飞机结构及加工工艺

飞机结构及加工工艺
飞机结构及加工工艺

对加工中心滑枕的结构设计

对加工中心滑枕的结构设计 摘要:数控机床及数控加工中心是现代制造业的关键设备,一个国家数控机床的产量和技术水平在某种程度上就代表这个国家的制造业水平和竞争力。滑枕是加工中心的核心结构之一,是对零部件加工的直接执行机构,它的结构设计是否合理对加工中心的加工结果有着直接的影响。因而加工中心滑枕的结构设计尤为重要。 关键词:加工;滑枕;结构设计 1前言 数字控制也是最近几年新兴起来的一种自动控制的技术,利用数字化的信息实现机床控制的一种方法。数字控制的机床是采用数字来对机床进行控制。数控的机床是装有数控控制的装备。数字控制的系统主要的功能就是采用逻辑处理的方式,或者是运用其他的运算符编码指令来对规定的程序进行编写,数控系统也是一种控制的系统,他能够完成对数控信息的输入、编码以及运算,对数控机床进行全面的加工。 2数控机床及加工中心的工作原理 数控机床的加工中心主要就是运用了计算机技术的自动控制,精密的测量方法和完善的机械设计等方面知识,也是机电一体化的产品,是未来机床的发展趋势。数控机床的工作原理是:首先将加工零件图上的信息和工艺的信息数字化,按照相关规定的代码和格式对其进行相应的加工。数字化信息的定义就是将工件与道具的坐标分割成一个小单位,也可以叫做最小位移量,数控系统是按照程序的要求,对信息进行处理和分配,使得坐标的移动可以是若干个小的位移单位,在工件与道具运动的过程中完成零件的加工。 3 数控加工中心滑枕结构设计 主轴和主轴电机等构件与移动部分相连,随移动部件移动。丝杠电机与固定件连接。丝杠与固定部分连接,丝杠丝母控制移动部分上下移动。主轴电机选择西门子1PH7-137—NG,配套减速器型号为2LG4320。丝杠驱动电机选择西门子1FK7101-5AF71,配套减速器型号为LP155-M01。丝杠公称直径选为55 mm,导程20 mm,长度约为1200 mm。丝母的型号选择为BNFN5520-5。联轴器选择为ROTEX梅花型弹性联轴器。型号NO.001-钢材料,规格38。 3.1滑枕设计计算 3.1.1滚珠丝杠选择计算 (1)已知参数 丝杠的公称直径55mm,导程20mm,长度1500mm,BNFN5520-5。 (2) 切削力的确定 按照立铣(不对称顺铣)计算各向分力,如下图所示:已知主切削力Fc =5000(N),fw—运转系数,见下表:

《飞机钣金工艺标准学》期末考试预习复习

第2章模线样板 1简述模线样板的技术原理? 首先根据飞机图纸制出真实形状的标准,然后按标准制造出各种工艺装备,再按工艺装备制 造出零件。 2简述模线样板在飞机制造中的作用? (1 )模线样板式飞机从设计到制造之间的桥梁; (2 )是飞机几何尺寸的原始依据; (3)是飞机制造过程中保证各类零组部件尺寸协调的主要手段。 3样板与一般量具的主要区别是什么? (1)前者通过刻度显示,后者是直接通过直接比较 (2 )前者通过刻度读数来判断加工精度,后者通过外形与模板的吻合程度来判断加工精度。 4样板分为哪几类?各自用途是什么? 课本24页表2.2 5飞机制造工程专业的三个主要方面是什么? 6尺寸协调的原则有哪些?飞机制造中保证协调的原则是什么? 7具有单弯边或多次弯边零件标记符号的画法? (1)多次弯边的基准面以样板正面的延续面在上一次弯边的所有面为基准面。 (2 )弯边高度,弯边角度均已前一次弯边为基准面。 (3 )弯边上或弯边下,无边高数字标记着,表示弯边尺寸按样板。 第三章钣金分离工艺 1冲裁件的质量指标是什么? 断面质量,尺寸精度,形状误差。 2冲裁间隙如何影响冲裁件质量? (1)间隙合理时,材料会由于上下键裂纹相遇而分离。断面较光洁,毛刺较少,较小可降低冲裁力,延长模具使用寿命。 (2)间隙过大时,上下剪裂纹不重合。毛刺大而厚不易除去,增加冲裁力。 (3)间隙过小时,上下剪裂纹不重合。冲裁力增加。 3典型冲裁件的模具刃口尺寸计算。 4典型冲裁模的结构及工作过程

(1)简单冲裁模,压力机一次冲程只完成一次冲裁工序。 (2)导柱式冲裁模,工作时由导柱和导套进行导向,保证凸凹模的准确的工作位置。 (3)连续冲裁模,压力机每一次行程就可以在不同工位完成不同的冲裁程序。 (4)复合冲裁模,在模具的同一工位上,安装两副以上不同功能的模具 5激光切割的原理和特点。 原理:利用激光器作热源的一种无接触切割技术。 特点: (1)切割质量好 (2)切割效率高 (3 )激光切割时无接触切割 (4 )可切割多种材料 (5)激光切割零件受热后产生热影响区 (6 )激光切割需要辅助气体用量大,成本高 6排样的目的和作用 目的:提高材料利用率,减少废料 作用:排样是否合理直接影响材料的有效利用,还会影响模具的结构和使用寿命,生产率, 零件精度,生产操作和安全等方面。 7冲裁件的排样法有哪些? (1)有废料排样 (2)少废料排样 (3)无废料排样 第四章手工成形 1为什么在航空飞行器制造过程中仍大量采用手工成形? 航空飞行器制造中对于单间或小量生产一些形状比较复杂的零件,手工成形使用的工具简单,操作简单所以至今仍被广泛使用。 2单角弯折的操作步骤是什么? (1)计算展开尺寸并下料,画出弯折线 (2)准备两块模块或轨铁,长度大于零件长度,导圆角半径R和零件一致。 (3)将毛料夹在两块轨铁之间,是折弯线对准模块圆角半径R中心。 (4)用橡皮打板或木打板压倒毛料后,先使弯边打制成根部略有隆起,然后打靠聊根部, 使其靠模。(5)用木榔头将圆角半径R处从头到尾均匀敲击一遍,使其靠模。 (6 )消除回弹 (7 )修正贴模 3什么叫划线? 再被加工材料上划出加工界限的线。 4什么叫放边?常用的放边方法有几种?

