黄原胶生产工艺1

黄原胶生产工艺1
黄原胶生产工艺1

黄原胶生产工艺

黄原胶是由D 一葡萄糖、D 一甘露糖、D 一葡萄糖醛酸、乙酸和丙酮酸组成“五糖重复单元”, 结构聚合体, 分子摩尔比为28 : 3 : 2 : 17: 0 .5 1 一0. 63 。黄原胶分子一级结构由p 一1, 4 键连接的D 一葡萄糖基主链与三糖单位侧链组成, 其侧链由D 一甘露糖和D 一葡萄糖醛酸交替连接而成。黄原胶分子侧末端含有丙酮酸, 其含量对黄原胶性能有很大影响, 在不同溶氧条件下发酵所得黄原胶, 其丙酮酸含量有明显差异。一般,溶氧速率小, 其丙酮酸含量低

生产工艺

工艺流程为: 菌种摇瓶扩大培养发酵罐发酵提取干燥粉碎成品包装

1. 1 生产菌株

黄原胶生产菌株为黄单抱菌属几个种, 目前工业化生产用菌株主要是甘蓝黑腐病黄单孢杆菌(亦名野油菜黄单胞菌) , 直杆状,宽0. 4 林n l ~ 0. 7 林m ,有单个鞭毛, 可移动,革兰氏阴性, 好氧。19 61 年Je an e S 等首先从甘蓝黑腐病斑中分离出甘蓝黑腐病黄单抱杆菌, 赵大建等在19 8 6 年也得到编号为N . K 一01 甘蓝黑腐病黄单抱杆菌。此外, 菜豆黄单胞菌、锦葵黄单胞菌和胡萝卜黄单胞菌亦可作为发酵菌种。

1. 2 培养基组成及优化

1.2.1 培养基

固体培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,琼脂2g,水100mL。

种子培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,水100mL。

发酵培养液:蔗糖5g,蛋白胨0.5g,0.3g,碳酸钙0.3g,磷酸二氢钾0.5g,硫酸镁0.25g,硫酸亚铁0.025g,柠檬酸0.025g,水100mL。

1.3 试验方法

1.3.1 平皿培养

取Φ9cm的培养皿,倒入25mL固体培养基,30℃培养4d~8d。

1.3.2 啤酒糟处理

啤酒糟(取自江苏食品职业技术学院啤酒实训中心)用自来水洗涤2次,烘干

后备用。

1.3.3 发酵条件研究

培养基组成的研究:分别以葡萄糖、麦芽糖、乳糖和淀粉代替发酵培养基中的碳源,进行发酵培养,并做空白对照,确定最佳的碳源。在发酵培养基中加入0.5%氮源,即蛋白胨、酵母粉、硝酸铵、硫酸铵,乙酸铵和黄豆饼粉进行发酵培养,确定最佳的氮源。基质含水率的研究:称取10g啤酒糟,加入10mL、15mL、20mL、30mL、40mL的液体培养基搅拌均匀,搅匀后的固态培养基转入250mL三角瓶中,121℃灭菌15min,接种后进行培养。

1.4 菌体和多糖的检测

1.4.1 平皿培养液菌体和黄原胶含量的检测在平皿培养的粘液用铲子铲起,不要刮破琼脂表面。用蒸馏水稀释后,在25000g×条件下超速离心20min。细胞沉淀用蒸馏水冲洗2次,70℃干燥至恒定重量。上清液加入2倍体积的酒精,室温条件下搅拌30min,然后过滤掉酒精,再加入1倍体积的酒精搅拌过滤,得到黄原胶置于烘箱中,60℃烘干至恒重。

1.4.2 固态发酵中黄原胶含量的检测

向固态发酵物中加5倍体积的蒸馏水,250r/min振荡2h后,在4000g×条件下离心10min,然后在25000×g条件下超速离心20min。黄原胶的沉淀干燥同1.4.1所述。

2 结果与分析

2.1 琼脂表面培养结果

在实验中,琼脂表面培养野油菜黄单胞菌被用于评估固态发酵在胞外多糖的生产上的潜力。琼脂表面形成的粘液用于检测黄原胶和细胞的产量。琼脂平皿上黄原胶产量随蔗糖浓度和培养时间变化见表1。4d后细胞生长几乎完全停止,而黄原胶的产量持续增长。高糖浓度对细胞生长和聚合物合成有明显抑制作用。黄原胶占粘液的比例几乎是常数,培养时间和培养基中糖浓度对其影响不大,为3%~3.5%。这种情况表明,在饱和条件下,黄原胶分子粘液中的浓度不超过35g/L。这可能也表明固态发酵生产黄原胶的产量。琼脂平皿培养的pH值变化不大。这可能就是固态发酵生产有利地方,毕竟pH值控制是不容易实现的。

2.2 碳源和氮源对黄原胶产量的影响

碳源和氮源对细菌产黄原胶影响显著,不同的碳源(包括葡萄糖、蔗糖、麦芽糖、乳糖和淀粉)对黄原胶产量的影响见图1。由图1可见,蔗糖和葡萄糖被证明是最适合生产黄原胶的碳源,考虑蔗糖为碳源时产量优于葡萄糖,选择蔗糖为碳源进行碳源浓度实验,结果见图2。随着蔗糖浓度的增加,黄原胶产量也随之提高,蔗糖浓度为80g/L时,黄原胶的产量达43.5g/L,转化率为54.4%;但当蔗糖浓度为50g/L时,黄原胶的产量达36.5g/L,转化率为73%。即高浓度的蔗糖时转化率下降,选择蔗糖的浓度为50g/L。

不同氮源对黄原胶产量的影响见图3。由图3可见,酵母粉和黄豆饼粉是最适合生产黄原胶的氮源,从工业生产角度看,黄豆饼粉比酵母粉便宜,选择黄豆饼粉为生产氮源。此外,使用氮源进行固态发酵实验未发现酸化现象,即浸出液的pH 值为6.8~7.2,而液体深层培养过程中,pH值变化大,产量随pH值变化影响较大。

2.3 基质含水率对黄原胶产量的影响

水是发酵的主要媒质,基质含水量是决定固态发酵成功与否的关键因素之一。由图4可见,随着基质含水率的增加,黄原胶产量也随着增加,这可能是由于随着基质含水量的增加,提高了反应体系的水活度,从而有利于营养物质的输送和菌

体的生长,提高黄原胶的产量。但当含水量过大时,由于基质空隙率以及颗粒表

面水膜的增厚,严重降低了菌体对氧的吸收以及二氧化碳的排出。此外也不利于发酵热散发,进而影响菌体的生长,最终导致黄原胶产量下降。基质含水量为75%时,黄原胶的产量最高,为35.3g/kg。

2.4 培养基厚度对黄原胶产量的影响

培养基厚度是固态发酵的重要参数之一,在圆柱形容器中加入固态发酵基质,考察培养基厚度对黄原胶产量的影响,结果见图5。随着培养基厚度增加,黄原胶产量下降,当培养基厚度超过6cm时,黄原胶的产量急剧下降,可能由于黄单胞菌是好氧性的微生物,随着培养基厚度增加,物料间存在氧气梯度问题,微生物的生长和代谢受到阻碍,使黄原胶产量下降。

