锅炉夹套水温定值控制系统

锅炉夹套水温定值控制系统
锅炉夹套水温定值控制系统

锅炉温度定值S7-300控制系统课程设计(论文)报告

专业班级:10级自动化3班

姓名:庞小双(080310170)

谢宗利(080310191)

阮涛(080310148)

指导教师:陈世军

设计时间: 2013.6.15

物理与电气工程学院

2013年6月15日

摘要

温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。

可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。

关键字:温度控制 PLC 组态

目录

1. 绪论 (1)

2. 检测仪表及控制原理框图 (1)

2.1 被控对象 (1)

2.2 检测仪表 (1)

2.3 执行机构 (1)

2.4 控制屏组件 (2)

2.4.1 西门子S7-300系列PLC简介 (2)

2.4.2 三菱D700变频器简介 (2)

2.4.3 磁力驱动泵CQ型 (3)

2.4.4 数据采集模块 (3)

2.4.5 智能调节阀 (3)

2.5 控制原理框图 (4)

2.6 实验内容与步骤 (4)

3.组态软件界面、逻辑、代码 (4)

3.1 MCGS组态软件 (5)

3.2 组态软件设计 (6)

3.3 代码 (7)

4.数据采集硬件系统构件、连线 (8)

4.1 数据采集硬件系统构件 (8)

4.2 硬件系统连线 (9)

5.控制算法代码 (10)

5.1 PID控制器简介 (11)

5.2 PID控制系统 (12)

5.3 PID控制参数的整定及方法 (12)

5.3.1 PID控制参数的整定简介 (13)

5.3.2 PID控制参数整定方法 (12)

6.实验结果曲线及分析 (15)

7. 心得体会 (15)

8.参考文献 (17)

1. 绪论

在系统的学习了《自动控制原理》,《过程检测技术及仪表》,《控制仪表及装置》等课程后,为了更好的提高我们对所学知道的认识加深对理论知识的理解。借助THJ-4工程实验平台,通过对下水箱前馈反馈控制系统的设计,调试完成系统设计的设计与开发提高学生工程意识和能力提高创新能力。

1.了解单回路温度控制系统的组成与工作原理。

2.了解PID参数自整定的方法及参数整定在整个系统中的重要性。

3.研究调节器相关参数的改变对温度控制系统动态性能的影响。

4.分析比较锅炉夹套水温控制与锅炉内胆动态水温控制的控制效果。

2. 检测仪表及控制原理框图

本实验装置对象主要由水箱、锅炉和盘管三大部分组成。供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、涡轮流量计及自动电磁阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及自动电磁阀组成。

2.1 被控对象

由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。

1.水箱:包括上水箱、中水箱、下水箱和储水箱。

2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套)。

3.盘管

4.管道及阀门:整个系统管道由敷塑不锈钢管连接而成,所有的阀门均采用优质阀。

2.2 检测仪表

1.压力传感器、变送器

2.温度传感器:装置中采用了六个Pt100铂热电阻温度传感器。

3.流量传感器、变送器

4.锅炉防干烧保护装置

2.3 执行机构

1.电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。

2.水泵:本装置采用磁力驱动泵

3.电磁阀:本套装置共有17支优质电磁阀配合控制器完成所有实验项目。

2.4 控制屏组件

1.通讯线介绍

“THJ-4型高级过程控制系统实验平台”可以挂智能仪表、远程数据采集和S7-200PLC挂件,并可控制对象系统完成相应的实验。

2.SA-11交流变频控制挂件

采用日本三菱公司的FR-S520S-0.4K-CH(R)型变频器,控制信号输入为4~20mADC或0~5VDC,交流220V变频输出用来驱动三相磁力驱动泵。

变频器常用参数设置:

P 30=1;P 53=1;P 62=4;P 79=0。

3.三相移相SCR调压装置

采用三相可控硅移相触发装置,输入控制信号为4~20mA标准电流信号,其移相触发角与输入控制电流成正比。输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。