飞机制造技术知识点

飞机制造特点与协调互换技术 1、飞机结构的特点:外形复杂,构造复杂;零件数目多;尺寸大,刚度小。 2、飞机制造的主要工艺方法:钣金成形、结构件机械加工、复合材料成形、部件装配与总装配 3、飞机制造的过程:毛坯制造与原料采购、零件制造、装配、试验 4、飞机制造工艺的特点:单件小批量生产、零件制造方法多样、装配工作量大、生产准备工作 量大、需要采用特殊的方法保证协调与互换 5、互换性 互换性是产品相互配合部分的结构属性,是指同名零件、部(组)件,在分别制造后进行装配时,除了按照设计规定的调整以外,在几何尺寸、形位参数和物理、机械性能各方面不需要选配和补充加工就能相互取代的一致性。 6、协调性 协调性是指两个或多个相互配合或对接的飞机结构单元之间、飞机结构单元及其工艺装备之间、成套的工艺装备之间,其几何尺寸和形位参数都能兼容而具有的一致性程度。协调性可以通过互换性方法取得,也可以通过非互换性方法(如修配)获得,即相互协调的零部件之间不一定具有互换性。 7、制造准确度 实际工件与设计图纸上所确定的理想几何尺寸和形状的近似程度。 8、协调准确度 两个相互配合的零件、组合件或段部件之间配合的实际尺寸和形状相近似程度。 9、协调路线:从飞机零部件的理论外形尺寸到相应零部件的尺寸传递体系。 10、三种协调路线:按独立制造原则进行协调、按相互联系制造原则进行协调、按相互修配原 则进行协调 11、模线 模线是使用1:1 比例,描述飞机曲面外形与零件之间的装配关系的一系列平面图线。模线分为理论模线和构造模线。 12、样板:样板是用于表示飞机零、组、部件真实形状的刚性图纸和量具。 13、样机:飞机的实物模型14、数字样机:在计算机中,使用数学模型描述的飞机模型,用以取代物理样机。 15、数字化协调方法 通过数字化工装设计、数字化制造和数字化测量系统来实现。利用数控加工、成形,制造出零件外形。在工装制造时,通过数字测量系统实时监控、测量工装或者产品上相关控制点的位置,建立产品零部件的基准坐标系,在此基础上,比较关键特征点的测量数据与数字样机中的数据,分析测量数据与理论数据的偏差,作为检验与调整的依据。

(完整版)立式加工中心结构

立式加工中心的分类 马毅, 【摘要】介绍了立式加工中心的分类及结构 【关键词】立式加工中心;分类;结构 The classification of Vertical Machine Center Ma yi , 【Abstract 】:This paper introduces classification and structure of vertical machine center 【Keywords 】:vertical machine center; classification ;structure 一、概述 进入21 世纪,我国机床制造业面临着市场需求旺盛而引发的制造装备业发展的良机,机床是机械制造的工作母机,是装备制造的基础设备,主要应用领域是汽车、船舶、工程机械、军工、农机、电力设备、铁路机车、阀门等行业。在汽车、船舶、工程机械等行业的产能扩张压力的推动下,机床工业正迎来快速发展阶段。 数控机床是现代制造业的基础装备,一个国家数控机床的水平高低和拥有量是衡量国家综合经济实力和国防安全的重要标志。当今,数控机床已成为机床市场消费的主流产品,我国汽车、航天航空、船舶、一般机械、铁路机车、军工和高新技术产业的发展为数控机床提供了广阔的市场。 加工中心是典型的数控机床,它的产销量占数控机床市场的30%?40%,立式加工中心是加工中心中的主要产品,它的主轴轴线垂直于水平面。立式加工中心主要的用户层面为:以看好的汽车零部件行业为首,还有工程机械、军工、模具、阀门、飞机、医疗设备、电力、光学设备等行业。立式加工中心的产销量占加工中心市场的60%?70%,2007年,国内生产 立式加工中心近9000台,并且从国外进口立式加工中心近11000台。即国内立式加工中心年需求量近20000 台,市场需求量巨大。 二、立式加工中心的分类 1. 定立柱式立式加工中心(即工作台运动,立柱固定型结构) 定柱式立式加工中心,又称工作台运动式立式加工中心。此类立式加工中心产销量占立式加工中心市场的75%左右,大多数机床制造厂家都有此类结构的机床。此类机床属于传统 1

飞机结构与工艺及历史发展浅述

https://www.360docs.net/doc/2314159839.html, 飞机结构与工艺及历史发展浅述 机翼 1.机翼的基本结构元件及受力机翼的基本结构元件是由纵向骨架、横向骨架以及蒙皮和接头等组成,现将各个结构元件的作用及受力分述如下: 1.纵向骨架——沿翼展方向安置的构件,包括梁、纵樯和桁条。 (1)梁——最强有力的纵向构件。它承受着全部或大部分的弯矩和剪力。梁的椽条承受由弯矩而产生的正应力;腹板承受剪力。梁的数量一般为一根或两根,也有两根以上的。机翼结构只有一根梁者称为单梁机翼;有两根者称为双梁机翼;两根以上者称为多梁机翼;没有翼梁称为单块式机翼。 翼梁的位置:在双翼及有支撑的机翼上,根据统计,前梁在12~18%翼弦处;后梁在55~70%翼弦处。在悬臂式单翼机上,单梁机翼的梁位于25~40%翼弦处。双梁机翼的前梁在20~30%翼弦处;后梁在50~70%翼弦处。 (2)纵樯——承受由弯矩和扭转而产生的剪力。与梁的区别是椽条较弱,椽条不与机身相连。其长度与翼展相等或仅为翼展的一部分。纵樯通常放置在机翼的前缘或后缘,与机翼上下蒙皮相连,形成一封闭的盒段以承受扭矩。 (3)桁条——承受局部空气力载荷;支持和加强蒙皮;并将翼肋互相连系起来。而且还可以承受由弯曲而产生的正应力。有的机翼为了更加强蒙皮,桁条需要很密,因而导致使用波纹板来代替桁条,或者把桁条与蒙皮作成一体,形成整体壁钣。 2.横向骨架——沿翼弦方向安置的构件。主要包括普通翼肋和加强翼