2.5 发酵时间对黄原胶产量的影响

发酵终点对提高产物的生物量有非常重要的意义在发酵过程中,产物的浓度是变

化的,一般产物高峰生产阶段时间越长,生产率也越高,但到一定时间时,产率提高减缓,甚至下降。因此无论是获得菌体还是代谢产物,微生物发酵都有一个最佳时间阶段。由图6可见,初期可能是黄单胞菌生长期,2d后,黄原胶的产量开始变快,到第5d时达到最大,为35.3g/kg,此后黄原胶的产量没有明显变化,因此最佳培养时间为5d。

3 结论

(1)琼脂表面培养证实固态发酵法生产黄原胶的潜力,黄原胶的产率为3%~3.5%。(2)利用啤酒糟为基质,补充发酵培养液,可用于黄原胶的发酵生产。以蔗糖、黄豆饼粉为原料,啤酒糟与培养液比例为1∶3时,培养厚度不超过6cm的条件下发酵5d,黄原胶的产量达到最大,为35.3 g/kg。

3.1 发酵环境控制

由于分泌出黄原胶包裹在细胞周围,妨碍营养物质运输, 影响菌种生长, 因此, 接种阶段时除应增加细胞浓度外, 还应尽量降低黄原胶产量, 这样就需多步接种( 每步接种时间必须控制在7 h 以下, 以免黄原胶生成) ,接种体积一般为反应器中料液体积5 % 一10 % , 接种次数应随发酵液体积增大而增多。发酵温度不仅影响黄原胶产率, 还能改变产品结构组成。研究指出, 较高温度可提高黄原胶产量,但降低产品中丙酮酸含量, 因此, 如需提高黄原胶产量, 应选择温度在31 ℃一33℃ , 而要增加丙酮酸含量就应选择温度范围在27 ℃一3 1℃。PH 范围在中性时最适于黄原胶生产,随着产品产出,酸性基团增多, PH 降至5 左右。研究表明, 控制反应中叫对菌体生长有利, 但对黄原胶生产没有显著影响。

4.1 黄原胶的提取

1.发酵液处理

经离心法、过滤法、酶处理法、次氯酸盐氧化法、过滤及超滤浓缩法预处理除去菌体细胞和各种不溶性杂质。

2.沉淀反应

用钙盐、铝盐、季铵盐或酸沉淀法制取工业级精制品;用有机溶剂沉淀法制取食品级精制品。

(1)钙盐法

(2)有机溶剂沉淀法

发酵液+乙醇→黄原胶沉淀(工业级黄原胶)

酸化↓

(酒精+KOH)洗涤→干燥→粉碎→成品

离心除菌体,多次用酒精沉淀、洗涤,得食品级黄原胶。

(3)钙盐-工业酒精沉淀法

酸性乙醇

黄原胶+CaCl2 黄原胶钙沉淀黄原胶+Ca2+

酸化↓

成品←粉碎←干燥←洗涤(酒精+KOH)

特点:有机溶剂用量减少一半,但在成品中带入了钙离子

5.1、黄原胶的干燥

主要干燥方法

真空干燥

滚筒干燥:设备复杂,工业应用少

喷雾干燥:黄原胶溶解性差

流化床干燥:传热传质快,常用该法。

6.黄原胶发酵工艺的改进

6.1提取方法

黄原胶的提取方法,一般用醇作为沉淀剂,常用的有甲醇、异丙醇、乙醇等低级醇。由于后提取选用乙醇,成本高,生产和应用受到限制。非醇法生产黄原胶有效地解决了这一问题。其工艺流程为:菌种在种子罐内经分级培养后,接种到发酵罐中,在30e条件下,通气、搅拌,发酵时为48~60h,放罐后用稀盐酸调pH值为2,黄原胶即沉淀下来,经脱水干燥后得淡黄色成品。但此方法对提取设备及管道提出了苛刻的要求,同时需对含盐酸废水进行处理。

6.2 发酵环境控制

研究指出,较高温度可提高黄原胶产量,但降低产品中丙酮酸含量, 因此, 如需提高黄原胶产量, 应选择温度在31 ℃一 3 ℃ , 而要增加丙酮酸含量就应选择温度范围在27 ℃一3 1℃。PH 范围在中性时最适于黄原胶生产,随着产品产出,酸性基团增多, PH 降至5 左右。

6. 3 生物反应器

配备有流化床塔式反应器, 由于其气泡转移系数较高, 在分批发酵中也有应用。用泵式静态混合循环反应器能增加氧气在高粘度发酵液中传递速率, 从而可提高黄原胶产量〕合适搅拌浆。通过实验证实, 圆盘涡轮式搅拌浆由于能快速破碎气泡, 而其本身不会被气泡淹没, 所以在发酵工业上使用较为合适。

黄原胶的生产

黄原胶(Xanthan Gum)的特性、生产及应用 许多微生物都分泌胞外多糖,它们或附着在细胞表面,或以不定型粘质的形式存在于胞外介质中,这些胞外多糖对于生物体间信号传递、分子识别、保护己体免受攻击、构造舒适的体外环境等方面都发挥着重要的作用。这些分泌的多糖结构各异,其中一些有着优良的理化性质,已为人类广泛应用。对于仍不为人类所知的绝大多数多糖,人们试图通过相关的多糖结构问的相互比较,推断出构效关系,从而人为地主动修饰、构造多糖,以满足应用的需要。其中,黄原胶是人类研究最为透彻、商业化应用程度最高的一种。. 1 黄原胶的结构 黄原胶(xanthan gum)是20世纪50年代美国农业部的北方研究室(Northern Re. gional Research Laboratories,NRRL)从野油菜黄单孢菌(Xanthomonas campestris)NRRLB一1459发现了分泌的中性水溶性多糖,又称为汉生胶。黄原胶由五糖单位重复构成,如图1,主链与纤维素相同,即由以13—1,4糖苷键相连的葡萄糖构成,三个相连的单糖组成其侧链:甘露糖一葡萄糖一甘露糖。与主链相连的甘露糖通常由乙酰基修饰,侧链末端的甘露糖与丙酮酸发生缩醛反应从而被修饰,而中间的葡萄糖则被氧化为葡萄糖醛酸,分子量一般在2×10。~2×10 D之间。黄原胶除拥有规则的一级结构外,还拥有二级结构,经x一射线衍射和电子显微镜测定,黄原胶分子问靠氢键作用而形成规则的螺旋结构。双螺旋结构之间依靠微弱的作用力而形成网状立体结构,这是黄原胶的三级结构,它在水溶液中以液晶形式存 在¨。 2 黄原胶的性质 黄原胶的外观为淡褐黄色粉末状固体,亲水性很强,没有任何的毒副作用,美国FDA于1969年批准可将其作为不限量的食品添加剂,1980年,欧洲经济共同体也批准将其作为食品乳化剂和稳定剂。由其二级结构决定,黄原胶具有很强的耐酸、碱、盐、热等特性。黄原胶最显著的特性是其控制液体流变性质的能力,它即便在低浓度时也可形成高粘度的、典型的非牛顿溶液,具有明显的假塑性(即随着剪切速率的增大,其表观粘度迅速降低)。溶液粘度的影响因素还包括溶质浓度、温度(既包括黄原胶的溶解温度,又包括测量 时的溶液温度)、盐浓度、pH值等,现分别简述之。 2.1 温度的影响黄原胶溶液的粘度既受测量时溶液温度的影响,也受溶解温度的影响。如下图2a所示,像大多数溶液一样,(在同平剪切力下测定)黄原胶溶液的粘度随溶液的温度(T )的升高而降低,且此变化过 程在10"C~80T:完全可逆。

