空调系统AHU单元的优化控制

空调系统AHU单元的优化控制
空调系统AHU单元的优化控制

毕业设计(论文)任务书

课题名称:空调系统AHU单元的优化控制

学院:

专业:

班级:

姓名:

学号:

教师(签字):

智能电网节能优化调度系统

智能电网节能优化调度系统 王朝明[1][2],马春生[2] (东南大学江苏南京 210096)[1] (南京软核科技江苏南京 210019)[2] 摘 要:本文基于智能电网和节能发电调度背景下,针对现代地区电网调度的特点,提出了智能电网节能优化调度系统,本系统由电网经济运行控制系统、分布式无功电压优化控制系统、能耗在线监测及综合降损分析系统、分布式电源优化调度和大用户优化调度等多个模块构成。通过该系统,地区电网能够实现有功无功的联合优化控制,在智能电网调度的正常模式下,实现电网在安全约束条件下的经济运行。 关键词:节能优化调度,节能发电调度,智能电网,经济运行,无功电压优化,在线线损 0 引言 经济调度的目标是在保证电网安全运行的前提下,尽可能提高电网运行的经济性。传统的经济调度一般只考虑当前运行方式的安全性约束,而不考虑预想故障条件下的安全性约束,从而使问题大大简化,数值计算简单迅速,其结果则可能导致调度后电网因不满足预想故障条件下的安全性约束而进入预警状态,下一断面又需进行预防控制以消除预警状态,从而出现控制振荡现象。为避免出现上述情况,在经济调度问题中应加入预想故障条件下的安全性约束。其求解可在传统经济调度结果的基础上,借鉴预防控制问题的求解方法加以实现。 在智能电网环境下,要求各级调度在安全可靠、经济环保、运行效率等多个目标下进行优化调度,要求传统的调度转为以节能、环保、经济为目标,以公正友好的方式接纳各种电源,能够兼顾多目标优化、灵活协调、安全可靠。在智能电网环境下,传统的经济调度要转变为节能优化调度,调度员也只有在节能优化调度帮助下才能达到智能电网的要求。 在节能发电调度和智能电网的背景下,智能电网节能优化调度是地区电网经济运行的综合决策平台,为地调提供了智能电网下、节能环境下地区电网经济运行整体解决方案。它以系统安全运行为约束条件,以降损节能为目标进行经济调度。1地区电网节能优化调度系统的定位 1.1与省网节能发电调度的关系 为实现节能减排目标,引导电源结构向高效率、低污染方向发展,2007年8月,国家发展和改革委员会等部门提出了《节能发电调度办法(试行)》(以下简称《办法》),要求改革现行发电调度方式,开展节能发电调度[1]。 节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。节能调度的基本原则是:以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 目前节能发电调度主要在广东、贵州、四川、江苏和河南五个省份进行试点。由于受到金融危机的影响,节能发电调度的试点遇到不少阻力。但是,节能降耗和污染减排是“十一五”期间一项全社会任务,是构建和谐社会的重要因素。国家在“十一五”规划中提出2010年单位GDP能耗下降20%,这个任务非常艰巨。因此随着经济复苏,节能发电调度的试点会不断推进。 节能发电调度是从省调层面,以降损节能为目标,对大型发电机、高耗能机组、新能源进行优化调度。地区电网作为省级电网的子网,同样需要降损节能。两者有机配合才能真正实现降损节能的目标。 1.2与智能调度的关系 近年来,智能电网是国际电力业界的热门话题,被认为是改变未来电力系统面貌的电网发展模式。我国国家电网公司已明确提出要“建设坚强的智能电网”的规划。 目前,在扩大内需的大背景下,智能电网的