肋。 (1)普通翼肋——将纵向骨架和蒙皮连成一个整体;把由蒙皮传来的空气动力载荷传给翼梁;并保证翼剖面之形状。参与一部分机翼结构的受力。 (2)加强翼肋——除了起普通翼肋作用外,还承受集中载荷。 3.蒙皮——它固定在横向和纵向骨架上而形成光滑的表面。 布质蒙皮主要是承受局部空气动力载荷,并把它传给骨架。硬质蒙皮除了上述作用外,还参与结构整体受力。视具体结构的不同,蒙皮可能承受剪应力,也可能还承受正应力。 4.接头——把载荷从一个构件传到另一个构件上去的构件。如机翼与机身的连接、副翼与机翼连接等,均需用接头。机翼接头的形式很多,常见的有耳片式接头,套管式接头、对孔式接头,垫板式和角条式接头等多种。机翼构造的发展在机翼构造的发展过程中,最主要的变化就是维形件和受力件的逐渐合并。 在飞机发展的初期,为了减小重量,完全根据受力件和维形件分开,并且分段地承受载荷的原理来安排机翼的构造。这种构造形式的受力骨架是一个由翼梁、张线及横支柱(或翼肋)所组成的空间桁架系统。它承受所有的弯矩、扭矩和剪力。机翼的表面和机翼的形状是用亚麻的蒙皮和翼肋形成的。所以这种机翼可以叫作构架式机翼。 随着飞机速度的增大,翼载荷的增大,出现了蒙皮承受剪力和部分正应力的梁式机翼。这种机翼构造型式的特点是有强有力的梁,以及光滑的硬质蒙皮,这种机翼的蒙皮是金属铆接结构,为现在飞机所广泛采用。它的翼梁腹板承受剪力,蒙皮和腹板组成的盒段承受扭矩,蒙皮也参与翼梁椽条的承受弯矩的作用。但是梁式机翼的蒙皮较薄,桁条也较少,有的机翼的桁条还是分段断开的,有的甚至没有桁条。因此梁式机翼蒙皮承受由弯矩引起的拉压作用不大。 飞机场速度进一步增大,为保持机翼有足够的局部刚度和抗扭刚度,需要加厚蒙皮和增多桁条。这样,由厚蒙皮和桁条组成的壁钣已经能够承担大部分弯矩,因而梁的椽条可以减弱,直至变为纵樯,于是就发展成为

飞机结构与工艺

飞机结构与工艺 机翼 1.机翼的基本结构元件及受力机翼的基本结构元件是由纵向骨架、横向骨架以及蒙皮和接头等组成,现将各个结构元件的作用及受力分述如下: 1.纵向骨架——沿翼展方向安置的构件,包括梁、纵樯和桁条。 (1)梁——最强有力的纵向构件。它承受着全部或大部分的弯矩和剪力。梁的椽条承受由弯矩而产生的正应力;腹板承受剪力。梁的数量一般为一根或两根,也有两根以上的。机翼结构只有一根梁者称为单梁机翼;有两根者称为双梁机翼;两根以上者称为多梁机翼;没有翼梁称为单块式机翼。 翼梁的位置:在双翼及有支撑的机翼上,根据统计,前梁在12~18%翼弦处;后梁在55~70%翼弦处。在悬臂式单翼机上,单梁机翼的梁位于25~40%翼弦处。双梁机翼的前梁在20~30%翼弦处;后梁在50~70%翼弦处。 (2)纵樯——承受由弯矩和扭转而产生的剪力。与梁的区别是椽条较弱,椽条不与机身相连。其长度与翼展相等或仅为翼展的一部分。纵樯通常放置在机翼的前缘或后缘,与机翼上下蒙皮相连,形成一封闭的盒段以承受扭矩。 在后缘的纵樯,通常还用来连接襟翼及副翼。 (3)桁条——承受局部空气力载荷;支持和加强蒙皮;并将翼肋互相连系起来。而且还可以承受由弯曲而产生的正应力。有的机翼为了更加强蒙皮,桁条需要很密,因而导致使用波纹板来代替桁条,或者把桁条与蒙皮作成一体,形成 整体壁钣。 2.横向骨架——沿翼弦方向安置的构件。主要包括普通翼肋和加强翼肋。 (1)普通翼肋——将纵向骨架和蒙皮连成一个整体;把由蒙皮传来的空气动力载荷传给翼梁;并保证翼剖面之形状。参与一部分机翼结构的受力。 (2)加强翼肋——除了起普通翼肋作用外,还承受集中载荷。

飞机钣金加工工艺

飞机钣金加工工艺 钣金工艺就是把板材、型材、管材等毛料,利用材料的塑性,主要用冷压的方法成形各种零件,另外还包括下料和校修。 飞机钣金制造技术是航空航天制造工程的一个重要组成部分,是实现飞机结构特性的重要制造技术之一。现代飞机的壳体主要是钣金铆接结构,统计资料表明,钣金零件约占飞机零件数量的50%,钣金工艺装备占全机制造工艺装备的65%,其制造工作量占全机工作量的20%。鉴于飞机的结构特点和独特的生产方式决定了飞机钣金制造技术不同于一般机械制造技术。 一.飞机钣金零件的基础知识 1.1 钣金零件分类 1.1.1按飞机钣金零件结构特征分类 飞机钣金零件有蒙皮、隔狂、壁板、翼肋、导管等。 1.1.2 按飞机钣金零件材料品种分类 飞机钣金零件基本上可分为型材零件、板材零件和管材零件三大类,每类材料零件又可进一步细分: (1)型材零件:压下陷型材、压弯型材、滚绕弯型材、拉弯型材、复杂形型材;(2)板材零件:平板零件、板弯型材零件、拉深零件、蒙皮成形零件、整体壁板、落压零件、橡皮成形零件、旋压零件、热成形零件、爆炸成形零件、超塑性成形零件、超塑性成形和扩散连接零件、局部成形零件。 (3)管材零件:无扩口弯曲导管、扩口弯曲导管、滚波卷边弯曲导管、异形弯曲导管、焊接管。 因为飞机钣金零件形状复杂,数量庞大,板材零件相对较多,现做飞机钣金零件分类图如图1.1所示。