金属镁冶炼工艺比较

金属镁冶炼工艺比较 李晓波 (山西阳煤丰喜股份责任有限公司闻喜复肥分公司闻喜礼元镇PC043802) 摘要:阐述了皮江法炼镁的存在的问题,提出了解决措施,指明了冶炼金属镁的最佳工艺是渣炼镁。 关键词:电解镁皮江法炼镁回转窑无渣炼镁硅铁Magnesium metal smelting process is compared Li Xiao-bo (Shanxi YangMei FengXi wenxi compound branch shares responsibility co., LTD Wenxi li yuan town pc043802) Abstract: expounds the existing problems of smelting magnesium was numerically simulated, and the solution measures are put forward, pointed out the best technology of smelting magnesium metal magnesium smelting slag. Key words: Electrolytic magnesium Pidgeon magnesium smelting Rotary kiln No slag smelting magnesiumFerrosilicon 2000年到今天, 中国金属镁企业均向万吨级转向,其总生产能力已超过80万吨/年,而全世界金属镁的使用量在60万吨/年以上,也就是说供大于求已是不争之实事,如何解决此矛盾,使企业走出困境,重点分析硅热法(皮江法)炼镁及碳热法炼镁。

黄原胶说明

黄原胶性能及使用说明 梅花生物科技集团股份有限公司 黄原胶卓越的稳定性 屈变值 黄原胶对于多相体系的卓越稳定性是其最为有用的性能之一。无论是固体(悬浮),液体(乳化),气体(泡沫稳定),或者是以上三种情况的结合黄原胶都能发挥十分有效的稳定作用。 溶液的屈变值是这种稳定作用的重要特征,所谓屈变值就是在溶液不发生流动的情况下,所能接受的最大剪切力。由于低浓度的的黄原胶溶液就具有一定的屈变值,所以在静态或者较低的剪切力作用下,分散体系(悬浮液,乳化液或泡沫液)都保持良好的稳定性。 剪切作用/假塑作用 在牛顿溶液中,剪切力是与剪切速度成正比的,高速剪切下溶液的流动性并不改善。 与之相反黄原胶溶液具有很强的抵抗作用,但是随着剪切作用的增加粘度会迅速下降。 溶液的假塑性程度是随着浓度的增加而增加的。但是黄原胶即使在很低的浓度下也会表现出假塑性。一旦剪切力作用解除,溶液的粘度会立即恢复。 高剪切作用下,比如泵送时,黄原胶使溶液的外表粘度很小。此外,黄原胶对于长时间的剪切作用具有异常的抵抗作用。这样使料液在均质和高速混合后粘度很少损失。 黄原胶的热稳定性 和别的增稠剂相比较,黄原胶对于温度变化时表现出的稳定性十分卓越,黄原胶溶液在加热时表现出极好的稳定性。即使在盐或者酸存在下也是如此。对异常温度所显示的稳定性是黄原胶典型的,也是独一无二的性能,在多次高温处理时,如巴氏杀菌,或者彻底灭菌(甚至130℃时经历几分钟)当体系冷却下来,实际上粘度并不发生变化。

很多其它常用的增稠剂,在温度升高时,粘度会下降,而且在巴氏杀菌或彻底杀菌以后,粘度会受到很大影响,这一点,当有酸存在时,特别明显。 使用黄原胶作为稳定剂可以确保产品粘度恒久如一,而且在各种储存条件下,都能延长产品的货架寿命。 图1 黄原胶溶液在热处理条件下具有良好的稳定性 黄原胶的酸碱稳定性 溶液的酸碱度变化对于黄原胶的粘度是完全没有影响的。只是PH11以上或PH2以下的强酸、强碱情况下黄原胶的粘度有轻微的影响。这种特点传统的增稠剂或稳定剂是不具备的。 图2 黄原胶溶液的酸碱稳定性 黄原胶的微波稳定性 用黄原胶作为稳定剂而形成的体系,即使在微波中间冻结—解冻都对其性能不会产生影响。 图3 黄原胶在1%NaCl中的微波冻结—解冻稳定性 黄原胶具有极好的相溶性 对于绝大部分食品和药物来说,往往是一种多相混合物,包括水、油、脂肪、蛋白质、碳水化合物和其它组份。考虑到复杂的加工工艺,如混合、泵送、加热、冻结、搅拌等等,都会加大该体系的复杂性,而确保稳定剂和这种复杂体系的相容十分不易。 黄原胶作为一种阴离子聚合物,能同阴离子或中性离子的组份很好地相容。但对于阳离子体系来说不一定相容。在实际使用中,我们应考虑以下几种因素。 ——黄原胶原则上能同绝大部分食品和药物成分相容。在盐和酸的情况下,黄原胶显示极好的稳定性。 ——黄原胶同别的增稠剂相容,它尤其能同甘露聚糖起很好的协同作用。 ——黄原胶在有机溶液中是不能溶解的,但在特定条件下,也可以用作稳定剂。 盐 黄原胶同各种单价盐都能完全相容,当盐的浓度接近1%时,黄原胶溶液的粘度会略上升,但当浓度达到1%时,粘度就达到了峰值,随后当盐的浓度进一步上升时,溶液的粘度已没有明显变化。

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

黄原胶发酵及提取工艺的优化研究

黄原胶发酵及提取工艺的优化研究 张学欢张永奎 摘要黄原胶(Xanthan Gum)是由黄单胞菌属菌分泌的酸性胞外杂多糖,因其具有良好的稳定性和流变性,因而被广泛用于多种行业。本实验在前人研究成果的基础上,以提高黄原胶的产量为目的,通过单因素实验确定了:在30℃,180r/min的条件下摇床培养72h,初始碳源浓度为6%(蔗糖:淀粉=1:2),接种量为6%,;提取黄原胶时,加入2%(w/w)的硅藻土,充分震荡10min后离心30min(4000r/min),加入1%(w/v)的KNO3以及3倍体积的混醇(乙醇:异丙醇=3:1)能有效的提高提取率。在10L发酵罐中进行了小试,产胶率为3.21%。 关键词黄原胶;发酵;提取 The optimal control of the xanthan gum production and extraction Abstract:Xanthan Gum(XG) is a kind of acidic extracelluar carbohydrate by Xanthomonas campestris. This polysaccharide is used in many professions due to its characteristic. In order to improve the production rate of XG, the following studies were done. At the condition of 30 and 180r/min, The ℃ proper concentration of the carbon source is 6%,the composition of sucrose and starch is optimum carbon source and the optimum inoculum size is 10%. For the conditions of extraction XG, adding diatomite of 2%, agitation for 10 min, centrifugalization for 30min(4000r/min), adding KNO3 of 1% and alcohol for 3 times volume(ethyl alcohol: dimethyl carbinol=3:1) could improve the extraction effectively. Finally, the study in the fermentation tank were done, the viscosity of the final fermentation broth is 9320mPa?s, the production rate is 3.21%. Keywords:Xanthan gum; Fermentation; Extraction 引言 黄原胶(Xanthan gum)是由野油菜黄单胞菌或其它黄单胞菌属的菌株以碳水化合物为主要原料经发酵产生的一种胞外酸性水溶性多糖[1]。因其具有优良的理化性质[2],从本世纪50年代后期发现以来,到60年代初就开始进行商业性生产。本课题主要是在前人研究的基础上,以提高黄原胶的产量为目的,通过对培养基中碳源的组成,过程参数进行比较实验和控制的研i究,对黄原胶提取过程进行优化,并且通过在小型发酵罐中进行小试,为黄原胶的大规模工业生产提供参考,也为以后类似的研究打下一定基础。 1实验材料 1.1细菌 从龙泉驿区十陵镇菜园中采得十字花科植物油菜病变组织中筛选、诱变、驯化后得到的野油菜黄单胞菌UV。 1.2基础培养基 表1 基础培养基 Table1 Basic medium