暖通空调优化控制技术的分析

暖通空调优化控制技术的分析 发表时间:2019-07-03T11:39:59.020Z 来源:《防护工程》2019年第2期作者:李真禛 [导读] 本研究通过对暖通空调优化控制技术的深入研究,以期使建筑物的中央空调系统能够适应不同条件的负荷,提升暖通空调优化系统控制技术的最佳效率,因而研究暖通空调系统控制技术具有非常广阔的应用前景和重大的现实指导意义。 辽宁天泓工程项目管理有限公司辽宁沈阳 110000 摘要:暖通空调优化控制技术是在建筑项目施工中,提高采暖通风施工质量的一个主要技术,选择科学合理的技术,推动其可持续发展是至关重要的。技术人员和设计人员必须要合理使用太阳能技术和地源热泵技术,选择与设备运行相适应的设定值,提高控制技术的自动化水平,增强能量管理水平,以达到节能降耗的目的,真正优化暖通空调的控制。 关键词:暖通空调;优化控制技术;分析 随着社会经济的飞速发展和人们生活水平的日益提高,暖通空调优化控制系统的应用范围也在不断扩大,根据相关数据表明,建筑物空调系统的能量消耗占到建筑物整体耗能一半以上。由于现阶段能源紧张问题和环境问题成为了国家发展经济共同关注的问题,因而为了使空调系统的优化设计能够满足建筑物居民的生活需求,本研究通过对暖通空调优化控制技术的深入研究,以期使建筑物的中央空调系统能够适应不同条件的负荷,提升暖通空调优化系统控制技术的最佳效率,因而研究暖通空调系统控制技术具有非常广阔的应用前景和重大的现实指导意义。 1.暖通空调的控制技术概念阐述 暖通空调的基本控制结构是由建筑物内的通风系统、建筑物内的采暖系统以及建筑物内的空气调节系统组成,暖通空调的控制系统也可以简称为暖通。从另一个角度看,暖通空调的基本控制系统也可以分为供水控制系统以及空气控制系统这两个方面。通过暖通设备可以将调节空气的空调系统分为三个方面,分别为集中处理系统和局部处理系统以及半集中处理系统。而从集中处理系统的角度上来看,也可以根据空气的来源不同将控制设备分成直流式设备、冷源设备以及封闭式设备。在暖通空调系统进行控制的过程中,要保证建筑物室内的温度达到合理的范围,从而使得暖通空调系统能有效的对建筑物室内温度进行调节。如果暖通空调对建筑物室内温度的调节能力越强,那么暖通空调控制系统的节能效果就越好。另外,对暖通空调系统进行控制需要考虑到信号传输时间的问题,一般来说,暖通空调系统的信号传输都具有一定的延迟问题,所以需要进行预测控制,从而提升暖通空调的运行效率。随着互联网技术的发展,暖通空调控制技术在逐渐的与互联网技术相融合,这也是暖通技术未来的发展趋势。 2.暖通空调优化控制技术存在的问题 在实际将暖通空调优化控制技术投入使用的过程中,环境质量难以得到保障,且能耗较大成为了制约暖通空调优化控制技术发展的瓶颈。随着我国社会经济的迅猛发展,人们的生活质量在进一步提升的同时,也使暖通空调的使用越来越频繁,使用范围也越来越广泛。其中,能耗大很大部分是由暖通空调系统技术方案的设计所决定的。一般情况下,空调系统技术设计方案致使空调系统长时间在低负荷状态下运行,难以真正适应使用者对建筑物采暖通风技术的设计需求,难以满足人们的日常生活要求。在一定程度上,由于空调系统运行质量较低,造成居民对空调环境的满意率也在下滑,特别室内湿度的加大、装修屋内甲醛的超标等问题的出现,严重影响着建筑物的舒适度,在制约人们工作效率的同时,也影响着人体的健康。 3.暖通空调控制技术优化 3.1暖通空调降噪技术 暖通空调的主要组成部分有空调箱、电动机、风机和空气压缩机,每一个部件在运行时都会产生噪声,因此,要想优化设计,降低空调运行的噪声,就要从源头上对这些设备进行合理的设计升级和精确的安装。 3.1.1积极维护消声设备。几乎所有的设备运行时均会产生噪声。当只有一个设备运行时,发出的声音比较小,但是几个设备一起运行时,振动互相影响,就会发出噪声。因此,要经常维护暖通空调的消声设备,保证其工作效率。 3.1.2及时更新风机设备,采用先进技术。实验证明,采用联轴器转动方式可以有效降低风机转动时产生的噪声。同时,合理控制传动带的松紧程度也是一种有效的方法。 3.1.3减少送风量。要减少送风量,就要加大送风温差,让风机的转速降低,从而实现噪声的降低。同时,还要对送风管进行定期检查,避免因杂物的存在而引起不必要的噪声,甚至直接影响暖通空调的送风工作。 3.2暖通空调节能技术 3.2.1暖通空调的热源问题优化。暖通空调最主要的功能之一就是供热。空调热力的来源有很多种,主要有锅炉房、热泵、热电站和直燃型溴化锂热水机组这些。其中,热电站的效率最高,能耗也很高。所以在暖通空调的建设中,可以使用热泵替代。热泵能广泛的利用各种天然能源,在节能环保方面有重要作用。或者也可以考虑使用锅炉集中供热,这样的集群效应也比单独的供热效率更高。 3.2.2推广变频技术有利于暖通空调的节能环保。变频技术是通过控制电压的频率来改善电机的能耗。通常情况下,电压的频率降低时会促使电动机的转速降低,这时,相关的能耗就会降低。变频空调对电压的频率控制主要体现在,当需要进行制冷工作时,变频空调就会促使升高电压,电动机就会迅速工作进行制冷。而一旦制冷完成,温度稳定时,变频空调就会调低电压,节约能源。 3.2.3降低空调的热损耗分析。暖通空调在工作的时候,需要各种媒介配合进行冷暖空气的运输输送,以达到调节室内温度的目的。因此,在管道的设计施工时就要做好合理的布局,缩短管道长度对节约能源有十分重要的作用。另外,还可以在管道外部加装保温材料,这样也能避免热损耗,提高能源利用率。 3.3温度湿度控制技术 3.3.1温湿度变化会对热舒适产生影响。有报道指出,如若室内空气的温度出现变化,则会较大程度对室内的热舒适度造成影响。而对热舒适度而言,基于某种特定范围或区域内,相对湿度所存在的改变,往往不会对人的热舒适感产生影响。 3.3.2室内设计温度变化,会对空调能耗产生影响,比如四层高的住宅楼,计算其节能率变化情况,另对其夏季冷负荷进行计算。以25℃为室内设计温度取值,其基准的节能率则会伴随室内温度的不断升高,而出现随之升高状况,当室内的设计温度以1℃节点不断递增,

连续系统的最优控制

第6章 连续系统的最优控制 6.1 最优化问题 6.2 最优控制的变分法求解 6.3 线性系统二次型性能指标的最优控制 1、线性系统有限时间最优状态调节系统 ◆二次型性能指标 设受控系统对平衡点的增量方程为 ()()()()()x t A t x t B t u t ?=?+?,00()x t x ?=? 简记为 ()()()()()x t A t x t B t u t =+,00()x t x = 最优状态调节是指:对上述系统,在时间区间0[,]f t t t ∈,