2.4.1 西门子S7-300系列PLC简介

图1. S7-300户外型模总体技术规范图

SIMATIC S7-300可编程序控制器是模块化结构设计。各种单独的模块之间可进行广泛组合以用于扩展。包含中央处理单元;信号模块(SM);通讯处理器(CP);功能模块(FM)。

SIMATIC S7-300适用于通用领域:高电磁兼容性和强抗振动,冲击性,使其具有最高的工业环境适应性。S7-300 有两种类型:

2.4.2 三菱D700变频器简介

型号:D700系列变频调速器紧凑型多功能变频器

1.功率范围:0.4~7.5KW;

2.通用磁通矢量控制,1Hz时150%转矩输出;

3.采用长寿命元器件;

4.内置Modbus-RTU协议;

5.内置制动晶体管;

6.扩充PID,三角波功能;

7.带安全停止功能。

三菱变频器FR-D700系列虽然是高可靠性产品,但周边电路的连接方法错

误以及运行,使用方法不当也会导致产品寿命缩短或损坏,在产品运行前我们需要重新确认注意事项。

2.4.3 磁力驱动泵CQ型

CQ型磁力驱动泵(简称磁力泵),CQG型耐高温磁力驱动泵(耐温≤250℃)(简称磁力泵)是将永磁联轴器的工作原理应用于离心泵的新产品。它具有良好的抗腐蚀性能,并可以使被输送介质免受污染。

CQ型磁力驱动泵型号意义:

CQ型磁力驱动泵安装尺寸:

图2. CQ型磁力驱动泵安装尺寸图

2.4.4 数据采集模块

产品简介:

集智达R-8000系列RemoDAQ-8024/R-8024+数

据采集模块,4路模拟量输出模块。

2.4.5 智能调节阀

QSVP系列智能电动单座调节阀是QS智能电动调

节阀系列产品之一,它由PSL智能型电动执行器与优质

的国产阀门相组合构成,是一种高性能的调节阀,可广泛应用于电力、冶金、石油、医药、锅炉、轻工等行业的自动控制系统中。

2.5 控制原理框图

图4. 锅炉夹套水温定值控制系统

(a)结构图 (b)方框图

本实验系统结构图和方框图如图4所示。

2.6 实验内容与步骤

本实验选择锅炉夹套水温作为被控对象,实验之前先将储水箱中贮足水量,然后将F2-6,F2-9,F2-8打开。将变频器A、B、C三端连接到三相磁力驱动泵(220V),打开变频器电源并手动调节变频器频率,给锅炉内胆和夹套贮满水,然后关闭变频器、关闭F2-8,打开F2-9,为给锅炉内胆供冷水作好准备。

1、比例调节器( P )控制

(1)按图4(b)所示方框图的要求接成实验系统。

(2)打开储水箱到锅炉内胆和锅炉夹套水路相关阀门,启动丹麦甭既变频器与齿轮泵两条动力支路,分别往锅炉内胆和锅炉夹套进水,约进1-2分钟后,关闭两套动力系统。

(3)启动工艺流程并开启相关仪器和计算机,把智能调节器置于“手动”输出,把温度设定于某给定值(如:水温控制在40°C)并设置相关参数,使调节器工作在比例度(δ)调节器状态,此时系统处于开环状态。

(4)启动变频器,以15赫兹的频率启动循环水系统。

(5)运行MCGS组态软件,进入相应的试验,观察实时或历史曲线,待水温(由智能调节器的温度显示器指示)基本稳定于给定值后,将调节器“手动”切换至“自动”位置,使系统变为闭环控制运行。待基本不再变化时,加入阶跃扰动。