黄原胶生产工艺1

黄原胶生产工艺 黄原胶是由D 一葡萄糖、D 一甘露糖、D 一葡萄糖醛酸、乙酸和丙酮酸组成“五糖重复单元”, 结构聚合体, 分子摩尔比为28 : 3 : 2 : 17: 0 .5 1 一0. 63 。黄原胶分子一级结构由p 一1, 4 键连接的D 一葡萄糖基主链与三糖单位侧链组成, 其侧链由D 一甘露糖和D 一葡萄糖醛酸交替连接而成。黄原胶分子侧末端含有丙酮酸, 其含量对黄原胶性能有很大影响, 在不同溶氧条件下发酵所得黄原胶, 其丙酮酸含量有明显差异。一般,溶氧速率小, 其丙酮酸含量低 生产工艺 工艺流程为: 菌种摇瓶扩大培养发酵罐发酵提取干燥粉碎成品包装 1. 1 生产菌株 黄原胶生产菌株为黄单抱菌属几个种, 目前工业化生产用菌株主要是甘蓝黑腐病黄单孢杆菌(亦名野油菜黄单胞菌) , 直杆状,宽0. 4 林n l ~ 0. 7 林m ,有单个鞭毛, 可移动,革兰氏阴性, 好氧。19 61 年Je an e S 等首先从甘蓝黑腐病斑中分离出甘蓝黑腐病黄单抱杆菌, 赵大建等在19 8 6 年也得到编号为N . K 一01 甘蓝黑腐病黄单抱杆菌。此外, 菜豆黄单胞菌、锦葵黄单胞菌和胡萝卜黄单胞菌亦可作为发酵菌种。 1. 2 培养基组成及优化 1.2.1 培养基 固体培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,琼脂2g,水100mL。 种子培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,水100mL。 发酵培养液:蔗糖5g,蛋白胨0.5g,0.3g,碳酸钙0.3g,磷酸二氢钾0.5g,硫酸镁0.25g,硫酸亚铁0.025g,柠檬酸0.025g,水100mL。 1.3 试验方法 1.3.1 平皿培养 取Φ9cm的培养皿,倒入25mL固体培养基,30℃培养4d~8d。 1.3.2 啤酒糟处理 啤酒糟(取自江苏食品职业技术学院啤酒实训中心)用自来水洗涤2次,烘干

球团工艺简介及生产流程图

烧结厂球团工艺简介及生产流程图 德晟金属制品有限公司烧结厂建设1座12m 2竖炉,利用系数 6.3t/m 2?h ,年产酸性球团矿60万t 。 车间组成及工艺流程 1.1 车间组成 车间组成:配料室、烘干机室、润磨室、造球室、生筛室、转运站、焙烧室、带冷机通廊、成品缓冲仓、风机房、煤气加压站、软水站、高低压配电室等。 1.2 工艺流程 工艺流程图见付图 1.2.1 精矿接受与贮存 竖炉生产主要原料为磁铁矿精粉,对铁精粉化学成分要求是 精矿进料采用汽车输送,汽车将精矿粉卸到下沉式精矿堆场,经抓斗吊运至配料仓。 进厂铁精粉化学成分 名称 TFe( %) Feo (%) SiO2(%) S(%) 粒度(-200mm ) 磁铁矿 份 ≥65 ≤23 ≤7 ≤0.2 ≥85

1.2.2膨润土接受与贮存 竖炉对膨润土化学成分要求是: 进厂膨润土化学指标 名称 吸水率(2h) ∕% 吸蓝量 (100g膨润土∕g) 膨胀容(2g 膨润土∕ml) 粒度 (-200mm) 水分 (%) 钠基膨 润土 ≥400 ≥30 15 ≥95 ≤10 袋装膨润土用汽车运入,储存在膨润土库,由库内设的电葫芦将袋装 膨润土运至膨润土配料仓平台,由人工抖袋将膨润土卸到膨润土配料仓。 1.2.3配料系统 配料矿槽采用单列配置,4个精矿配料仓,容积100m3,储量8.8h,三用一备;2个膨润土仓,膨润土仓为一用一备。配料室为地 下结构。采用自动重量配料,根据设定的给料量和铁精粉与膨润土的 配比,自动调节给料量。铁精粉通过仓下2m圆盘给料机和配料皮带 秤配料。膨润土通过螺旋给料机和螺旋秤配入皮带。圆盘给料机和螺 旋给料机采用变频控制。并且尽量做到铁精矿与膨润土两料流首尾重合。在配料室膨润土落料点处和膨润土设抽风除尘,采用布袋除尘器, 布袋除尘器采用反吹清灰方式。 设置铁精粉仓库和膨润土库。铁精粉仓库能容纳约9天的用量, 下沉式结构,铁精粉采用抓斗吊上料,设置2台10t抓斗吊。膨润土 库用来堆放袋装膨润土,膨润土设电葫芦环形轨道由电葫芦将袋装膨