图1.1 飞机钣金零件分类 1.2 钣金零件加工路线 成千上万的钣金零件,制造方法多种多样,但它们的加工路线基本相同,一般都要经过如图1.2几个环节: 图1.2 钣金件加工路线 下料:裁剪(剪床)、铣切(铣床)、锯切和熔切。 成形:弯曲、拉深、旋压等。 热处理:粉末喷涂、表面氧化等。

上册-第1章飞机结构

(上册)第1章飞机结构 1、飞机在匀速直线飞行,这些外载荷必须满足下列平衡方程:(图1.1-1) ΣX=0 P0=D0(发动机推力等于气动阻力) ΣY=0 L0=W(气动升力等于飞机重力) ΣM=0 M A=M B(抬头力矩等于低头力矩) 2、飞机过载分为机动过载和突风过载。 飞机过载n y的定义是:作用在飞机上的升力L和飞机飞行重量W之比。即n y=L/W 飞机过载是代数值,不但有大小而且有正负。 3、机动过载:滚转角越大,过载值越大。n y=1/cosγ(图1.1-2) 4、对飞机结构受力影响比较大的是垂直突风。垂直突风主要是改变气流对飞机运动速度的方向,从而产生较大的突风过载n y。 5、当飞机进行水平飞行或垂直上升、下滑时,飞机各部位运动的加速度与飞机重心处运动的加速度相同,此时附加过载等于零Δn y=0,部件过载等于全机过载。 6、当飞机以角加速度绕机体纵轴向右转动时,左侧机翼过载大于右侧机翼过载。 7、当以大速度、小迎角飞行时,机翼上、下表面的吸力都很大。 8、最大使用过载和最小使用过载是对飞机结构进行总体强度设计的主要依据。 9、所谓速度-过载飞行包线就是分别以空速和过载系数为横坐标和纵坐标,根据飞行使用限制条件(最大过载、最小过载、最大速度、最小速度等)画出一条封闭的曲线,形成飞机飞行的限制包线。

10、设计载荷与使用载荷之比叫做安全系数f, f=P设计/P使用 使用载荷(限制载荷)是飞机在使用过程中预期的最大载荷; 设计载荷又叫极限载荷。 11、结构强度:飞机结构必须能够承受极限载荷至少3秒而不破坏。 12、机构的刚度:结构受力时抵抗变形的能力叫做结构的刚度。 在直到限制载荷的任何载荷作用下,变形不得妨害安全飞行。 13、结构在载荷作用下保持原平衡状态的能力叫做结构的稳定性。 杆件受压有两种破坏形式:一种是杆件轴线变弯,杆件不能保持直杆形状与载荷平衡,这种失稳被称为总体失稳。另一种是杆件轴线保持直线,组成杆件的薄壁产生了皱折,这种失稳被称为局部失稳。 14、结构在疲劳载荷的作用下抵抗破坏能力叫做结构疲劳性能。 15、结构件截面单位面积上的内力叫做应力。 正应力是拉应力和压应力的统称。用符号σ表示。 剪应力是平行于所取截面应力,即应力的矢量沿截面的切向方向。用符号τ表示。 16、使结构件两个相距很近的截面发生相对移动错动的变形叫做剪切变形,反抗剪切变形的内力叫剪应力。 使结构件轴线曲率发生变化的变形叫弯曲变形,反抗弯曲变形的内力叫弯矩。 在弯矩作用下,梁的截面上要产生拉、压正应力。在被拉伸和被压缩的材料之间,必定有一层既不缩短也不拉长的材料,这一层叫做中性层。中性层与梁横截面的交线叫中轴。 承受弯矩作用时,结构件中离中性层越远的材料起作用越大,中性层的材料不起作用。

飞机装配工艺

飞机装配与一般机械的转配有些不同,但飞机装配和一般机械的装配究竟有什么的不同?下面就简单的介绍一下: 1.、一般机械的装配工作占产品劳动总量的20%,而飞机装配占劳动总量的50%——60%,而且质量要求高,技术难度大 2、飞机装配使用了许多复杂的装配型架,飞机制造的准确度很大程度上取决与装配的准确度,而一般机械主要取决于零件制造的准确度。 3、飞机装配采用许多复杂的型架 4、飞机装配中零件数量,零件大,刚度小,产量比通用机械小 5、通用机械用公差配合制度来保证装配精度,飞机是以采用模线样板法。 不太适合自动化 工艺分离面:为了满足生产工艺,结构件间的分离面 设计分离面:设计的时候这个位置是可以拆装的,这些部件形成的课拆卸的分离面 第一章飞机装配过程和装配方法 飞机结构的分解: 装配过程:一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用 装配基准 以骨架外形为基准 大梁和翼肋的定位,铺上蒙皮,用橡皮绳或钢带紧压在骨架上,骨架蒙皮的铆接误差组成: 1、骨架零件制造的外形误差 2、骨架的装配误差 3、蒙皮的厚度误差 4、蒙皮和骨架由于贴合不紧而产生的误差 5、装配连接的变形误差 为提高外形准确度必须提高零件的制造准确度、骨架装配的准确度,装配时将蒙皮紧贴在骨架上。 以蒙皮外形为基准误差积累是有外向内 隔框按型架定位,通过撑杆将蒙皮紧贴在型架卡板上,通过补偿件将骨架与壁板连接。 误差组成: 1、装配型架卡板的外形误差 2、蒙皮和卡板外形之间由于贴合不紧而产生的误差 3、装配连接的变形误差 装配定位:要确定零件、组合件、板件、锻件之间的相对位置。 对定位的要求: 1、保证定位符合图纸和技术条件所规定的准确度要求 2、定位和固定要操作简单可靠

