圆的直径式方程

圆的直径式方程
圆的直径式方程

圆的直径式方程

若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为

()()()()12120x x x x y y y y --+--=

事实上,若设(),M x y 是圆上异于直径端点A B 、的点, 由 12

12

1y y y y x x x x --?=--- 得,

()()()()12120x x x x y y y y --+--= 显然A B 、也满足上式,所以,以AB 为直径的圆的方程为

()()()()12120x x x x y y y y --+--=

(1.1)

对于式(1.1)可分解变形为

()()22121212120x x x x x x y y y y y y -+++-++=

(1.2) 而式(1.2)可以看作是两式 ()212120x x x x x x -++= (1.3)

()212120y y y y y y -++=

(1.4)

迭加而成,且每一式中的一次项系数和常数项明确显露出韦达定理特征,据此着眼,对于某些直线与曲线相交问题,可将直线方程代入曲线方程分别得出关于x 及y 的一元二次方程,然后两式迭加即得以直线被曲线所截弦长为直径的圆的方程.

下面取曲线为圆222x y r +=,去直线为()0y kx b k =+≠为例,设直线()

0y kx b k =+≠与圆222x y r +=有两个交点()()1122,,,A x y B x y ,将y k x b =+代入222x y r +=,消去y

得, ()2

2

22120k x

bkx b r +++-=

(1.5)

将y b x k

-=代入222

x y r +=,消去x ,得,

()2

2

222120k y

by b r k +-+-=

(1.6)

由韦达定理得,

22

12122

2

222

1212

22

2,112,11bk b r x x x x k k b b r k

y y y y k k -+=-=++-+==++ 所以以AB 为直径的圆的方程为 222222

2

2222

2201111bk b r b b r k x x y y k k k k

--+++-+=++++ (1.7)

圆系方程及其应用.doc

直线系、圆系方程1、过定点直线系方程在解题中的应用 过定点(x,y0 )的直线系方程:A(x x0) B( y y0) 0(A,B 不同时为0). 例 1 求过点P( 1,4) 圆(x 2)2 ( y 3)2 1的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为A(x 1) B(y 4) 0(其中A,B不全为零), 则整理有Ax By A 4B 0, ∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B 2 2 A B 1 , 整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 A B 0. 4 故所求直线l 的方程为y 4 或3x 4y13 0 . 点评:对求过定点(x,y0 )的直线方程问题,常用过定点直线法,即设直线方程为: A(x x0) B(y y0) 0,0 注意的此方程表示的是过点P(x,y ) 的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素 0 0 的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习:过点P( 1,4) 作圆 2 2 (x 2) (y 3) 1的切线l ,求切线l 的方程. 解:设所求直线l 的方程为A(x 1) B(y 4) 0 (其中A,B不全为零), 则整理有Ax By A 4B 0, ∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B 2 2 A B 1, 整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 0 A B . 4 故所求直线l 的方程为y 4 或3x 4y13 0 . 2、过两直线交点的直线系方程在解题中的应用 过直线l :A1x B1 y C1 0(A1, B1 不同时为0)与m:A2 x B2 y C2 0(A2, B2 不同时为0)交点的直线 系方程为:A x B y C A x B y C (R ,为参数). 1 1 1 ( 2 2 2 ) 0 例2 求过直线:x 2y 1 0与直线:2x y 1 0 的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:x 2y 1 (2 x y 1) 0 ,

圆与方程知识点小结

圆与方程 2、1圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2、2点与圆的位置关系: 1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上 d=r ; (2)点在圆外 d >r ; (3)点在圆内 d <r . 2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-?( ③M 在圆C 外22020)()(r b y a x >-+-? 2、3 圆的一般方程:022=++++F Ey Dx y x . 当042 2 >-+F E D 时,方程表示一个圆,其中圆心? ?? ??--2,2 E D C ,半径2 42 2F E D r -+= . 当0422=-+F E D 时,方程表示一个点?? ? ? ?- - 2,2 E D . 当0422<-+ F E D 时,方程无图形(称虚圆). 注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0 =B 且 ≠=C A 且 042 2 AF E D -+. 圆的直径或方程:已知0))(())((),(),(21212211=--+--?y y y y x x x x y x B y x A 2、4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种 (1)若2 2 B A C Bb Aa d +++= ,0相离r d ; (2)0=???=相切r d ; (3)0>???<相交r d 。 还可以利用直线方程与圆的方程联立方程组???=++++=++0 2 2 F Ey Dx y x C By Ax 求解,通过解 的个数来判断: (1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

圆的标准方程和一般方程

§4-1 圆的标准方程和一般方程 1. 圆心为A (a ,b ),半径长为r 的圆的方程可表示为 ,称为圆的标准方程. 2. 圆的一般方程为 , 其中圆心是 ,半径长为 . 圆的一般方程的特点: ① x 2和y 2的系数相同,不等于0; ② 没有xy 这样的二次项; ③ 2240D E F +-> 3.求圆的方程常用待定系数法:大致步骤是: ①根据题意,选择适当的方程形式; ②根据条件列出关于a,b,c 或D,E,F 的方程组; ③解出a,b,c 或D,E,F 代入标准方程或一般方程. 另外,在求圆的方程时,要注意几何法的运用. 4. 点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)当满足 时,点在圆外; (2)当满足 时,点在圆上; (3)当满足 时,点在圆内.