黄原胶介绍

水溶性优良增稠剂-黄原胶 黄原胶是一种微生物多糖,亦称黄单胞多糖,也称汉生胶。黄原胶是国际上新近发展起来的一种新型发酵产品。英文名称为Xanthan Gum商品名有Kelzan(工业级,美国)、Keltrol (食品级,美国)、Xc-Polymer(石油用)等。黄原胶是以淀粉为主要原料,经微生物发酵及一系列生化过程,最终得到的一种生物高聚物。其主要成分为葡萄糖、甘露糖、葡萄糖醛酸等。分子量达数百万。它具有突出的高粘性和水溶性,独特的流变学特性,优良的温度稳定性和PH稳定性,令人满意的兼容性。 1. 黄原胶的结构 黄原胶分子由D-葡萄糖、D-甘露糖、D-葡萄糖醛酸、乙酸和丙酮酸构成的“五糖重复单元”结构聚合体,分子量在2×106~20×106之间[2],所含乙酸和丙酮酸的比例取决于菌株和后发酵条件。黄原胶聚合物骨架结构类似于纤维素,但是黄原胶的独特性质在于每隔一个单元上存在的由甘露糖醋酸盐、终端甘露糖单元以及两者之间的一个葡萄糖醛酸盐组成的三糖侧链。侧链上的葡萄糖醛酸和丙酮酸群赋予了黄原胶负电荷。带负电荷的侧链之间以及侧链与聚合物骨架之间的相互作用决定了黄原胶溶液的优良性质。黄原胶高级结构是侧链和主链间通过氢键维系形成螺旋和多重螺旋。黄原胶的二级结构是侧链绕主链骨架反向缠绕,通过氢键维系形成棒状双螺旋结构。黄原胶的三级结构是棒状双螺旋结构间靠微弱的非极性共价键结合形成的螺旋复合体。 在低离子强度或高温溶液中,由于带负电荷侧链间的彼此相互排斥作用,黄原胶链形成一种盘旋结构。然而即使电解质浓度的少量增加也会减少侧链间的静电排斥,使得侧链和氢键盘绕在聚合物骨架上,聚合物链伸展成为相对僵硬的螺旋状杆。随着电解质浓度的增加,这种杆状结构在高温和高浓度的状态下也能稳定存在。在离子强度高于0.15mol/L 时,此结构可维持至100℃而不受影响。 一般水溶性聚合物骨架被化学药品或酶攻击、切断后,会丧失其增稠能力。而在黄原胶溶液中,聚合物骨架周围缠绕的侧链使它免于被攻击,所以黄原胶对化学药品和酶攻击的降解具有良好的抵抗性。 2.黄原胶的性能 黄原胶是一种类白色或浅黄色的粉末,是目前国际上集增稠、悬浮、乳化、稳定于一体,性能较为优越的生物胶[3]。分子侧链末端含有丙酮酸基团的多少,对其性能有很大影响[4]。黄原胶具有长链高分子的一般性能,但它比一般高分子含有更多的官能团,在特定条件下会显示独特性能。它在水溶液中呈多聚阴离子且构象是多样的,不同条件下表现出不同的特性,具有独特的理化性质。具体表现为: 2.1 悬浮性和乳化性 黄原胶因为具有显著的增加体系粘度和形成弱凝胶结构的特点而经常被使用于食品或其它产品,以提高O/W乳状液的稳定性。但麻建国[5]等的研究发现,只有黄原胶的添加量达到一定量后,才能得到预定的稳定作用。在黄原胶质量分数小于0.001%时,试验体系的稳定性变化不大;质量分数在0.01~0.02%时样品底部富水层出现,但体系无明显分层;质量分数大于0.02%时,乳状液很快分层。只有当质量分数超过0.25%时,黄原胶才能起到提高体系稳定性的作用。 2.2 水溶性 黄原胶在水中能快速溶解,有很好的水溶性。特别是在冷水中也能溶解,可省去繁杂的加热过程,使用方便。 2.3 流变性

化工生产流程图

化工生产流程图 1.一工厂用软锰矿(含 MnO 2约70%及Al 2O 3)和闪锌矿(含ZnS 约80%及FeS )共同生产MnO 2和Zn (干电池原料): 已知① A 是MnSO 4、ZnSO 4、Fe 2(SO 4)3、Al 2(SO 4)3的混合液。 ② IV 中的电解反应式为MnSO 4+ZnSO 4+2H 2O ══通电 MnO 2+ Zn +2H 2SO 4。 (1)A 中属于还原产物的是___________。 (2)MnCO 3、Zn 2(OH )2CO 3的作用是_____________________________;II 需要加热的缘故是___________;C 的化学式是____________。 (3)该生产中除得到MnO 2和Zn 以外,还可得到的副产品是______________。 (4)假如不考虑生产中的损耗,除矿石外,需购买的化工原料是___________。 (5)要从Na 2SO 4溶液中得到芒硝(Na 2SO 4·10H 2O ),需进行的操作有蒸发浓缩、________、过滤、洗涤、干燥等。 (6)从生产MnO 2和Zn 的角度运算,软锰矿和闪锌矿的质量比大约是__________。 2、碘化钠是实验室中常见分析试剂,常用于医疗和照相业。工业上用铁屑还原法来制备,工艺流程如下: (1)碘元素属于第 周期第 族;反应②中的氧化剂是(写化学式) 。 (2)判定反应①中的碘是否已完全转化的具体操作方法是 。 (3)反应②的离子方程式为 ; 反应③的化学方程式为 。 (4)将滤液浓缩、冷却、分离、干燥和包装过程中,都需要注意的咨询题 碘 共热反应① NaIO 3溶液 反应② 混合物 过滤 Fe(OH)2滤液 灼烧 副产品 浓缩冷却结晶 分离 干燥包装 铁屑 反应③

黄原胶说明

黄原胶说明 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

黄原胶性能及使用说明 梅花生物科技集团股份有限公司 黄原胶卓越的稳定性 屈变值 黄原胶对于多相体系的卓越稳定性是其最为有用的性能之一。无论是固体(悬浮),液体(乳化),气体(泡沫稳定),或者是以上三种情况的结合黄原胶都能发挥十分有效的稳定作用。 溶液的屈变值是这种稳定作用的重要特征,所谓屈变值就是在溶液不发生流动的情况下,所能接受的最大剪切力。由于低浓度的的黄原胶溶液就具有一定的屈变值,所以在静态或者较低的剪切力作用下,分散体系(悬浮液,乳化液或泡沫液)都保持良好的稳定性。 剪切作用/假塑作用 在牛顿溶液中,剪切力是与剪切速度成正比的,高速剪切下溶液的流动性并不改善。 与之相反黄原胶溶液具有很强的抵抗作用,但是随着剪切作用的增加粘度会迅速下降。 溶液的假塑性程度是随着浓度的增加而增加的。但是黄原胶即使在很低的浓度下也会表现出假塑性。一旦剪切力作用解除,溶液的粘度会立即恢复。 高剪切作用下,比如泵送时,黄原胶使溶液的外表粘度很小。此外,黄原胶对于长时间的剪切作用具有异常的抵抗作用。这样使料液在均质和高速混合后粘度很少损失。 黄原胶的热稳定性

和别的增稠剂相比较,黄原胶对于温度变化时表现出的稳定性十分卓越,黄原胶溶液在加热时表现出极好的稳定性。即使在盐或者酸存在下也是如此。对异常温度所显示的稳定性是黄原胶典型的,也是独一无二的性能,在多次高温处理时,如巴氏杀菌,或者彻底灭菌(甚至130℃时经历几分钟)当体系冷却下来,实际上粘度并不发生变化。 很多其它常用的增稠剂,在温度升高时,粘度会下降,而且在巴氏杀菌或彻底杀菌以后,粘度会受到很大影响,这一点,当有酸存在时,特别明显。 使用黄原胶作为稳定剂可以确保产品粘度恒久如一,而且在各种储存条件下,都能延长产品的货架寿命。 图1 黄原胶溶液在热处理条件下具有良好的稳定性黄原胶的酸碱稳定性 溶液的酸碱度变化对于黄原胶的粘度是完全没有影响的。只是PH11以上或PH2以下的强酸、强碱情况下黄原胶的粘度有轻微的影响。这种特点传统的增稠剂或稳定剂是不具备的。 图2 黄原胶溶液的酸碱稳定性 黄原胶的微波稳定性 用黄原胶作为稳定剂而形成的体系,即使在微波中间冻结—解冻都对其性能不会产生影响。 图3 黄原胶在1%NaCl中的微波冻结—解冻稳定性黄原胶具有极好的相溶性 对于绝大部分食品和药物来说,往往是一种多相混合物,包括水、油、脂肪、蛋白质、碳水化合物和其它组份。考虑到复杂的加工工艺,如混合、泵送、加热、