通过改变智能调节器的设定值来实现,观察并记录在当前比例P余差和超调量.每当改变值δ后,,再加同样大小的阶跃信号,比较不同δ时的ess和σp。

图5.锅炉夹套温度P控制不同P时的阶跃响应曲线

表1 不同比例P时的余差和超调量

(6)记录实验过程各项数据绘成过渡过程曲线。(数据可在软件上获得)改变变频器的输出频率,观察并记录在当前比例度δ余差和超调量。待系统稳定后,再改变输出频率,比较不同的输出频率时的ess和σp。

2、比例积分(PI)调节器控制

(1)在比例调节器控制实验的基础上,待被调量平稳后,加入积分(“I”)作用,观察被控制量能否回到原设定的位置,以验证系统在PI调节器控制下没有余差。

(2)固定比例度δ值(中等大小),然后改变积分时间常数Ti值,观察加入扰动后被调量的动态曲线,并记录下不同Ti值时的超调量σp。

图6. 锅炉夹套温度PI控制不同I时的阶跃响应曲线

表2 不同Ti值时的超调量σ

p

(3)固定Ti于某一中间值,然后改变比例度δ的大小,观察加扰动后被调量的动态曲线,并记下相应的超调量σp。

(4)选择合适的δ和Ti值,使系统瞬态响应曲线为一条令人满意的曲线。

3、比例微分调节器(PD) 控制

(1)在比例调节器试验的基础上,待系统被调量平稳后,引入微分作用“D”。固定比例度δ值(中间值),改变微分时间常数D的大小,观察系统在阶跃输入作用下相应的动态响应曲线。

(2)选择合适的δ和 Td值,使系统的瞬态响应为一条令人满意的动态曲线。

4、比例积分微分(PID)调节器控制

(1)在比例调节器控制实验的基础上,待被调量平稳后,引入积分(“I”)作用,使被调量回复到原设定值。减小δ,并同时增大Ti,观察加扰动信号后的被调量的动态曲线,验证在PI调节器作用下,系统的余差为零。

(2)在控制PI的基础上加上适量的微分“D”作用,然后再对系统加扰动(扰动幅值与前面的实验相同),比较所得的动态曲线与用PI控制时的不同处。

(3)选择合适的δ、Ti和Td,以获得一条较满意的动态曲线。

5、PID参数自整定的连续温度控制

当发现AI人工智能调节效果不佳时可启动自整定功能(具体操作参考人AI工智能工业调节器说明书)。当自整定结束后,以前设定的参数会被整定出来的参数所替代,并自动将CTRL参数设为3,这样就无法再次从面板上启动自整定功能,可以避免人为的误操作再次启动自整定。之后系统直接将整定出来的参数投入运

行。根据自整定得出来的参数去控制被控对象,若此效果不是很满意,可根据输出特性,在自整定参数的基础上适当修改一下参数,可达到满意效果。

一般通过自整定得出来的δ、Ti、Td参数,效果都比较好。超调量小,过渡过程时间短。但如果一开始,温控对象的温度不是最低,也就是说自整定寻求的最大斜率不一定是真正的。此时自整定得出的δ、Ti、Td参数并不一定很理想。

3.组态软件界面、逻辑、代码

3.1 MCGS组态软件

MCGS 5.5为用户提供了解决实际工程问题的完整方案和开发平台,能够完成现场数据采集、实时和历史数据处理、报警和安全机制、流程控制、动画显示、趋势曲线和报表输出以及企业监控网络等功能。

MCGS(Monitor and Control Generated System)软件是一套几基于Windows 平台的32位工控组态软件,集动画显示、流程控制、数据采集、设备控制与输出、网络数据传输、工程报表、数据与曲线等诸多强大功能于一身,并支持国内外众多数据采集与输出设备,广泛应用于石油、电力、化工、钢铁、冶金、纺织、航天、建筑、材料、制冷、通讯、水处理、环保、智能楼宇、实验室等多种行业。