寻求最优状态反馈控制,使初始状态偏差00()x t x =迅速衰减,且同时使二次型性能泛函 11()()[()()()()]d 22f t t t t f f f x u t J x t Q x t x t Q x t u t Q u t t =++? * min f x u J J J J J =++→= 式中 ()0f n n Q ?≥——终端加权矩阵。 ()0x n n Q ?≥——状态加权矩阵。 ()0u r r Q ?>——控制加权矩阵。 三个加权矩阵均为对称矩阵,为简单,一般取为对角矩 阵。 ●1()()2 t f f f f J x t Q x t =表示对终端状态偏差即稳态控制精度的限制。当1 diag[]f f fn Q q q =,2 1 1()2n f fi i f i J q x t ==∑

●0 1()()d 2f t t x x t J x t Q x t t =?表示对控制过程中状态偏差衰减速度的要求。当1 diag[]x x xn Q q q =,0 2 11()d 2f t n x xi i i t J q x t t ==∑? ●0 1()()d 2f t t u u t J u t Q u t t =?表示对控制过程中所消耗的能量的限制,以避免状态偏差过快衰减导致控制量超过允许数值。当 1 diag[]u u ur Q q q =,0 2 11()d 2f t r u ui i i t J q u t t ==∑?,2()i u t 可理解为功率。 实际上,在性能指标中,x J 已经对控制的稳态精度有所要求。当对稳态精度有更高的要求时,才增加f J 项。 由上可知,上述二次型性能指标的物理意义是,在整个时间区间0[,]f t t t ∈,特别是终值时刻f t t =上状态变量尽量接近于0

VRV空调系统优化方案

VRV空调系统优化方案 一、工程概述 1、工程简介:本项目空调面积17000m2。原设计中央空调为风冷热泵空调机组,采用冬天制热,夏天制冷,室内采用卡式风机盘管。根据本工程的二次装修设计及要求,对本工程中央空调系统进行深化设计。 2、针对本工程的优化措施:仔细研究每个房间的布局找到最佳的气流组织方式,例如采用大化小方法,使冷气更加均匀地进入房间,而不是集中在某一个局部。根据每个房间布局情况最大限度地提高风机盘管和风管、冷媒管道的安装高度,从而最大限度地提高吊顶高度。根据每个房间或者楼层工作人员年龄、身体状况的不同,逐渐地找到最适宜的空调温度,既节能又舒适。 二、原设计中央空调系统 1、系统的定义及控制原理: 本工程采用风冷热泵空调机组,机组通过风冷冷水机组制取冷水,风冷热泵机组制热工况制取热水。风冷热泵的基本原理是基于压缩式制冷循环,利用冷媒做为载体,通过风机的强制换热,从大气中吸取热量或者排放热量,以达到制冷或者制热的需求。 2、系统特点

风冷热泵机组是空调系统中的主机,采用风冷冷凝器不需要冷却塔,而蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的、风冷热泵相对于空气源热泵来说他的能力要低一点,他的进出水温是5摄氏度左右,而空气源的进出水温差能达到40摄氏度。 风冷热泵机组与风机盘管共同使用,前者提供冷水或热水,后者将冷水或热水通过热交换,吸出冷风或热风。 3、原设计中央空调系统配电方案 原设计中央空调系统配电方案为利用6个回路从2#楼变配电室分别为楼层空调系统配电,每个回路均利用WDZ-YJY-3*240+2*120电缆配电,至各个楼层利用T接端子引至楼层空调配电箱。 三、VRV空调系统 1、VRV空调系统的定义及控制原理 VRV空调系统全称为VariableRe-frigerantVolume系统,即变制冷剂流量系统。系统结构上类似于分体式空调机组,采用一台室外机对应一组室内机。VRV空调系统是在电力空调系统中,通过控制压缩机的制冷剂循环量和进入室内换热器的制冷剂流量,适时地满足室内冷热负荷要求的高效率冷剂空调系统。VRV空调系统需采用变频压缩机、多极压缩机、卸载压缩机或多台压缩机组合来实现压缩机容量控制;在制冷系统中需设置电子膨胀阀或其它辅助回路,以调节进入室内机的制冷剂流量;通过控制室内外换热器的风扇转速积,调节换热器的能力。

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案 1.1.1控制设备范围 一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关 阀门、膨胀水箱、软化水箱等。 1.1.2空调自控系统 1.1. 2.1.监测功能信息采集优化 A通过冷机通讯接口读取(包括但不限于)以下参数: 冷水机组运行状态、故障报警状态 冷冻水供/回水温度、冷却水供/回水温度 冷冻水温度设定值 运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。 B冷冻水系统 冷冻水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水供回水管温度、水流量反馈(AI) 冷冻水泵进口、出口分支管压力(AI) 冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI) 冷冻水泵变频器频率反馈(AI) 最不利末端供回水压差

C冷却水系统 冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI) 冷却水供回水管温度、环网水流量反馈(AI) 冷却水泵进口、出口分支管压力反馈(AI) 冷却水泵、冷却塔风机变频器频率反馈(AI) 冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀 压差旁通阀开度反馈(AI) 免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控 膨胀水箱超高、超低水位监测(DI) 软化水补水箱高、低水位监测(DI) F其他参数 室外干球温度、相对湿度(AI) 计算室外湿球温度、焓值 免费供冷系统水泵运行、故障、手/自动状态(DI) 免费供冷板换进出口压力监测(AI) 1.1. 2.2.控制功能 1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制) 2、冷冻水系统: 冷冻水泵启/停控制(DO)及反馈