1. 圆22(2)(3)2x y -++=的圆心和半径分别是( ). A .(2,3)-,1 B .(2,3)-,3 C . (2,3)- D .(2,3)- 2. 方程224250x y x y m ++-+=表示圆的条件是 A. 114 m << B. 1m > C. 14 m < D. 1m < ( ) 3.若(2,1)P -为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是( ). A. 30x y --= B. 230x y +-= C. 10x y +-= D. 250x y --= 4. 一曲线是与定点O (0,0),A (3,0)距离的比是12 的点的轨迹,求此曲线的轨迹方程.

5. 求下列各圆的方程: (1).过点(2,0) -; A-,圆心在(3,2) (2).求经过三点(1,1) C-的圆的方程. B、(4,2) A-、(1,4) 6. 一个圆经过点(5,0) x y --=上,求此圆的 B-,圆心在直线3100 A与(2,1) 方程.

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

圆的一般方程与位置关系

11-12学年度下学期高一数学练习2(02)12-2-17 圆的一般方程、直线与圆的位置关系、圆与圆的位置关系 一.选择题.共6题小题,每题5分.每题有且仅有一个选项正确,所选答案填写到后面指定的表中. 1.两个圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线的条数是( ) A . 1 B . 2 C . 0或3 D .4 2.若两圆x 2+y 2=4与x 2+y 2-2ax +a 2-1=0相内切,则a 等于 ( ) A . 1 B . 1- C . 1或1- D .3.过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为 ( ) A . 22(3)2x y -+= B . 22(3)2x y ++= C. 22(3)1x y -+= D. 22(3)1x y ++= 4.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长 ( ) A . 2 B . C. 2 D. 5.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是 ( ) A. (-13,13) B. [13,13]- C. (-26,26) D. [26,26]- 6.若直线y =x +k 与曲线x =1-y 2 恰有一个公共点,则满足条件 ( ) A. k =-2 B.k ∈ (-1,1] C . k =±2或k ∈[-1,1] D . k =-2或k ∈ (-1,1] 二.填空题.共4道小题每小题5分.将最简的答案填在本大题后面指定的横线上. 7.与直线x +y -2=0和圆x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是___ _ ____. 8.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b 应满足的关系式是____ ____. 9.已知圆C 过点(1,0),且圆心在x 轴的正半轴上.直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为____ ____. 10.若圆x 2+y 2-ax +2y +1=0和圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程是___ _____.

圆的方程知识点总结和典型例题

圆的方程知识点总结和经典例题 1.圆的定义及方程 注意点 (1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程. (2)对于方程x 2 +y 2 +Dx +Ey +F =0表示圆时易忽视D 2 +E 2 -4F >0这一条件. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2 +(y -b )2 =r 2 的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2 +(y 0-b )2 >r 2 . (2)若M (x 0,y 0)在圆上,则(x 0-a )2 +(y 0-b )2 =r 2 . (3)若M (x 0,y 0)在圆内,则(x 0-a )2 +(y 0-b )2 <r 2 . 3.直线与圆的位置关系 (1)直线与圆的位置关系的判断方法 设直线l :Ax +By +C =0(A 2 +B 2 ≠0), 圆:(x -a )2 +(y -b )2 =r 2(r >0), d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的 判别式为Δ.

相离 d >r Δ<0 2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断. 3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系. (2)过一点的圆的切线方程的求法 1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程. 2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在. (3)求弦长常用的三种方法 1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2 =d 2 +? ?? ? ?l 22 解题. 2.利用交点坐标 若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长. 3.利用弦长公式 设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l = 1+k 2|x 1-x 2|= 1+k 2 [ x 1+x 2 2 -4x 1x 2]. 4. 圆与圆的位置关系 (1)圆与圆位置关系的判断方法 设圆O 1:(x -a 1)2 +(y -b 1)2 =r 2 1(r 1>0), 圆O 2:(x -a 2)2 +(y -b 2)2 =r 2 2(r 2>0). 方法位置关系 几何法:圆心距d 与r 1,r 2 的关系 代数法:两圆方程联立组成方 程组的解的情况

圆系方程及其应用

圆系方程及其应用 This model paper was revised by the Standardization Office on December 10, 2020