飞机制造工艺学结课论文

郑州航空工业管理学院 飞机制造工艺学作业 题目波音787飞机机翼制造与装配 姓名付少将学号 160606507 任课教师李启璘成绩 二О一九年六月二十三日

目录 一、波音787飞机及飞机机翼概述 (3) 二、波音787飞机机翼结构分析与分解 (4) 2.1 波音787飞机机翼结构分析 (4) 2.2 飞机分离面 (5) 2.3 根据分离面进行机翼分解 (6) 三、机翼零件常用材料及制造方式 (7) 四、飞机机翼的装配 (8) 4.1以骨架为基准的装配 (9) 4.2以蒙皮为基准的装配 (10) 五、总结 (11) 参考文献 (12)

飞机机翼制造与装配 ——以波音787飞机机翼为例 一、波音787飞机及飞机机翼概述 波音787(英语:Boeing 787)是一款航空史上首架超远程中型客机,是美国著名飞机制造商波音公司于2009年12月15日推出的全新型号。 波音787的最大特点是大量采用先进复合材料建造飞机骨架、超低燃料消耗、较低的污染排放、高效益及舒适的客舱环境。主要竞争对手为空客A350及A330neo。首架波音787于2011年9月26日交付全日空航空公司使用。下图为波音787飞机。 图1 波音787飞机 关于飞机机翼等结构方面。机翼后掠角(25%弦长)30度,计算机根据飞行时所处的高度和速度,以及载荷情况,操纵飞机后缘襟翼来获得最佳翼型。这种自动变弯度翼型可提高飞机气动效率、减小阻力、还可以缓解机翼所承受载荷而减小机翼结构重量,翼尖加装翼梢小翼。升阻比比A300高40%。机身和尾翼采用了大量铝锂合金和复合材料,铝锂合金用于机身结构、桁条等部件。尾翼、各操纵面、整流蒙皮、客舱地

金工实习钣金加工工艺(附具体实例)

金工实习—钣金加工 1 钣金加工简介 1.1 钣金介绍 钣金至今为止尚未有一个比较完整的定义,根据国外某专业期刊上的一则定义可以将其定义为:钣金是针对金属薄板(通常在6mm以下)一种综合冷加工工艺,包括剪、冲/切/复合、折、焊接、铆接、拼接、成型(如汽车车身)等。其显著的特征就是同一零件厚度一致,其中包括钢板、镀锌(锡)钢板、高张力钢板、烤漆钢板、铝板、铜板及不锈钢板等。 钣金的应用范围非常广泛,包括办公家具、运动器材、厨具、箱柜、计算机机壳、电器产品、车辆、飞机、船舶、钢建筑及工作母机外壳等。 1.2 钣金加工工艺 钣金作业是利用手工工具或机器,将金属塑性变形加工成所需的形状及大小,并配合机械式结合(如铆钉、螺栓、胀缩、压接及接缝等)或冶金式结合(如气焊、铜焊、手工电焊、CO2焊接及氩弧焊等)的方式,将其连接组合成一体的金属加工方法。 按钣金件的基本加工方式分类,主要有下料、折弯、拉伸、成型、焊接。 对于任何一个钣金件来说,它都有一定的加工过程,也就是所谓的工艺流程.不同结构的钣金件,工艺流程可能也各不相同,一般钣金件按以下流程: 绘制展开图下料

2 钣金工程识图基本知识 2.1 机械制图简介 钣金加工工程图也属于机械制图的范畴,机械制图是用图样确切表示机械的结构形状、尺寸大小、工作原理和技术要求的学科。图样由图形、符号、文字和数字等组成,是表达设计意图和制造要求以及交流经验的技术文件,常被称为工程界的语言。 在机械制图标准中规定的项目有:图纸幅面及格式、比例、字体和图线等。在图纸幅面及格式中规定了图纸标准幅面的大小和图纸中图框的相应尺寸。比例是指图样中的尺寸长度与机件实际尺寸的比例,除允许用1:1的比例绘图外,只允许用标准中规定的缩小比例和放大比例绘图。在中国,规定汉字必须按长仿宋体书写,字母和数字按规定的结构书写。图线规定有八种规格,如用于绘制可见轮廓线的粗实线、用于绘制不可见轮廓线的虚线、用于绘制轴线和对称中心线的细点划线、用于绘制尺寸线和剖面线的细实线等。 机械图样主要有零件图和装配图,零件图表达零件的形状、大小以及制造和检验零件的技术要求;装配图表达机械中所属各零件与部件间的装配关系和工作原理;表达零件结构形状的图形,常用的有视图、剖视图和剖面图等。 视图是按正投影法即零件向投影面投影得到的图形。按投影方向和相应投影面的位置不同,视图分为主视图、俯视图和左视图等。视图主要用于表达机件的外部形状。图中看不见的轮廓线用虚线表示。零件向投影面投影时,观察者、机件与投影面三者间有两种相对位置。机件位于投影面与观察者之间时称为第一角投影法。投影面位于机件与观察者之间时称为第三角投影法。两种投影法都能同样完善地表达机件的形状。中国国家标准规定采用第一角投影法。 2.2 三视图简介 三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。 将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,还有其它三个视图不是很常用。三视图就是主视图、俯视图、左视图的总称。 一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。 三视图的投影规则是: 主视、俯视长对正 主视、左视高平齐 左视、俯视宽相等