化学工艺流程图

3年高考化学之工艺合成 (2016全国1卷)2NaClO 是一种重要的杀菌消毒剂,也常用来漂白织物等,其一种生 产工艺如下: 回答下列问题: (1)2NaClO 中Cl 的化合价为__________。 (2)写出“反应”步骤中生成2ClO 的化学方程式 。 (3)“电解”所用食盐水由粗盐水精制而成,精制时,为除去2Mg +和2Ca +,要加入的试剂分别为__________、__________。“电解”中阴极反应的主要产物是 。 (4)“尾气吸收”是吸收“电解”过程排出的少量2ClO ,此吸收反应中,氧化剂与还 原剂的物质的量之比为__________,该反应中氧化产物是 。 (5)“有效氯含量”可用来衡量含氯消毒剂的消毒能力,其定义是:每克含氯消毒剂的氧化能力相当于多少克2Cl 的氧化能力。2NaClO 的有效氯含量为 。(计算结果保留两 位小数)。 (2016年全国2卷)双氧水是一种重要的氧化剂、漂白剂和消毒剂。生产双氧水常采用蒽醌法,其反应原理和生产流程如图所示: 生产过程中,把乙基蒽醌溶于有机溶剂配制成工作液,在一定温度、压力和催化剂作用下进行氢化,再经氧化、萃取、净化等工艺得到双氧水。回答下列问题: (1)蒽醌法制备H 2O 2理论上消耗的原料是 ,循环使用的原料是 ,配制工作液时采用有机溶剂而不采用水的原因是 (2)氢化釜A 中反应的化学方程式为 进入氧化塔C 的反应混合液中的主要溶质为

(3)萃取塔D中的萃取剂是,选择其作萃取剂的原因是 (4)工作液再生装置F中要除净残留的H2O2,原因是 (5)(5)双氧水浓度可在酸性条件下用KmnO4溶液测定,该反应的离子方程式为 一种双氧水的质量分数为27.5%(密度为1.10g·cm-3),其浓度为mol·L?1. (2015全国2卷)28.(15 分)二氧化氯(ClO2,黄绿色易溶于水的气体)是高效、低毒的消毒剂,回答下列问題: (1)工业上可用KC1O3与Na2SO3在H2SO4存在下制得ClO2,该反应氧化剂与还原剂物质的量之比为。 (2)实验室用NH4Cl、盐酸、NaClO2(亚氯酸钠)为原料,通过以下过程制备ClO2: ①电解时发生反应的化学方程式为。 ②溶液X中大量存在的阴离子有__________。 ③除去ClO2中的NH3可选用的试剂是(填标号)。 a.水b.碱石灰c.浓硫酸d.饱和食盐水 (3)用右图装置可以测定混合气中ClO2的含量: Ⅰ.在锥形瓶中加入足量的碘化钾,用50 mL水溶解后,再加入 3 mL 稀硫酸: Ⅱ.在玻璃液封装置中加入水,使液面没过玻璃液封管的管口; Ⅲ.将一定量的混合气体通入锥形瓶中吸收; Ⅳ.将玻璃液封装置中的水倒入锥形瓶中: Ⅴ.用0.1000 mol·L-1硫代硫酸钠标准溶液滴定锥形瓶中的溶液(I2+2S2O32-=2I- +S4O62-),指示剂显示终点时共用去20.00 mL硫代硫酸钠溶液。在此过程中: ①锥形瓶内ClO2与碘化钾反应的离子方程式为。 ②玻璃液封装置的作用是。 ③V中加入的指示剂通常为,滴定至终点的现象是。 ④测得混合气中ClO2的质量为g。 (4)用ClO2处理过的饮用水会含有一定最的亚氯酸盐。若要除去超标的亚氯酸盐,下列物质最适宜的是_______(填标号)。 a.明矾b.碘化钾c.盐酸d.硫酸亚铁 (2015全国1卷)27.硼及其化合物在工业上有许多用途。以铁硼矿(主要成分为Mg B2O5·H2O和Fe3O4, 2 还有少量Fe2O3、FeO、CaO、Al2O3和SiO2等)为原料制备硼酸(H3BO3)的工艺流程如图所示:

黄原胶应用说明

黄原胶应用说明 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

黄原胶在食品工业中的应用 黄原胶作为食品添 加剂,已被许多国家接受。这种多糖通过控制产品的流变学行为而显着改善食品的质地、口感、外观品质,提高其商业价值,已在饮料、糕点、果冻、罐头食品、海产品、肉制品加工等领域中成为重要的稳定剂、悬浮剂、乳化剂、增稠剂、粘合剂及具高附加值、高质量的加工原料。具体可概括为以下几个方面。1 耐酸、耐盐的增稠稳定剂应用于各种果汁饮料、浓缩果汁、调味料(如酱油、蚝油、沙拉调味汁)的食品中。黄原胶的稳定效果明显优于其它胶,具有较强的热稳定性,一般的高温杀菌对其不会有影响,可用于各种果汁饮料、果肉饮料、植物蛋白饮料等,用量0.08% ~0.3%。黄原胶优良的耐盐、耐酸碱性可以完全取代酱油中的传统增稠剂淀粉等,可以克服淀粉沉淀的缺点,且能使酱油细腻均一,提高挂壁性和着色性,延长货架期,果酱、豆酱等风味调制酱,用黄原胶作增稠稳定剂,使酱体统一,涂拌性好,不结块,易于灌装,且提高口感。2 乳化剂作为乳化剂用于各种蛋白质饮料、乳饮料等中,防止油水分层和提高蛋白质的稳定性,防止蛋白质沉淀,也可利用其乳化能力作为起泡剂和泡沫稳定剂,如用于啤酒制造等。在以豆类蛋白为主的乳化体系中加入0.02 %的黄原胶后,乳化性明显提高,并使混合体系具有高的剪切率和热诱导的高0,00 0,01 0,10 1,00 10,00 0,01 0,1 1 10 100 Frequency (rad s -1 )

粘特性。3 填充剂作为稳定的高粘度填充剂,可广泛应用于各类点心、面包、饼干、糖果等食品的加工,在不改变食品的传统风味的前提下,使食品具有更优越的保形性,更长的保质期,更良好的口感,有利于这些食品多样化和工业化规模生产。在各种冷冻食品生产中,黄原胶具有防止其失水,延缓老化,延长保质期的作用。4 乳化稳定剂作为乳化稳定剂应用于冷冻食品,在冰淇淋、雪糕中黄原胶能调整混合物粘度,是使其具有均匀稳定的组成,组织滑软,由于黄原胶的粘度和温度的关系有可塑性和剪切性能,故在加工操作时粘度下降,阻力减小,有利于工艺进行,而在冷却老化阶段,粘度恢复,有利于提高膨胀率,防止冰淇淋组织中大冰晶的形成,使冰淇淋口感润滑细腻。同时提高了产品的冻融稳定性,而且在融化时奶油和水混合均匀,不会产生浆液分离现象。一般老化时间2~3h。用量0.2%~0.4%。5 应用于面制品黄原胶在面食制品中。是值得推广的添加剂。在挂面、拉面、方便面生产中,加入黄原胶,增强了面团的筋力,压出的面片有韧性,烘干时降低断条率,同时改善产品I:3感,吃I:3有筋,清新爽滑,对油炸方面还可节省用油,降低成本。在速冻饺子馄饨皮中加入黄原胶,能提高产品的口感,减少烂皮和混汤度;在馅类产品中加入总量的0.05%~0.1%的黄原胶,可以有利于汤汁的保水,保证产品在开水中煮透,汤汁香味浓郁,并可提高和改善口感,黄原胶用面包、蛋糕等的添加剂成分,可增加松软度和延长产品的货架期。6 其它应用除以上用途外,黄原胶在肉制品、果蔬保鲜罐头等食品的加工中亦有广泛应用。