圆系方程及其应用 一、常见的圆系方程有如下几种: 1、以(,)a b 为圆心的同心圆系方程:222()()(0)x a y b λλ-+-=> 与圆22y x ++Dx +Ey +F=0同心的圆系方程为:22y x ++Dx +Ey +λ=0 2、过直线Ax +By +C=0与圆22y x ++Dx +Ey +F=0交点的圆系方程为:22y x ++Dx +Ey +F+λ(Ax +By +C)=0(λ∈R) 3、过两圆1C :22y x ++111F y E x D ++=0,2C :22y x ++222F y E x D ++=0交点的圆系方程为:22y x ++111F y E x D +++λ(22y x ++222F y E x D ++)=0(λ≠-1,此圆系不含2C :22y x ++222F y E x D ++=0) 特别地,当λ=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程. 注:为了避免利用上述圆系方程时讨论圆2C ,可等价转化为过圆1C 和两圆公共弦所在直线交点的圆系方程:22111121212[()()()]0x y D x E y F D D x E E y F F λ+++++-+-+-= 二、圆系方程在解题中的应用: 1、利用圆系方程求圆的方程: 例1 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程。

人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆得方程 4.1、1 圆得标准方程 1.以(3,-1)为圆心,4为半径得圆得方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆得标准方程为x2+(y+1)2=8,则此圆得圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2得圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a得值就是________. 5.以点(-2,1)为圆心且与直线x+y=1相切得圆得方程就是____________________. 6.圆心在y轴上,半径为1,且过点(1,2)得圆得方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆得方程. 8.点P(5a+1,12a)在圆(x-1)2+y2=1得内部,则a得取值范围就是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上得点到点A(5,5)得最大距离就是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB得长为 2 3,求a得值. 4、1、2 圆得一般方程 1.圆x2+y2-6x=0得圆心坐标就是________. 2.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径得圆,则F=________、 3.若方程x2+y2-4x+2y+5k=0表示圆,则k得取值范围就是() A.k>1 B.k<1 C.k≥1 D.k≤1 4.已知圆得方程就是x2+y2-2x+4y+3=0,则下列直线中通过圆心得就是() A.3x+2y+1=0 B.3x+2y=0 C.3x-2y=0 D.3x-2y+1=0 5.圆x2+y2-6x+4y=0得周长就是________. 6.点(2a,2)在圆x2+y2-2y-4=0得内部,则a得取值范围就是()

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

直线系圆系方程

直线系、圆系方程 1、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例1求过点(14)P -,圆22(2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方 程为:00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题 时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 2、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时

圆的方程题型总结含答案

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F 表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :2 2 21 1 1x a y b r ; 圆2C :2 2 22 2 2x a y b r 则有:两圆相离? _____________________; 两圆外切 ?______________________; 两圆相交?______________________; 两圆内切?_____________________; 两圆内含?_____________________.

二、题型总结: (一)圆的方程 1. ★2 2 310x y x y ++--=的圆心坐标 ,半径 . 2.★★点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 4.★★★圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. ★若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2430x y x y B. 22430x y x y C. 2 2 434 0x y x y D. 2 2 438 0x y x y 6. ★★过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 7. ★过点1,1A ,1,1B 且圆心在直线20x y 上的圆的方程( ) A. 2 2 3 14x y B.2 2 3 1 4x y C. 22 1 1 1x y D. 2 2 1 1 1x y 8.★★圆2 2 2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .2 2 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-=

聚焦直线系、圆系方程的应用

聚焦直线系、圆系方程的应用 【直线系方程的应用】 一、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例 1 求过点(14)P -,圆2 2 (2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04 A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方程为: 00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22 (2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04 A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 二、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时为0)交点的直线系方程为:111222()0A x B y C A x B y C λ+++++=(R λ∈,λ为参数). 例2 求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:21(21)0x y x y λ+++-+=,

高中数学圆与方程知识点

高中数学圆与方程知识点分析 1. 圆的方程:(1)标准方程:2 22()()x a y b r -+-=(圆心为A(a,b),半径为r ) (2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 圆心(-2D ,-2 E )半径 F E D 421 22-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法 (1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。 d=r 为相切,d>r 为相交,d0为相交,△<0为相离。利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。 4.圆与圆的位置关系判断方法 (1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: 1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切; 3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含; (2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。△=0为外切 或内切,△>0为相交,△<0为相离或内含。若两圆相交,两圆方程相减得公共弦所在直线方程。 5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系 题型一 求圆的方程 例1.求过点A( 2,0),圆心在(3, 2)圆的方程。 变式1求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 解:设所求的圆的方程为:02 2=++++F Ey Dx y x (也可设圆的标准方程求) ∵(0,0),(11A B φ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组. 即??? ??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D 王新敞 ∴所求圆的方程为: 0682 2=+-+y x y x 王新敞

圆知识点总结及归纳

第一讲 圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x -a )2+(y -b )2=r 2 展开并整理得x 2+y 2-2ax -2by +a 2+b 2-r 2=0, 取D =-2a ,E =-2b ,F =a 2+b 2-r 2,得x 2+y 2+Dx +Ey +F =0. (2)将圆的一般方程x 2+y 2+Dx +Ey +F =0通过配方后得到的方程为: (x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心,1 2D 2+E 2-4F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2 ,- E 2 );③当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. (二)点与圆的位置关系

(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.

(2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

相关文档
最新文档