MCGS组态软件由“MCGS组态环境”和“MCGS运行环境”两个部分组成。MCGS组态环境是生成用户应用系统的工作环境,由可执行程序McgsSet.exe 支持,用户在MCGS组态环境中完成动画设计、设备连接、编写控制流程、编制工程打印报表等全部组态工作后,生成扩展名为.mcg的工程文件,又称为组态结果数据库,其与MCGS 运行环境一起,构成了用户应用系统,统称为“工程”。

MCGS运行环境是用户应用系统的运行环境,由可执行程序McgsRun.exe 支持,以用户指定的方式运行,并进行各种处理,完成用户组态设计的目标和功能。

利用MCGS软件组建工程的过程简介:(1)工程项目系统分析;(2)工程立项搭建框架(3)设计菜单基本体系;(4)制作动画显示画面;(5)编写控制流程程序;(6)完善菜单按钮功能;(7)编写程序调试工程;(8)连接设备驱动程序;(9)工程完工综合测试

3.2 组态软件设计

本设计为盘管出水口水温与流量串级控制系统, 目的是通过过程控制,由上述分析可知, 本系统应具有7个用户窗口:盘管水温与热水流量串级控制、实验指导、实时曲线、历史曲线、通讯状态、数据浏览、退出指示。

图7. 组态软件界面3.3 代码

源代码

启动脚本

k1=5

ti1=10

control=0

q0=0

q1=0

q2=0

ei=0

ei1=0

ei2=0

ei3=0

ei4=0

mx=0

op11=0

电动阀输出=0

变频器输出=0

调压器输出=0

循环脚本

if alarm2<1 or alarm2>31 then do3=1

do10=1

endif

if 主设定值>20 then

主设定值=20

endif

if control=1 then

ei= ( 主设定值-下水箱液位) *2 q0=k1*(ei-ei1)

if ti1=0 then

q1=0

else

q1=k1*0.2*ei/ti1

endif

q2=k1*td1*(ei-2*ei1+ei2)/0.2

mx=q0+q1+q2

op11=op11+mx+ei4

ei4=0

if op11<0 then

op11=0

endif

if op11>100 then

op11=100

endif

电动阀输出=op11

ei2=ei1

ei1=ei

else

op11=电动阀输出

endif

ei4=k3* ( ei3-变频器支路流量) ei3=变频器支路流量

退出脚本

do3=0

do10=0

电动阀输出=0

变频器输出=0

调压器输出=0

4.数据采集硬件系统构件、连线

4.1 数据采集硬件系统构件

图8. 数据采集系统框图

4.2 硬件系统连线

图9. 硬件系统连线实图

5.控制算法代码

5.1 PID控制器简介

PID控制器可以方便地实施多种控制算法,多年以来,在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器),是应用最为广泛的一种自动控制器。它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;选择系统调节规律的目的,是使调节器与调节对象能很好地匹配,使组成的控制系统能满足工艺上所提出的动、静态性能指标的要求。

1、比例(P)调节

2、积分(I)调节

3、微分(D)调节

PID是常规调节器中性能最好的一处调节器。它将比例、积分、微分三种调节规律结合在一起,既可达到快速敏捷,又可达到平稳准确,只要三项作用的强度配合适当,便可得到满意的调节效果。它的传递函数为

G c(S)=K p(1+1/T1S+ T D S)

5.2 PID控制系统

图10. PID控制系统结构图

5.3 PID控制参数的整定及方法

5.3.1 PID控制参数的整定简介

由于人们在参数调整中,总是力图达到最佳的控制效果,所以常称“最佳整定”,相应的控制器参数称为“最佳参数整定”。

衡量控制器参数是否最佳,需要规定一个明确的反应控制系统质量的性能指标,一般分为稳态指标和动态指标。

5.3.2 PID控制参数整定方法

控制器参数的整定方法可归纳为理论计算整定法与工程整定法。由于理论计算所得到的整定参数值可靠性不够高,在现场使用中还需进行反复调整。相反工程整定法虽未必得到“最佳整定参数”,但由于其不需知道过程的完整数学模型,使用者不需要具备理论计算所必须的控制理论知识,因而简便、实用,易于被工程技术人员所接受并优先使用。