控制系统节能优化技术研究与应用探讨

控制系统节能优化技术研究与应用探讨 发表时间:2019-09-18T08:58:11.450Z 来源:《电力设备》2019年第7期作者:许明阳朱秀春 [导读] 摘要:燃煤电厂在生产过程中一般通过运行操作优化(运行调度)、主辅机设备节能改造来提高机组经济性,本文通过分析火电厂节能降耗管理措施现状及发展趋势,提出了通过控制系统节能优化技术降低机组能耗的思路,为热控技术管理提供新的理念和方向。 (华润电力(贺州)有限公司广西贺州 542709) 摘要:燃煤电厂在生产过程中一般通过运行操作优化(运行调度)、主辅机设备节能改造来提高机组经济性,本文通过分析火电厂节能降耗管理措施现状及发展趋势,提出了通过控制系统节能优化技术降低机组能耗的思路,为热控技术管理提供新的理念和方向。 关键词:控制系统节能优化、自动寻优控制、机组协调控制、自动控制节能化 1.概述 在传统燃煤电厂的生产运营管理中,降低机组能耗的措施主要通过运行操作调整、主辅机设备节能改造来实现,然而工艺设备节能改造需要投入大量的改造费用,且经过多年设备优化、调整优化,机务设备、运行调整在节能方面各种方式似乎已用尽,电厂生产运营节能管理该朝哪个方向发展成为了电厂经营管理日夜思索的问题。 2.控制系统节能技术研究探讨 对于火力发电厂来说,考核机组节能降耗关键指标为发电煤耗、厂用电率,要确保上述2个指标处于最低值,机组必须稳定在最佳经济工况运行。 2.2火电厂关键控制系统节能技术概述 2.2.1协调控制系统节能优化 2.2.1.1协调控制系统优化节能优化之“稳”、“准”原则 只要确保控制系统“稳”、“准”即可达到机组节能效果,因此机组协调控制系统需要不断持续改进,提高控制系统稳定性、准确性,将相关控制对象参数控制在机组最佳经济运行工况即可获得巨大的节能效果。 2.2.1.2协调控制系统优化节能优化之“细”原则 2.2.2送风控制系统 笔者所在电厂机组配置双进双出磨煤机制粉系统,根据其制粉系统特点,风量指令是通过负荷指令-风量函数F (x)后,进入超前滞后、惯性环节得到初始的送风指令,回路中的超前滞后环节的采用是为了满足先加风后加煤设置,以满足炉膛的燃烧过程。 对于送风控制系统优化相对比较简单,只需通过试验摸索最佳负荷指令-风量函数F (x),并结合氧量校正回路优化即可将风量需求控制更加精准,达到降低送、引风机电耗,降低排烟损失和减少NO x排放。 2.2.3氧量自动寻优校正回路 负荷指令产生的风量指令还需考虑到实际煤种的变化情况,常规处理在控制回路中增加氧量校正的环节,以确保燃烧的稳定性和经济性,过高氧量会造成送、引风机电耗增加,锅炉排烟损失增大,同时NOx含量升高,增加下游脱硝设备运行损耗及液氨投量;过低氧量会造成锅炉燃烧不充分、烟气飞灰含碳及COe等不完全燃烧损失增大,同时燃烧产生大量COe对炉膛炉管有腐蚀作用,因此,合适氧量校正曲线对机组运行的稳定性和经济性尤为重要,氧量校正曲线优化对于机组节能具有重要作用。 2.2.4 一次风压自动寻优 一次风压控制回路策略一般采用定压或者根据机组负荷滑压方式,然而不管哪一种都是不经济的。 对于一次风压控制系统节能优化,可通过磨煤机入口风压、风量变化,结合机组负荷指令,在线计算一次风压目标值,实现一次风压自动寻优控制。 2.2.5加热器水位自动寻优控制 由于部分机组的水位给定值不科学,需要进行水位调整试验,确定合理的运行水位。试验方法很简单,机组运行平稳后,保持各参数不变,逐步提高加热器水位,观察疏水温度下降情况,当水位提高到疏水温度不再降低时,说明此时已无蒸汽进入水封,然后再考虑适当裕量即为最低水位值,而高水位则以不淹没排空气管为限。同时可在此基础上引入加热器端差等有关运行参数,在线修正加热器运行水位定值,实现自动寻优控制。 3.控制系统节能技术实例 贺州电厂先期于2014年展开“协调控制节能优化技术”、“氧量手动寻优控制”的研究,对相关控制回路进行了初步节能优化,从数据统计看取得了非常可观节能成果,主要优化内容如下: 3.1通过试验寻找锅炉最佳氧量控制模型,对燃烧控制系统氧量动态数学模型进行修正;优化后锅炉燃烧过剩空气系数控制更加精确,提高燃烧效率,降低送、引风机厂用电,使控制系统更佳节能。 3.2贺州电厂制粉系统配置了双进双出磨煤机,入炉煤量无法直接测量,因此采用了软测量模型计算入炉煤量;本次优化对双进双出磨煤机料位与入炉煤量的动态特性数学模型进行深度优化,为负荷风挡板控制系统、协调控制系统控制模型优化提供新的理论依据。使用新模型后,提高入炉煤软测量的准确性,使原软测量偏差30~50吨降低至5~13吨,使控制系统入炉煤量控制更加精准。 3.3对协调控制系统子系统“锅炉主控”比例、积分实施变参数控制策略,解决了原控制系统周期性波动问题;在主汽压力控制回路中增加变负荷过程中压力设定值的自适应产生算法回路,以改善机组变负荷过程中的压力调节品质。 3.4对协调控制汽机指令进行相应的修改,增加机组负荷指令对应函数的前馈量;增加压力解耦控制回,提高主要压力控制品质。 3.5根据南方电网两个考核细则标准,结合机组运营现状,优化一次调频控制回路模型,提高一次调频动作合格率。 3.6优化后降低了送、引风机厂用电率 2014年3月、9月分别对贺州电厂#2、1机组氧量控制动态数学模型进行优化设计后,对锅炉燃烧过剩空气系数控制更加精确,送、引风机电耗大幅降低。 4.优化后控制系统调节品质指标 贺州电厂在对协调控制系统进行节能优化后,各主要技术考核指标均优于1000MW级机组调节系统动、稳态偏差行业标准优良指标。