黄原胶的发酵和提取

黄原胶的发酵和提取 牛佐朕 (组别:周三组指导教师:魏东盛日期:2014.11.19) [摘要]:利用野油菜黄单胞菌(Xanthomonas campestris)可以产生胞外荚膜多糖的性质,通过种子培养基的培养,种子培养基提取液接种到发酵培养基培养72h,并用乙醇提纯制得黄原胶,求得多糖产率,了解微生物多糖在工业上的制法以及用途。 [关键词] 黄原胶,发酵,提纯 正文: 1.前言: 黄原胶应用范围很广,目前世界上食品工业应用占60%,石油及其它工业占40%。黄原胶在食品工业中是理想的增稠剂、乳化剂、成型剂,在某些苟刻条件下(如pH3— 9,温度80—130℃),它的性能基本稳定,比明胶、CMC、海藻胶、果胶等优越。黄原胶另一个大市场是石油工业,黄原胶在增粘、增稠、抗盐、抗污染能力远比其它聚台物强,尤其在海洋、海滩、高卤层和永冻土层钻井,黄原胶用于泥浆处理、完井液和三次采油等方面效果显著,对加快钻井速度、防止油井坍塌、保护油气田、防止井喷、大幅度提高采油率等方面都有明显的作用。黄原胶在其它行业中也有广大的市场。用它作为釉浆悬浮剂和粘结剂.被称为陶瓷工业的重大技术革新。对于具有如此重要作用的黄原胶,我国黄原胶的还存在许多影响和制约因素。本文着重阐述了黄原胶对于食品的应用、黄原胶的生产工艺及黄原胶生产工艺中影响因素的控制。 多糖是多个单糖分子经脱水缩合形成的结构复杂、高分子量的糖类物质,广泛分布与自然界中。多糖也出现在微生物中——G+和G-细胞壁的主要成分肽聚糖就是细菌的细胞质合成运送至细胞膜外,构成细胞壁的多糖物质。 黄原胶是用黄单孢菌经微生物发酵制取的生物细胞外粘多糖,具有良好的增粘性、假塑性、耐酸碱性和抗高温性,能耐高浓度盐,具有乳化和均匀悬浮颗粒等性能。用微生物发酵的方法生产黄原胶在国内外有着广泛的前景,并且越来越引起人们的重视。

金属镁工艺操作规程

第1 页共50 页

第 2 页 共 50 页 金属镁工艺操作规程 金属镁是当前一种新型工业材料,而冶炼镁业是一项高温、高压、 高转速,易燃、易爆、易中毒的行业,了解与掌握炼镁工艺规程,规 范操作、熟练操作是冶炼镁业的关键所在。冶炼镁业由白云石经煅白、 配料压球、还原、精炼最后成为镁块,其每一环节都关系到镁的产出 率。 从第一环节煅白开始,煅烧温度过高,煅白会过烧,虽然煅白的 灼减量低,但其水化活性度也低。煅烧温度偏低,煅白残留的CO 2量 大,即碳酸盐未分解彻底,灼减量就高。对于耐磨指大,热强低的白 云石其煅烧时间相应缩短,否则煅烧出的白云石不是过烧就是生烧。 因此灵活调节温度,根据石质把握煅烧时间非常重要。 煅烧白云石的吸湿和二氧化碳(CO 2)全相同,而且时间越长, 吸湿越大,氢氧化钙[Ca (OH )2]和碳酸钙[CaCO 3]不仅能氧化还原析 出的镁,生成氧化镁和氧化钙,而且还能氧化还原剂硅铁中的硅(Si ), 同时吸湿后的煅烧白云石在真空和比较低的温度一并发生离解,使反 应区的剩余压力增大,减慢镁的升华速度。因此,煅烧白云石不宜长 期存放,应尽快投入到下一道工序。 竖窑要求白云石粒度较小(50—200MM ),炉料要均匀,竖窑操作 简单,煅烧活性度高,灼减量低,并且无论白云石是何种结构,只要 控制好工艺条件,料满预热好,其煅烧效果均很好,因此,煅烧出口 的煅白温度控制在300—400℃之间,有利于还原反应。

第 3 页 共 50 页 硅热法炼镁采用的还原剂应具有足够的还原能力,钙、硅、碳化 钙及炭质材料等均能将镁从氧化镁[MgO]中还原出来,还原剂的还原 能力按AL 、Si 、CaC 2的顺序递减的,从经验观点出发,在硅热法炼 镁中,通常是用硅铁作还原剂。 硅铁还原剂对于硅热法炼镁的还原过程是十分重要的,硅铁的反 应性与硅铁中的Si 、 Fe 、SiO 2、 FeSi 等组分有关,还原性能最好 的是Si ,其它的Fe —Si 化合物反应速度较小,而且随着铁含量的增 加,还原反应不易进行,含硅量高的硅铁脆而硬,易碎,易氧化。在 硅铁中含硅量85%以上的硅铁几乎全是Si 存在,含硅量75%的硅铁, 由Si 和Fe 、 SiO 2组成,其硅铁不适合硅热法炼镁,先用含硅量最高 的硅铁作还原剂,不仅其反应好,而且硅的利用率也高,但是工业生 产中,仍选用75%Si 的SiFe ,故常用Si 量75%的Si 作业硅热法的还 原剂。 硅热法炼镁的还原过程属于固相反应过程。对固相反应来说,要 求炉料有较细的粒度,并具有较大的比表面,即炉料越细越好,但是 炉料太细,压形时压缩比小,又难于成形,故炉料的细度必须控制在 一定的范围内,炉料的细度对镁的还原效率,硅的利用率有较大的影 响,炉料的粒度比不恰当,不仅影响还原效率,还影响团块的抗压强 度,所以炉料中的粒度比是非常重要的。 煅白的强度不大,一般比较易磨,白云石矿物结构不同,所以锻 白也呈现不同性质,网状结构的白云石其煅白成六方菱形结构的块