下面将介绍本次设计中在现场调试调节器参数时所采用的一种整定方法,现场经验整定法。

(1)经验法

表3经验法整定参数

图12.4:1衰减曲线法图

在实验过程中发现,温度控制不容易稳定,无论采用哪种控制规律,都有一定的微小振荡,加入微分控制规律后,虽然提高了系统的响应速度,但是也降低了系统的稳定性。如果采用PD控制规律,不能消除系统的稳态余差,采用PID 控制规律,系统的稳定性不好,所以在温度控制系统中,为什么用PD和PID控制,系统的性能并不比用PI控制有明显的改善。

表5 阻尼振荡法计算公式

6.实验结果曲线及分析

本实验选择锅炉夹套水温作为被控对象,实验之前先将储水箱贮足水量,将阀门F1-1、F1-2、F1-5、F1-13全开,手动调节阀门F1-3至适当开度,其余阀门关闭。启动380伏交流磁力泵,给锅炉内胆贮一定的水量(要求至少高于液位指示玻璃管的红线位置),然后关闭阀F1-13,打开阀F1-12,给锅炉夹套注一定的水量。

1、接通控制系统电源,打开用作上位监控的PC机,进入的实验主界面。

2、在实验主界面中选择本实验项即“锅炉夹套水温PID控制实验”,系统进入正常的测试状态。

3、在上位机监控界面中点击“手动”,并将输出值设置为一个合适的值,此操作既可拉动输出值旁边的滚动条,也可直接在输出值显示框中输入。

4、合上三相电源空气开关,三相电加热管通电加热,适当增加/减少输出量,使锅炉内胆的水温稳定于设定值。

5、按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PID

控制规律,并按整定后的PID参数进行调节器参数设置。

6、待锅炉内胆水温稳定于给定值时,将调节器切换到“自动”状态,待水温稳定后,突增(或突减)设定值的大小,使其有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,一般为设定值的5%~15%为宜),锅炉内胆的水温便离开原平衡状态,经过一段调节时间后,水温稳定至新的设定值。点击实验界面下边的切换按钮,观察实时曲线、历史曲线、数据报表所记录的设定值、输出值,内胆水温的响应过程曲线将如图13所示。

图13. 内胆水温的响应过程曲线

7、适量改变控制器的PID参数,重复步骤6,观察计算机记录不同参数时系统的响应曲线。

8、开始往锅炉夹套打冷水,重复步骤3~7,观察实验的过程曲线与前面不加冷水的过程有何不同。

9、采用PI控制规律,重复上述实验,观察在不同的PID参数值下,系统的阶跃响应曲线。

本实验中,得到的等幅振荡曲线如下:

图14. 临界比例度整定时的等幅振荡曲线

得到Tk=180s,δ

= 1

k

根据表三计算得:P=1.6 δk=1.6

Ti=0.5 Tk=90s

Td=0.125 Tk=23s

根据上面整定的参数,得出下面响应曲线:

图15. 整定后的阶跃响应曲线

上面的曲线超调量小,响应速度快,也比较稳定,是比较理想的一条曲线。7. 心得体会

通过这次过程参数检测及仪表的课程设计,使我们加深了对过程参数检测基本概念的理解,掌握了仪表的基本设计方法和设计步骤。这次课程设计的主要内容是锅炉夹套水温定值控制系统的设计,通过这次实践环节,还让我们认识到了实践的重要性。要真正落实时间环节,要在今后的学习中注意这几点:(1)在课程设计当中,要多独立思考、独立操作、独立分析,以培养独立工作的能力和严谨的工作态度。

