1如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点 A向上移动而保持O点的位置不变,则A点向上移动时 () A.绳OA的拉力逐渐增大; B.绳OA的拉力逐渐减小; C.绳OA的拉力先增大后减小; D.绳OA的拉力先减小后增大。 例3:如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为α, 在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板 与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力 大小如何变化?

高考物理力矩和力矩平衡专题训练

力矩和力矩平衡 一. 内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二. 要点大揭秘 1. 转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。 2. 力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M =FL 单位: Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力 矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M =FL 如图中,力F 的力臂为L F =Lsin θ 力矩M =F ?L sin θ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。 如图中,力F 的力矩就等于其分力F 1产生的力矩,M =F sin θ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3. 力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。 F F 2

高中化学选修4第二章:化学反应速率和化学平衡教案

高中化学选修4第二章:化学反应速率和化学平衡教案 一.教学内容: 化学反应速率和化学平衡 二. 教学要求: 1. 掌握化学反应速率的概念及反应速率的表示方法。 2. 理解浓度、压强温度和催化剂条件对化学反应速率的影响。 3. 建立化学平衡的观点。 4. 理解化学平衡的特征。 5. 理解浓度、压强和温度等反应条件对化学平衡的影响。 6. 理解平衡移动原理,学会平衡移动原理的应用。 三. 教学重点: 1. 外界条件对化学反应速率的影响。 2. 化学平衡观点的建立。 3. 浓度、压强和温度对化学平衡的影响。 四. 知识分析: 1. 判断可逆反应达到平衡的标志: (1)直接判断法: 从“化学平衡状态”概念得出: a. 正反应速率等于逆反应速率。 b. 各组分的浓度保持不变。 (2)间接判断法: a. 各物质的???百分含量 物质的量 不变。 b. 各气体的?? ?体积 分压不随时间的改变而改变。 (3)特例判断法: 只适用于反应前后气体物质的分子总数不相等的可逆反应,混合气体的总压、总体积、总物质的量、平均摩尔质量、平均相对分子质量不随时间的改变而改变,则可以判断达到平衡。而对于反应前后气体物质的分子总数相等的可逆反应,则不能以判断达到平衡。 2. 平衡移动方向的判断: 化学平衡建立的实质是逆正v v =,故凡能不同程度地影响正v 、逆v 的因素都使平衡发生移动,实际生产中常采用改变温度、浓度、压强(指气体)的方法,使平衡朝着所需的方向移动,其判断依据是勒沙特列原理。应注意: (1 且在速率改变的过程中,始终保持着 (2)对于反应前后气态物质的总体积不变的反应,如:(H 2逆 正v v =

相关文档
最新文档