(完整版)数控加工中心与数控机床和普通机床相比的主要特点

1、全封闭防护 所有的加工中心都有防护门,加工时,将防护门关上,能有效防止人身伤害事故。 2、工序集中,加工连续进行 加工中心通常具有多个进给轴(三轴以上),甚至多个主轴,联动的轴数也较多,如三轴联动、五轴联动、七轴联动等,因此能够自动完成多个平面和多个角度位置的加工,实现复杂零件的高精度加工。在加工中心上一次装夹可以完成铣、镗、钻、扩、铰、攻丝等加工,工序高度集中。 3、使用多把刀具,刀具自动交换 加工中心带有刀库和自动换刀装置,在加工前将需要的刀具先装入刀库,在加工时能够通过程序控制自动更换刀具。 4、使用多个工作台,工作台自动交换 加工中心上如果带有自动交换工作台,可实现一个工作台在加工的同时,另一个工作台完成工件的装夹,从而大大缩短辅助时间,提高加工效率。 5、功能强大,趋向复合加工 加工中心可复合车削功能、磨削功能等,如圆工作台可驱动工件高速旋转,刀具只做主运动不进给,完成类似车削加工,这使加工中心有更广泛的加工范围。 6、高自动化、高精度、高效率 加工中心的主轴转速、进给速度和快速定位精度高,可以通过切削参数的合理选择,充分发挥刀具的切削性能,减少切削时间,且整个加工过程连续,各种辅助动作快,自动化程度高,减少了辅助动作时间和停机时间,因此,加工中心的生产效率很高。 7、高投入 由于加工中心智能化程度高、结构复杂、功能强大,因此加工中心的一次投资及日常维护保养费用较普通机床高出很多。 8,改善劳动条件 使用数控机床加工零件时,操作者的主要任务是程序编辑、程序输入、装卸零件、刀 具准备、加工状态的观测及零件的检验等,劳动强度大幅度降低,机床操作者的劳动趋于智力型工作。另外,机床一般是封闭式加工,既清洁,又符合现代化安全。 9,加工精度高,加工产品质量稳定 数控机床本身的精度就比普通机床高,在加工过程中操作人员不参与操作,对于复杂的零件可以采用计算机自动编程,而零件又往往安装在简单的定位夹紧装置中,从而加速了生产准备过程因此零件的加工精度全部由数控机自身床保证,消除了操作者的人为误差;又因为数控加工采用工序集中,减少了零件多次装夹 对加工精度的影响,所以零件的质量精度高,尺寸一致性比较好,质量比较稳定。 10, 有利于生产管理标准 使用数控机床加工零件,可预先精确估算出零件的加工时间,所使用的刀具、夹具可 进行规范化、现代化管理。数控机床使用数字控制与标准代码为控制信息,目前已与计算机辅助设计与制造有机地综合应用起来,是现代制造技术的突飞标准。 11,在适当的条件下才能发挥最佳效益 即在使用过程中要发挥加工中心之所长,才能充分体现效益,这一点对加工中心的合理使用至关重要。

飞机结构件的自动化精密制孔技术_卜泳

[摘要] 从分析影响孔质量的因素开始,总结了手工制孔的缺陷,从而引出自动化精密制孔技术的重要。进一步论述了精密制孔的工艺和提高制孔质量的工艺措施,并列举了国外发达国家的一些精密制孔设备。 关键词: 孔质量 疲劳寿命 自动化 精密制孔 [ABSTRACT] By analyzing the factors influenc-ing the holes quality, hand-drilling defect factors are sum-marised, and the importance of automatic percision drilling is pointed out. Percision drilling process and advance hole quality process are discussed, and some advanced percision drilling equipments from abroad are specialized. Keywords: Quality of hole Fatigue life Automat-ic Precision drilling 在飞机的全部故障总数中,结构件损伤的故障数量一般占12%~13%,但是,因为机载成品系统在发生故障后能用新的成品代替,因此飞机结构件的寿命就决定了飞机的总寿命[1]。目前飞机结构件采用的主要连接方法仍是机械连接,一架大型飞机上大约有150~200万个连接件[2]。为了满足现代飞机高寿命的要求,可通过各种技术途径改善各连接点的技术状态(表面质量、配合性质、结构形式等),其中一个很重要的途径是通过自动化设备进行自动精密制孔,提高制孔质量。 1 制孔质量的影响因素 1.1 圆度 紧固孔的圆度是指孔的圆柱几何形状的正确程度。只有孔的圆柱几何形状接近理论值,铆钉和螺栓安装后才不至于受到其他附加弯曲应力、挤压应力等的影响而降低其静强度和动强度。 1.2 垂直度 孔轴线方向对紧固孔疲劳性能的影响较大。紧固件孔沿外载荷作用方向倾斜2°,疲劳寿命会降低47%;倾斜5°则疲劳寿命可能降低95%[2]。 1.3 内壁表面质量 加工表面质量对紧固孔疲劳性能的影响在零件尺寸和材料性能一定的情况下,制孔工艺是影响表面质量的重要因素。根据断裂力学原理,表面粗糙度值越大,切口效应就越大,即应力集中系数越大,故疲劳性能越差。孔壁轴向划痕是促使紧固孔疲劳性能降低的主要因素之一。 1.4 残余应力 在切削加工时,由于切削力和切削热的影响,表面层的金属会发生形状和组织的变化,从而在表层及其与基体交界处产生相互平衡的弹性应力,即残余应力。已加工表面的残余应力分为残余拉应力与残余压应力,残余拉应力会降低孔的疲劳寿命,而残余压应力有时却能提高紧固孔疲劳寿命[3]。 1.5 位置精度 在结构件设计阶段,设计者就已经考虑到了钉载分配。进行制孔时,如果定位不准造成孔位误差,就会改变结构件受力境况下各紧固孔之间的载荷,从而影响结构件的疲劳寿命。 1.6 夹层之间的毛刺与切屑 由于飞机结构上的紧固孔是在各连接零件组装在一起时(即在夹层状态下)制出来的。因此,当夹层件贴合不紧密时,每钻透一层夹层件,都会在夹层件之间产生毛刺,这不仅会导致应力集中,还会防碍零件的紧密贴合,进而降低连接零件之间的摩擦力。当刀具每次钻出、钻入时,还会造成断削,由于切屑的运动方向改变,切屑可能填充在板件之间,从而进一步防碍夹层贴合,当受到交变载荷时,便加快磨损腐蚀[4]。 1.7 出口毛刺 在金属的钻削加工中,通常情况下在钻头的入口处和出口处都将产生毛刺。按照切削运动-刀具切削刃毛刺分类体系,分别称为切入进给方向毛刺和切出进给方向毛刺。一般说来,切出进给方向毛刺的尺寸较大,去除作业量大,由于毛刺的存在,在影响零件的尺寸精度及使用性能的同时,会产生应力集中,降低结构件的疲劳强度。 飞机结构件的自动化精密制孔技术 Automatic Precision Drilling Technology of Aircraft Structural Part 北京航空制造工程研究所 卜 泳 许国康 肖庆东 2009年第24期· 航空制造技术61