(2)重视对实际问题的解决。学习了过程参数检测及仪表这门课程,不光是会解答课后问题,还要能够解决实际问题才是最重要的。

这次课程设计,我们翻阅了很多的书籍和毕业论文,并上网搜索了很多关于锅炉夹套水温定值系统的设计材料。并借鉴了许多期刊、论文、报告的指导,完成此课程设计。虽然在设计和书写过程中,遇到了很多的问题,但是我们都努力突破。当然,我们也知道该系统还存在很多的不足,还有很多的地方需要创新或者新技术的改进。但是,完成的情况对于自己来说还是挺满意的。不过,希望自己在以后更加努力的学习,争取可以做出真正具有社会价值的东西来。

在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。回顾此次课程设计,使我们懂得了理论与实践相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从实践中得出结论,才能服务社会,从而提高自己的实际动手能力和独立思考能力。试验过程中,也对团队精神进行了考察,让我们在合作起来更默契,在成功后一起体会喜悦的心情。

此次课程设计也让我们明白了思路及出路,有什么不懂不明白的地方要及时

查阅资料,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识。

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

锅炉控制系统简介

锅炉控制系统简介 本锅炉控制系统设计遵循先进、可靠、安全、经济、适用、开放的原则。系统控制器采用DCS、计算机系统,能实现锅炉及辅机的热工控制、电气检测、联锁保护、自动调节及控制等,实现锅炉房生产过程控制自动化。 系统组成及技术要求 1系统组成 锅炉采用DCS控制系统集中监控,在锅炉房就地控制室内布置锅炉控制设备。整个锅炉系统的监视及控制功能将通过DCS控制系统实现,DCS将对锅炉系统所有被控对象进行监控,包括闭环控制、设备启、停控制,设备启停状态、远方/就地切换、主要工艺参数的监视(数据采集、LCD画面显示、参数处理、越限报警、制表打印等),并完成设备的连锁保护。机组正常运行时,运行人员主要在锅炉房就地控制室中通过LCD液晶显示器、键盘、鼠标来完成锅炉系统控制功能,只有非正常状态下,运行人员通过就地手操进行控制。 锅炉控制系统采用一套带冗余配置的DCS系统控制器及操作员站,实现对锅炉系统的集中监控,能对锅炉系统进行按键操作的全自动启动和停止的控制。控制系统由下述几部分组成:传感器、变送器,调节器及电动执行器等。同时系统能实现 对重要设备的手/自动切换和必要的手操功能。 锅炉自动调节系统包含下列项目: a 汽包水位自动调节; b 炉膛压力自动调节; c 蒸汽温度自动调节; DCS控制系统按dcS系统进行设计,其系统的配置及主要特性如下: 2、控制方式 采用集控、单机控制方式,集控方式下可以通过操作员站

的键盘和鼠标,对主、辅机设备进行启停,并由联锁功能;对各调节回路进行手动和自动控制;在手动方式下,通过备用操作盘启停设备和用硬手操对调节回路进行控制。系统主要运行在集控方式,只有控制系统故障时才在单机方式下运行。 集控方式下控制的设备有:引风机,鼓风机,给煤机,给水泵等。集控方式下的调节回路有:锅炉喂煤调节,炉膛负压调节,主蒸汽温度自控调节、汽包水位三冲量调节等。 3、主要画面监视及操作功能: 流程图参数显示 调节回路操作显示 电机控制显示 顺序启停操作 事件、报警显示 趋势记录显示保护报警显示 信号一缆表显示报表打印