过渡季节VAV空调系统送风温度的优化控制策略

过渡季节VAV空调系统送风温度的优化控制策略 摘要:良好洁净的空气质量与节能效果间的权衡一直以来是变风量空调系统研究的热点话题。本文对多个地区变风量空调系统进行严格对比和分析,通过固定的状况下来科学分析了系统其节能的效果,详细的对比了各种环境因素以及影响因素,且在此基础上提出了一种可行的优化方案。针对混合型送风系统提出了相关的优化控制方案和取得科学研究结果。 关键词:多区域;部分负荷;变风量系统;节能 工业的快速发展,给人们生活带来方便的同时,对于相关性产品的科技技术和特定作用有了更高的要求,以满足人们日益增长的需求。变风量空调系统自身具有追踪负荷功能,且节能效果远远高于传统空调系统的优点,受到了人们的喜欢和适用。 在我国,过渡季节的昼夜温差一般都波动较大,有必要对VAV 系统的送风温度进行实时优化并重设定。送风温度重设定(supply air temperature reset,SAT-reset)是指在一定工况下提高系统送风的送风温度,从而达到节能目的的一种控制策略。我们在稳定工况下分析了送风优化控制的节能效果,并在此基础上提出了一个可行的送风温度控制优化方案。 1. 稳定工况下的SAT-reset结果比 1.1 AHU空调 首先,将AHU和空调区看作是一个稳定在恒定的设定温度的开口系统环境,系统本身是具有热源,空调区域的内部负荷,系统流入的能量,流出的能量,和AHU负荷,直接用T 来表示温度,F来表示流量,“oa”代表新风,“ca”代表排风,“set”代表设定的温度,由能量方程式可以得出以下的结论:当t oa等于t ea时,Q r始终等于Q i;当t oa低于t ea时,F oa越大,即直线斜率越大,AHU 负荷就越小,能耗也越小;当t oa高于t ea时,F oa越大,AHU 负荷就越大,能耗也越大。从节能角度考虑,新风温度较低时应当尽量增大新风量;新风温度较高时,应当在保证空调区域最小新风要求的前提下尽量减少新风量。 1.2 BIN法改进 实验证明,各种环境因素都有可能会影响到空调负荷,比如:气温、含湿量、太阳总负荷。从某种意义上讲,现有的BIN法具有不足之处,此方法主要是依靠频段中的干球温度以及对应的湿球温度的平均值来测定出,没有直接的反映出各个量之间的变化。 我们则是联合频率表来进行操作,不仅仅是从外观上科学的比对出两个变量之间的变化,更加重要的是其准确性较高。常规 BIN 法掩盖了各 BIN 段下的含湿量极值,减弱了各

能源管理系统优化

能源管理系统优化 瓦房店轴承集团有限责任公司 主创人:江忠元陈家君 主要参与人:孙永生赵玮高显华初勇 节约能源、降低消耗、保护资源是国家实施可持续发展战略的重要组成部分,而对于加入WTO融入国际经济一体化的中国国有企业,如何提高核心竞争力,在激烈的市场竞争中立于不败之地,是摆在我们面前一个十分紧迫的话题。瓦轴集团公司近几年来紧紧围绕增强市场竞争力、降低成本、提高经济效益、实现集约式发展这一目标,在多年实践探索的基础上,以现代化管理思想为指导,采用科学配套的现代管理方法和手段建立系统高效的节能管理体系,并在生产经营实践中不断优化,取得了较好的效果,使公司能源管理实现了系统化、科学化、高效化。 一、选题依据 瓦轴集团公司是一个年耗标准煤12.5万吨,能耗总价值达1.2亿元,占产品制造成本的12%左右。其中耗煤7.8万吨标煤,耗电11072万千瓦时,耗焦碳250吨,耗成品油2千吨,热力消耗25670百万千焦。万元产值综合能耗为1.03吨标煤。由此可见,能源消耗在企业产品成本中占有举足轻重的地位,加强能源管理,实现节能降耗已势在必行。 在能源管理工作中,虽然公司在管理水平、管理方法、指标水平上居于国内先进水平,但与国际先进水平相比,与企业参与国际市场竞争的要求相比,与企业“十五”发展目标要求相比,尚有较大差距。存在的主要问题是:

──节能理念上的差距。从节能主体上说,节约能源无论从能动性还是经济适用上都是积极的,要求企业经营者和员工都有必须具有主动节能意识,而目前员工已习惯于传统的被动式节约能源意识和思维定势。 ──人员责任上的差距。随着企业技术进步步伐的加快,现代企业能源管理更需要精通能源技术,熟练运用现货管理方法,具备全部节能理念的复合型、知识型管理人才。而我们在这方面的人才十分短缺,已不适应节能工作的需要。 ──技术工艺上的差距。节能新技术、新工艺未能很好地应用于生产经营中,造成企业能源利用率相对较低,主要耗能产品单耗太高。 ──装备上的差距。近几年虽然进行了较大力度的设备改造,但由于资金等原因仍缺少先进的节能型设备,普遍使用的是七、八十年代的机床,装备水平低。 ──管理体制上的差距。虽然进行了能源管理体制改革,但在运行过程中仍缺乏科学、规范、高效的系统性管理模式,能源管理体系不完善。 鉴于上述问题,我们从公司实际出发,在对能源管理系统进行自检的基础上,以能源管理系统优化为目标,以系统工程为主,配套应用多项现代化管理方法,实现能源管理系统的改善。 系统工程是以科学的观点和现化数学的方法,在充分调动人的积极因素的基础上对系统进行组织和管理,使其在总体上达到最优的目标。应用系统工程的理论来指导建立能源管理系统,进行系统设计,使能源管理体系更系统性,以达到整体优化的状态。能源管理的追求目标就是在不断优化单

暖通空调优化控制技术研究

暖通空调优化控制技术研究 一、我国暖通空调控制现状暖通空调运行现状我国空调系统都是根据客户定制的需求而进行设计的,这就导致了很多空调系统的运行效率很低,处于长期低负荷工作的情况。例如中央空调在使用过程中,根据客户的需求,大多数都是设置在最初生产设计负荷的40%-60%左右,而且空调设备经常在大流量小温差的情况下工作,设备中冷凝水过多,而新风获取不足,特别是在季节转换期,新风传输不理想,整体系统运行效率很低。并且随着人们环保意识的加强,许多大型建筑中的暖通空调导致室内二化碳和甲醛超标,室内相对湿度过大,空间温度过冷或者过热。这都是间接影响室内人们的健康和工作效率。 虽然暖通空调系统最初设计时是按照所能承载的最大负荷计算的,而多数情况下在轻负荷状态下运行,满负荷状态下运行的机会很。另外由于暖通空调采用的的运行方式是定点工作控制方式,在受到室外环境变化,阳光照射变化灯因素,空调传热效率降低,使得空调系统低效工作,这些原因都导致了资源的浪费。 暖通空调技术发展现状目前我国暖通空调的智能控制系统的效果不理想。由于暖通空调耗能在建筑中的比例很大。基于定风量、定温度和定压力设计的空调控制CAV系统和基于变风量的空调控制VAV系统的在负荷条件变化的状态下,控制效果都不明显,造成能源的损失和浪费。而PID控制系统以及近年来加强了对空气处理技术的多回路PID控制,都存在调节的速度较慢,时间过长,进而导致制冷机组、空调处在长时间运行的状态下,系统内部千扰因素很多,热量相互抵消,控制器的参数无法科学确定,也造成了能源的大量消耗。特别是暖通空调明显时变性、大惯性、强千扰性、非线性、大滞后等特征,要实现室内环境良好,温度适中要求的良好控制效果和能源节约是急需解决的难题。 二、暖通空调控制技术优化暖通空调控制系统设计优化关键在于通过客户的需求设置最佳的温度值,减少室内外温度不必要因素的千扰,进而设计合理的暖通空调的控制器,达到降低能源消耗的目的。通过对目前运行的控制变量进行一段时间的实时跟踪,进而摸索出未来系统控制输出准确的期望,排除了暖通空调停滞性和大惯性的缺陷。另外可以领用神经网络的强学习能力克服暖通空调设备运行环境的变化对设备控制带来的影响作用。

空调系统设计方案

XXXX有限公司 空调系统设计方案 一、工程概况 XXXXX有限公司是一座现代化的生产制造工厂,根据工艺的要求,对厂房的温度、湿度、新风量都有严格的要求。为了满足室内空气质量及节能要求,我们为贵公司提供Siemens公司可编程逻辑控制PLC S7-200系统。该控制系统是将3台冷水机组、8个水泵系统、4个冷却塔系统,23台恒温恒湿空调机组集成在一个RS485 OPC协议网络上并与上位机HMI-Microsoft Visual Studio 2008 控制平台进行网络组态操作。 方案HMI监控范围及系统目标包括以下几部分: ·空调冷水机组 ·冷却水系统 ·冷冻水系统 ·组合式恒温恒湿空调机组 ·组合式新风机组 根据甲方的要求和相关图纸,以最高性价比为原则通过优化的设备控制方案和智能管理方式,从而给贵公司提供精确温湿度控制、高效节能可进行系统管理的生产环境。 二、系统设计规范与依据 -建筑智能化系统工程设计管理暂行规定(建设部1997-290) -建筑电气设计规范(JCJ/T16-92) -智能建筑设计标准(DBJ-08-47-95) -采暖通风与空气调节设计规范(GBJ19-87) -建筑设计防火规范(GB50045-95) -电气装置工程施工及验收规范(GBJ232-82) -招标文件要求的相关条例及规范 -业主提供的招标文件和设计图纸