黄原胶应用说明

黄原胶应用说明The final revision was on November 23, 2020

黄原胶在食品工业中的应用 黄原胶作为食品添加 剂,已被许多国家接受。这种多糖通过控制产品的流变学行为而显著改善食品的质地、口感、外观品质,提高其商业价值,已在饮料、糕点、果冻、罐头食品、海产品、肉制品加工等领域中成为重要的稳定剂、悬浮剂、乳化剂、增稠剂、粘合剂及具高附加值、高质量的加工原料。具体可概括为以下几个方面。1 耐酸、耐盐的增稠稳定剂应用于各种果汁饮料、浓缩果汁、调味料(如酱油、蚝油、沙拉调味汁)的食品中。黄原胶的稳定效果明显优于其它胶,具有较强的热稳定性,一般的高温杀菌对其不会有影响,可用于各种果汁饮料、果肉饮料、植物蛋白饮料等,用量0.08% ~0.3%。黄原胶优良的耐盐、耐酸碱性可以完全取代酱油中的传统增稠剂淀粉等,可以克服淀粉沉淀的缺点,且能使酱油细腻均一,提高挂壁性和着色性,延长货架期,果酱、豆酱等风味调制酱,用黄原胶作增稠稳定剂,使酱体统一,涂拌性好,不结块,易于灌装,且提高口感。2 乳化剂作为乳化剂用于各种蛋白质饮料、乳饮料等中,防止油水分层和提高蛋白质的稳定性,防止蛋白质沉淀,也可利用其乳化能力作为起泡剂和泡沫稳定剂,如用于啤酒制造等。在以豆类蛋白为主的乳化体系中加入0.02 %的黄原胶后,乳化性明显提高,并使混合体系具有高的剪切率和热诱导的高粘特性。3 填充剂作为稳定的高粘度填充剂,可 广泛应用于各类点心、面包、饼干、糖果等食品的加工,在不改变食品的传统风味的前0,00 0,01 0,10 1,00 10,00 0,01 0,1 1 10 100 Frequency (rad s -1 )

黄原胶应用说明

黄原胶在食品工业中的应用 黄原胶作为食品添加剂,已被许多国家接受。这种多糖通过控制产品的流变学行为而显著改善食品的质地、口感、外观品质,提高其商业价值,已在饮料、糕点、果冻、罐头食品、海产品、肉制品加工等领域中成为重要的稳定剂、悬浮剂、乳化剂、增稠剂、粘合剂及具高附加值、高质量的加工原料。具体可概括为以下几个方面。 1 耐酸、耐盐的增稠稳定剂 应用于各种果汁饮料、浓缩果汁、调味料(如酱油、蚝油、沙拉调味汁)的食品中。黄原胶的稳定效果明显优于其它胶,具有较强的热稳定性,一般的高温杀菌对其不会有影响,可用于各种果汁饮料、果肉饮料、植物蛋白饮料等,用量0.08% ~0.3%。黄原胶优良的耐盐、耐酸碱性可以完全取代酱油中的传统增稠剂淀粉等,可以克服淀粉沉淀的缺点,且能使酱油细腻均一,提高挂壁性和着色性,延长货架期,果酱、豆酱等风味调制酱,用黄原胶作增稠稳定剂,使酱体统一,涂拌性好,不结块,易于灌装,且提高口感。 2 乳化剂 作为乳化剂用于各种蛋白质饮料、乳饮料等中,防止油水分层和提高蛋白质的稳定性,防止蛋白质沉淀,也可利用其乳化能力作为起泡剂和泡沫稳定剂,如用于啤酒制造等。在以豆类蛋白为主的乳化体系中加入0.02 %的黄原胶后,乳化性明显提高,并使混合体系具有高的剪切率和热诱导的高粘特性。 3 填充剂 作为稳定的高粘度填充剂,可广泛应用于各类点心、面包、饼干、糖果等食品的加工,在不改变食品的传统风味的前提下,使食品具有更优越的保形性,更长的保质期,更良好的口感,有利于这些食品多样化和工业化规模生产。在各种冷冻食品生产中,黄原胶具有防止其失水,延缓老化,延长保质期的作用。 4 乳化稳定剂 作为乳化稳定剂应用于冷冻食品,在冰淇淋、雪糕中黄原胶能调整混合物粘度,是使其具有均匀稳定的组成,组织滑软,由于黄原胶的粘度和温度的关系有可塑性和剪切性能,故在加工操作时粘度下降,阻力减小,有利于工艺进行,而在冷却老化阶段,粘度恢复,有利于提高膨胀率,防止冰淇淋组织中大冰晶的形成,使冰淇淋口感润滑细腻。同时提高了产品的冻融稳定性,而且在融化时奶油和水混合均匀,不会产生浆液分离现象。一般老化时间2~3h 。用量 0.2% ~0.4% 。 5 应用于面制品 黄原胶在面食制品中。是值得推广的添加剂。在挂面、拉面、方便面生产中,加入黄原胶,0,00 0,01 0,10 1,00 10,00 0,01 0,1 1 10 100 Frequency (rad s -1 )

黄原胶的特性_发展现状_生产及其应用

黄原胶的特性、发展现状、生产及其应用 聂凌鸿 周如金 宁正祥 (华南理工大学食品与生物工程学院,广州510640) 摘要:黄原胶是一种用途广泛的微生物胞外多糖。本文简要介绍了其分子结构和理化性质、发展现状、生产及其在食品工业中的应用。 关键词:黄原胶,发展现状,生产工艺,应用 Focus on Xanthan G um Nie Linghong,Zhou Rujin,Ning Zhengxiang (South China University of Technology,Institute of Food and Bio2engineering,Guangzhou 510640) Abstract:Xanthan Gum,a extracelluar polyhexose,is used extensively in food industry.Its molecular structure,physico2 chemical properties,development situation,production and application were introduced in this paper. K ey w ords:Xanthan gum,Development situation,Processing,Application 黄原胶(Xanthan gum),又名汉生胶,是由野油菜黄单胞杆菌(Xanthom nas cam pest ris)以碳水化合物为主要原料(如玉米淀粉)经发酵工程生产的一种作用广泛的微生物胞外多糖[1]。它具有独特的流变性,良好的水溶性、对热及酸碱的稳定性、与多种盐类有很好的相容性,作为增稠剂、悬浮剂、乳化剂、稳定剂,可广泛应用于食品、石油、医药等20多个行业,是目前世界上生产规模最大且用途极为广泛的微生物多糖。 1 黄原胶的分子结构和理化性能 1.1 黄原胶的分子结构 黄原胶是由D-葡萄糖、D-甘露糖、D-葡萄糖醛酸、乙酸和丙酮酸组成的“五糖重复单元”结构聚合体,分子比为2.8∶3∶2∶1.7∶0.51~0.63。黄原胶分子的一级结构是由β-1,4键连接的D-葡萄糖基主链与三糖单位的侧链组成,其侧链由 D-甘露糖和D-葡萄糖醛酸交替连接而成,分子比例为2∶1,三糖侧链由在C-6位置带有乙酰基的D-甘露糖以α-1,3键与主链连接,在侧链末端的D-甘露糖残基上以缩醛形式带有丙酮酸(图1)[1,2]。 图1 黄原胶的分子结构 黄原胶的分子量在2×106~50×106之间[3]。近年来,国内外学者对黄原胶在水溶液中的构象进行了大量的研究,认为黄原胶在氯化钠水溶液中主要以多分子缔合状态存在,少量以单分子状态存在,且为蠕状链,缔合状态的分子呈分段的双股螺旋构象[4],这是黄原胶的二级结构。黄原胶的双螺旋依靠微弱的共价键形成网状立体结构,这是黄原胶的三级结构,它在水中以液晶的形式存在。 1.2 黄原胶的理化性质 黄原胶是一种类白色或浅米黄色的可流动的粉 28

相关文档
最新文档