数控加工中心实习

实训2 数控加工中心实习 一.目的及要求: 通过对数控加工中心的操作实习,使学生深刻理解加工中心的加工原理,熟悉数控加工中心设备构成及其技术范围,了解加工中心加工工件的过程和进行初步操作。 要求如下: (1)正确阐述数控加工中心的原理; (2)熟悉数控加工中心的组成、主要单元的功能、特点、用途; (3)了解所用数控加工中心的技术规范、以及设备的使用和操作; (4)了解数控加工中心的自动换刀系统(刀库和机械手)及其工作过程; (5)了解数控加工中心常用刀具的类型和刀具的选择,初步掌握工件与刀具的装夹定位方法; (6)了解数控编程方法(自动编程)。 (7)了解模具零件数控加工工艺方法。 (8)了解数控加工中心的基本操作。 二、实训内容 (1)了解数控加工中心的组成、结构、功能、特点、用途、技术规范和操作方法; (2)分析模具零件技术要求,设计数控加工工艺; (3)了解工作液的选用、工作液过滤循环装置; (4)了解数控加工中心常用刀具的类型和刀具的选择; (5)动手操作并初步掌握工件和工具的装夹与定位; (6)掌握数控编程方法(自动编程)及其加工程序的输入、输出和编辑。 (7)动手操作并初步掌握工件加工方法。 (8)对工序安排、切削参数选择、刀具轨迹设计进行分析。 (9)对数控加工结果进行测量、分析,并进行评价总结。 三﹑设备和工具 设备:加工中心(Vcenter-55); 刀具:面铣刀:φ50刃长:10;中心钻:φ8刃长:15;钻头Φ40×60、φ×25、φ5×25、

φ×18、φ3×18、φ×20、φ3×18;头立铣刀:φ6×12、平头立铣刀:φ6×12、球头立铣刀: φ3×20、φ13×64 量具:油标卡尺、百分表; 工具:铜棒、扳手等。 四、加工中心(Vcenter-55) 实习步骤 (1)认识加工中心(Vcenter-55) 机床 1)加工中心(Vcenter-55)机床外观及各部分的构成 2)操作键盘,见图1、图2。 图1 数控系统操作面板图2 机械操作面板(2)数控加工中心操作步骤 1)NC加工操作流程NC加工操作流程如图3所示。

五轴联动数控加工中心的组成、结构、功能

五轴联动数控加工中心的组成、结构与功能 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、五轴联动数控加工中心的结构 五轴联动加工中心大多是3+2的结构,即x,y,z三个直线运动轴加上分别围绕x,y,z轴旋转的a,b,c三个旋转轴中的两个旋转轴组成。 这样,从大的方面分类,就有x,y,z,a,b;x,y,z,a,c;x,y,z,b,c三种形式;由二个旋转轴的组合形式来分,大体上有双转台式、转台加上摆头式和双摆头式三种形式。 这三种结构形式由于物理上的原因,分别决定了机床的规格大小和加工对象的范围。其中,双转台结构的五轴联动机床由于在加工工件时工件需要在两个旋转方向运动,所以只适合加工小型零件,如小型整体涡轮、叶轮、小型精密模具等,由于结构最为简单,所以相对价格较为低廉,就应用来讲,这是数量最多的一类五轴联动数控机床。 转台加上摆头式结构的五轴联动机床由于转台可以是a轴、b轴或c轴,摆头也是一样,可以分别是a轴、b轴或c轴,所以转台加上摆头式结构的五轴联动机床可以有各种不同的组合,以适应不同的加工对象,如加工汽轮发电机的叶片,需要a轴加上b轴,其中a轴需要用尾座顶尖配合顶住工件,如果工件较长同时直径又细,则需要两头夹住并且拉伸工件来进行加工,当然这里一个必要条件是两个转台必须严格同步旋转;再如加工如图2所示零件,采用c轴加上b轴,由于工件仅在c轴上旋转运动,所以工件可以很小,也可以较大,直径范围可由几

大型航空结构件

大型航空结构件数控加工 数控加工作为一种高效、精密的数字化切削加工技术,成为飞机复杂结构件机械加工的主要手段,飞机结构件50%以上的加工工作量由数控加工完成。而随着航空工业的不断发展,飞机性能不断提升,飞机结构件日趋大型化、复杂化,对相应的数控加工装备及数控加工技术提出了更为苛刻的要求。 飞机结构件是构成飞机机体骨架和气动外形的主要组成部分,随着现代飞机为满足隐身、超声速巡航、超常规机动、高信息感知能力、长寿命、结构轻量化等方面的性能要求大量地采用新技术、新结构、新材料其结构件呈现出结构大型化的特点:相对于以往的小型结构件焊接、组装模式,采用大型整体结构件可大量减少结构件零件数量和装配焊接工序,并有效减轻飞机整机重量,提高零件强度和可靠性,使飞机的制造质量显著提高,如F -22战机后机身整体框毛坯尺寸达到4000mm×2000mm。 随着材料技术、制造技术的发展以及飞机性能和结构的需要,在国内外先进主力战斗机的结构设计中,为满足飞机轻量化、长寿命、易维护等需求,机体零件结构向整体化、薄壁化、结构承载与功能综合化等方向发展,因此越来越多地采用了整体结构设计,其典型的代表就是整体框结构,将以前需要数个框段通过机械连接而成的框改为一个整体结构的大框,这样可以大幅减少零件数量,增加强度,减轻结构重量。目前,发达国家设备精良,工艺技术先进,并针对飞机大型整体结构零件的特点进行了大量的工艺技术研究。另外,通过对难加工材料的加工工艺方法进行研究,也大大提高了以钛合金为代表的难加工材料的加工效率。但我国大型飞机整体结构件的数控加工仍然处于起步阶段,加工效率及质量方面都还明显落后于发达国家,这已成为制约整个飞机研制和生产的“瓶颈”之一。 航空结构件的上述发展趋势决定了其工艺特点:结构复杂,加工难度大——零件外形涉及机身外形、机翼外形及翼身融合区外形等复杂理论外形,且需与多个零件进行套合;切削加工量大——材料去除率达到90% 以上,部分零件甚至达到98%;加工精度高——装配协调面、交点孔等数量多,零件制造精度要求高;难加工材料比例大——以钛合金、复合材料为代表的难加工材料比重越来越大,对航空制造业提出了严峻的挑战。 大型整体钛合金框的生产方式 由于大型钛合金结构毛坯锻造难度极大,需要超大型专用锻造设备,目前我国还没有此类锻造设备,暂时不能满足钛合金框整体毛坯的锻造,只能采用分段锻件加工后焊接的方式。目前大型钛合金框的研制大体有2种方案可供选择:分段精加工—焊接—补充加工焊接接头部位;分段粗加工—焊接—整体数控精加工。俄罗斯Su-27的42框是钛合金整体框,其基本工艺方法采用了第一种方案,这样生产效率高,但对焊接精度要求高。第二种方式适合更大更复杂并且焊缝多、焊接变形情况复杂的框,整框最终精度由数控加工来保证,这种方式的弊端就是造成焊后数控加工只能在一台机床上进行,加工周期长,质量风险大。