三、系统方案描述 我们通过对甲方提出需求的了解,结合楼宇控制系统的设计规范,对集控冷水 机组,水系统,冷却塔空调设备的自动化系统提出以下方案。 自控系统组成: 机组系统控制 监控系统控制 1.机组系统控制 冷水机组系统采用3台1000RT离心式冷水机组。自控系统采用PLC控制器直接采集冷热源系统中的机组的各种参数。同时程序控制机组的启停,完成各种联动控制,备用设备的转换。 本方案的冷热源系统用Siemens系列控制器配合点扩展模块来解决。 PLC是现场管理和控制系统的组成部份,是一个高性能的控制器。PLC在不依靠较高层处理机的情形下,可以独立工作和联网以完成复杂的控制、监视和能源管理功能,而不需依赖更高层的处理器。PLC可以连接楼层级网络(FLN)设备并提供中央监控功能。 PLC可带扩展模块的和不带扩展模块的。本方案采用可带扩展模块的PLC,这对业主以后的维护和系统扩展时极为有利的。 特点 ●可与其它层级的处理机互相搭配,以符合应用的需求 ●通过扩展模拟量/数字量模块设备,可增加监控点数 ●结合软件与硬设备配合控制应用 ●以先进的PID 算法,精准的将HVAC 控制在最小的变动范围内 ●具有管理多种报警、历史及趋势记录的收集、操作控制和监控功能 ●可选配手动/停止/自动(HOA) 切换开关 本方案可实现空调冷热源的如下监控内容: 机组台数控制 根据供水管的流量及集水器、分水器的温差,计算负荷,然后通过冷水机组提供的通讯接口对风冷热泵机组的进行联网监控。通过网关的模式可实现数据的双向传输,并监控机组的运行状态、系统负荷、房间温湿度、系统启停指令信号等。

中央空调系统节能控制系统设计方案和对策

KT仟亿 中央空调系统节能控制系统设计方案北京仟亿达科技有限公司

1 概述 国家“十一五”规划纲要中明确提出要把节约资源和保护环境基本国策,建设低投入、高产出,低消耗、少排放,能循环、可持续的国民经济体系和资源节约型、环境友好型社会。提出了“十一五”期间单位国内生产总值能源消耗降低20%左右、主要污染物排放总量减少10%等目标。这是针对资源环境压力日益加大的突出问题提出来的,体现了建设资源节约型、环境友好型社会的要求,是现实和长远利益的需要,具有明确的政策导向。 中央空调在各大中型民用、商用建筑中的普及,带来了严重的能耗问题。中央空调系统的电耗一般占整座建筑电耗的50%~60%,建筑能耗则占全国总能耗的1/3左右,因此提高能源利用率是我国能源可持续发展的方向。 中央空调系统的设计通常按建筑物所在地的极端气候条件来计算其最大冷负荷,并由此确定空调主机的装机容量及空调水系统的供水流量。然而,实际上每年只有极短时间出现最大冷负荷的情况。因此,中央空调系统在绝大部分时间里,都是在部分负荷(远小于其额定容量)条件下运行的。据统计,实际空调负荷平均只有设备能力的50%左右,这无疑造成了大量的能源白白浪费。而且,空调水系统的水泵、风机等机电设备,长期处在工频额定状态下高速运行,机械磨损严重,导致设备故障增加和使用寿命缩短。 另一方面,空调负荷又具有变动性。由于季节交替、气候变幻、昼夜轮回、使用变化(如旅游旺、淡季)及人流量增减(如宾馆入住率的变化)等各种因素变化的影响,中央空调系统的负荷具有起伏变化和不恒定的特点,如果中央空调的运行方式不能根据负荷的变化而调节,始终在额定容量(即满负荷状态)下运行,也势必造成巨大的能源浪费。 由北京仟亿达科技有限公司提供的中央空调分布式系统节能控制装置——KTC-2005系列、KTC-2005系列产品,以模糊控制理论为指导、以计算机技术、系统集成技术、变频调速技术为控制手段,以多年丰富的实践经验和数据为基础,科学地实现了中央空调能量供应按末端负荷需要提供,最大限度地减少了空调系统能源浪

电除尘节能优化控制系统设计与开发

电除尘节能优化控制系统的设计与开发 厦门龙净环保节能科技有限公司李建阳 摘要:本文介绍了电除尘器节能优化控制系统需要解决的问题和关键性技术开发。在现场运行数据分析的基础上,结合多年的电除尘器工作经验,设计和开发了该系统的软件和硬件。 关键词:节能优化电除尘器工况诊断分析 一、前言 “节能减排”是我国的一项重要决策,是国家经济社会发展的必然选择。电除尘器作为重要的环保设备,也是火电厂的高能耗设备,一般情况下电除尘器的耗电量约占电厂厂用电的3~5‰。 在实际运行中,电除尘器作为一个耗电大户,降低电除尘消耗功率引起电厂高度重视,电除尘器耗能指标已经成为投标的一个重要技术参数,近年来的研究与实践表明:在满足排放要求的前提下,电除尘器具有很大的节电潜力,经济效益明显。而如何在提高除尘效率、降低烟尘排放浓度的同时,大幅度降低电除尘器的能耗,是目前需要解决的重要课题。 二、需要解决的问题 1、电除尘器的复杂性 在燃煤电厂,电除尘器是最广泛使用的工业系统,用于收集燃烧后的飞灰。它同时是一台机械(振打系统,电晕线结构,收尘板等),一台电气机械(高压电源、放电等), 一台流体动力机械(气流分布和调节等),一台“化工机械”(灰特性和烟气调质)。因此电除尘器是一个多参数的复杂系统,掌握各种重要参数对电除尘器工况特性和对电除尘器性能的影响是十分关键的。 通过对电除尘器节能潜力的分析,选择正确的方法,设计一个多参量反馈闭环、保证电除尘器性能不降低、可靠有效的节能控制系统来满足节能减排的需求是一项非常急迫的工作。 2、煤种的多变性 由于煤炭资源缺乏,发电厂燃用煤种经常变化,导致电除尘器工况特性变化较大。如果缺乏了解煤种、飞灰特性对电除尘器性能影响的经验,又没有电除尘器运行工况分析软件的支持,设计的控制系统就不能正确地自动跟踪工况的变化,系统虽然可以有一定的节能,但电除尘器除尘效率经常受到较大影响,有的排放严重超标。 3、手工节能的局限性 在有些现场和其他的公司的产品,他们采用的节能方式是手工设定电除尘器或者采用停电场的方式进行节能,这种方式不仅要时时刻刻进行人工干预,而且不能保证电除尘器的高效率

中央空调系统节能策略分析

中央空调系统节能策略分析 中央空调系统作为建筑的重要组成部分,在给人们带来舒适建筑环境的同时,也消耗了大量的能量,对中央空调系统的节能优化是建筑节能优化的重点。基于此,笔者进行了相关介绍。 1、中央空调工作原理 中央空调系统是一个极其复杂的系统,主要由2部分组成,即水系统部分和空气处理系统部分。其中,制冷机组为中央空调系统的正常运行提供所需要的冷负荷,不仅将制造的冷量传递给冷冻水循环系统,且把工作过程中释放的热量传递给冷却水循环系统,是中央空调系统中最重要的组成部分。冷却水泵、冷冻水泵以及冷却塔为中央空调系统提供水循环,是进行热交换的载体。冷冻水将制冷机组制造的冷量带到风机盘管系统中与室内空气进行热交换,并将室内热量带回到制冷机组中;冷却水将制冷机组在工作和热交换中产生的大量废热排放到室外空气中,经过冷却塔降温后的冷却水又流回制冷机组的冷凝器中进行热交换,如此循环往复。 2、控制策略 不同的控制策略对中央空调系统总能耗的影响特别明显,由于中央空调的系统由冷水机组、冷冻水系统、冷却水系统、冷却塔风机系统组成,冷水机组的控制由其自身的控制策略直接控制,但其制冷效果会受中央空调系统中水系统控制的影响。某酒店主楼高18层,辅楼高4层,拥有178余间客房。酒店中央空调系统原控制策略采用冷冻水恒压控制,冷冻水回水压力作为反馈值,0.558MPa作为目标值;冷却水出水恒温控制,冷却水出水温度作为反馈值,目标值设为31℃;冷却塔风机工频控制。经过对系统运行状况的评估同时考虑现场条件,节能改造采用以下的控制方式:冷冻水恒温差控制,冷冻水进出水温差作为反馈值,5℃做目标值;冷却水恒温差控制,冷却水进出水温差作为反馈值,目标值为5℃;冷却塔

多台冷水机组空调系统的优化控制

多台冷水机组空调系统的优化控制 集美大学 施 灵 摘要 以两台容量相同并联运行的冷水机组空调系统为例,通过绘制负荷比与比功率关系曲线,确定了最优负荷分配策略。分析结果表明,应用该方法确定多台冷水机组空调系统负荷分配策略可以减少系统能耗。 关键词 冷水机组 负荷比 优化 能耗 Optimization control strategy in air conditioning system with multi water chillers B y Shi Ling Abstract T a king the air co nditio ning sy stem w ith tw o chille rs o f identical ca pa city o per ating in pa ralle l as an exa mple,de ter mines the shar ing str ateg y o f optim um lo ad by dra wing the cur ves of lo ad r atio a nd pow er r atio.T he analysis r esults show that adopting the str ateg y to deter mine the lo ad allo cation of the air condit io ning system with multi w ater chillers can reduce energ y co nsum ptio n. Keywords w ater chiller,lo ad r atio,optimiza tio n,ener gy consumption Jimei University,X iamen,Fujian Province,Chi na * 0 引言 随着建筑规模的不断扩大,为之服务的空调系统的规模也不断扩大 往往需要多台冷水机组同时运行才能满足负荷需求。对于多台冷水机组空调系统,冷水机组的能耗不仅由其本身的特性(全负荷性能和部分负荷性能)决定,而且还与部分负荷下冷水机组间的负荷分配策略有关。因此,在冷水机组选型后,如何寻求一最优负荷分配策略以最大程度地提高整个系统的运行效率便成了空调系统节能的关键。 本文以两台相同容量并联运行的冷水机组(包括螺杆式和活塞式两种类型)为例,通过比较不同负荷分配方案下冷水机组的能耗,确定最优负荷分配策略。 1 研究对象 本文研究对象为北京地区某建筑物中的空调系统。该空调系统夏季(5~9月)运行,运行时间为2880h,空调负荷率分布如表1所示。建筑物总冷负荷为1688kW,选择两台相同规格的冷水机组(螺杆式或活塞式)并联运行,每台机组冷量为844kW,其部分负荷性能参数见表2。为便于研究分析,假设螺杆式和活塞式冷水机组均能卸载到90%,80%,70%,60%,50%,40%,30%,20%, 10%等负荷点;不考虑热惰性,认为系统负荷就是机组所承担的负荷。 表1 北京地区某建筑物夏季空调负荷率分布 负荷率/%102030405060708090100运行时间/h59664956545427717610843102 表2 两种冷水机组部分负荷性能参数 机组负荷率/% 100908070605040302010螺杆式机组 机组输入功率/kW128112.680.465.653.844.035.027.622.016.6 机组输入功率百分比/%10088.062.751.242.034.327.321.517.113.0活塞式机组 机组输入功率/kW128115.2102.492.883.264.051.238.428.819.2 机组输入功率百分比/%10090.080.072.565.050.040.030.022.515.0 79 暖通空调HV&AC 2005年第35卷第5期 设计参考 * 施灵,女,1970年11月生,硕士研究生,工学硕士,副教授 361021厦门集美大学机械工程学院 (0592)5251327 E-m ail:sllll8@https://www.360docs.net/doc/215406785.html, 收稿日期:20021230 修回日期:20050403

相关文档
最新文档