航空整体结构件的高速切削加工

航空整体结构件的高速切削加工 newmaker 引言 随着现代飞机、航天器性能要求的不断提高,许多骨架零件尤其是主承力结构件(如飞机的大梁、隔框、壁板;火箭的整流罩、舱体和战略武器战斗部壳体等,普遍采用由大型整块毛坯直接“掏空”而加工成复杂槽腔、筋条、凸台和减轻孔等整体结构件。 整体结构件体积大、壁薄、刚度差、易变形、切削加工余量大,加工周期长,加工质量和精度很难控制,对此类航空整体结构件实现高精度、高效率和高可靠性的切削加工一直是航空制造业面临的一个重要课题。 随着高速切削加工机床和刀具的快速发展,高速切削加工以其加工效率高、切削力小、工件的热变形和热膨胀小、加工表面质量好、经济效益高及适宜加工复杂和细长薄壁件等,独特优势首先在航空航天整体结构件的加工中得到了广泛的应用。本文分析和讨论了高速切削加工整体结构件中,影响加工质量和加工效率的因素包括刀具选择、切削加工参数、走刀策略、装夹方式等的问题。 2.切削刀具的选择 飞机机体的60%~70%为加入Si、Cu、Mn等合金元素的7075、7050、2024、6061类热处理预拉伸变形铝合金材料,物理和机械性能如表1所示。其硬度与熔点低,具有极好的易切性,但切削时容易粘刀、产生积屑瘤,降低了加工表面质量。同时随着铝合金硅含量的增加,加工难度也增大。钛合金具有比强度和热强度高、耐腐蚀性能好和低温性能好等优点,被广泛应用在飞机上的许多构件上,如发动机构件、骨架、紧固件、起落架、壁板等[7]。钛合金属于难加工材料,其导热性差、化学活性大、弹性模量小,在高速加工中有切削温度很高、单位面积上切削力大、加工冷硬现象严重、刀具易磨损等缺点。

飞行器制造技术基础考点

①交点互换 ②飞机结构特点 ③自由弯曲是指、模具弯曲 ④工艺补偿 ⑤干涉配合铆接 ⑥冲裁中的简单模、连续模和复合模 ⑦部件装配中的装配基准,装配误差产生因素 ⑧数字化制造中CAD、CAM、CAPP、CAE、DPA的概念, ⑨数控加工的刀轨生成方法 ⑩尺寸传递原则(独立、修配,联系)适用的场合 ?为什么要过定位 ?飞机的先进制造技术,(材料、连接、加工、装配、检测)

装配型架一般构成:

飞机装配过程中,常使用的装配基准有三种:基准--确定结构件之间位置的一些点、线、面。 设计基准 飞机水平基准线、对称轴线、翼弦平面、框轴线、肋轴线 梁轴线、长桁轴线。 设计基准一般都是不存在于结构表面上的点、线、面。因此,在 装配过程中要建立装配工艺基准。 工艺基准: ⑴定位基准-确定结构件在工装上的相对位置; ⑵装配基准-确定结构件之间的相对位置; ⑶测量基准-测量结构件装配位置尺寸的起始位置。 两种装配基准: 1、以骨架为基准 误差积累由内向外 骨架零件外形制造误差 ◆骨架的装配误差 ◆蒙皮的厚度误差 ◆蒙皮和骨架贴合误差 ◆装配后变形 2、以蒙皮外形为基准 误差积累由外向内

◆装配型架卡板外形误差 ◆蒙皮和骨架贴合误差 ◆装配后变形 装配型架的骨架的形式主要有 梁式;单块式;多墙式 飞机制造工艺特点 1)为保证结构零件的加工精度和各种整体壁板件的应用,广泛使用大量的先进的数控加工设备; 2)为保证结构众多的零部件在装配阶段的外形准确度,必须使用大量的夹具、装配型架; 3)为了满足使用维护要求,便于拆卸与安装,需要进行合理的确定设计分离面; 4)根据不同的结构布局,采用合理的接头连接方式;主要有各种螺栓连接、胶接、铆接、焊接等; 5)在保证结构具有足够的刚度、强度及抗疲劳特性的情况下,为了使结构重量最轻,大量采用新材料,如各种合金材料、复合材料等。 制造准确度和协调准确度 ?制造准确度:飞机零件、组合件或部件的实际尺寸与图纸上所规定的名义尺寸相符合的程度。符合程度越高,则制造准确度越高,也就是说制造误差小。 ?协调准确度:两个飞机零件、组合件或部件之间相配合部

相关文档
最新文档