汽化锅炉水位全自动控制系统

汽化锅炉水位全自动控制系统 本文结合国内各钢厂汽化冷却系统的实际应用,阐述在炼钢转炉生产中自动上水系统的控制过程。 标签:汽包水位三冲量单冲量 汽化锅炉是炼钢工业生产的重要动力能源设备。在汽化锅炉的正常运行中,汽包水位值是它最重要的工艺参数指标。随着现代工艺的不断改进提高,对汽化锅炉而言,允许的汽包水位波动范围也随之减小,将液位控制在一定范围内是保证汽化锅炉安全、正常运行及蒸汽质量的必要条件,同时也是转炉炼钢工业正常生产的首要条件。理论概述:现在在国内炼钢工业的汽化冷却水位控制,一般都采用三冲量控制方式。转炉汽化锅炉可采用工艺时序与单冲量与三冲量交叉控制的方式来对汽化锅炉液位进行全自动调节。即当转炉停止吹炼时,采用单冲量的控制方式进行对锅炉水位的调节。在转炉开始吹炼一定时间后,采用三冲量的控制方式进行对锅炉水位的调节(如图1所示)。 由于转炉是间歇生产,所以汽化锅炉产生的蒸汽也是断续的,热负荷波动极大,汽包水位急剧变化,系统操作时间短。因此对对汽化锅炉来讲,必须是汽化锅炉给水根上其负荷的变化,如果给水量跟不上负荷的变化,就会造成设备烧损,严重时会引起爆炸事故,如果给水量太大,会使汽包水位过高,造成蒸汽带水,影响蒸汽质量。转炉汽化锅炉液位控制,采用工艺时序与单冲量与三冲量交叉控制的方式可以保证在转炉冶炼过程中锅炉液位的稳定。应用:我们可以根据转炉冶炼过程将汽化锅炉运行分为六个阶段,即未吹炼阶段、吹炼开始过程、补水过程、产汽过程、停吹初期过程、停止吹炼过程。并且在整个的补水过程中,除氧水箱均保持自动上水状态,即根据除氧水箱和软水箱水位的高低来确定软水泵的启/停,将除氧水箱水位控制在正常的范围内。在未吹炼过程,要采用单冲量控制的方式给汽包补水。单冲量调节是只采集汽包的水位一个量作为DCS或PLC 中PID调节器的输入值,再通过PID运算后得到的值作为DCS或PLC的输出值,作用于给水调节阀(如图2所示)。 使给水调节阀作出相应的动作,补水完成后锅炉水位和锅炉压力是稳定的,也没有蒸汽的外送,这个过程给锅炉给水流量及锅炉蒸汽流量均为零。 吹炼开始过程,转炉吹氧点火后,随着热负荷不断增加,使锅炉汽包内水中的气泡量增大,此时锅炉汽包水位将会迅速上升,形成假水位。为了避免假水位过高,要使DCS或PID调节的水位设定值稳定,避免上水调节阀打开。补水过程,这时汽包中的假水位已经下降,产汽量增加,用水量也随之增加。这时要给汽包补水。如果此时的DCS或PID调节的水位设定值不变的话,那么锅炉的给水调节阀开启的就相对滞后一段时间,所以这时一定要提高锅炉水位的给定值。也就是说,我们通过DCS或PLC采集信号,当吹炼开始后由DCS或PLC进行计时,在一定时间后由DCS或PLC自动提高PID调节的水位给定值,同时也要投入三冲量自动调节程序。三冲量调节是根据汽包水位、汽包出口蒸汽流量、汽

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

冷却塔液位控制系统

冷却塔液位控制系统 [摘要] 液位控制是常见的工业过程控制之一,它广泛运用于水塔、锅炉、高层建筑水箱、罐、工业化工槽等受压容器的液位测量。随着科技的进步,人们对生产的控制精度要求越来越高,所以提高液位控制系统的性能显得十分重要。本文主要介绍了一种单闭环控制的冷却塔液位控制系统。首先讲诉了液位控制系统的设计原理及结构设计;然后介绍了控制系统的算法及控制系统流程;最后针对其稳定性和抗干扰能力进行了分析并作出了相应的解决措施。 [关键词]:液位控制;实时监控;液位传感器;干扰抑制 1. 背景 冷却塔主要用于大型空气压缩机冷却降温作用,而冷却塔液位控制系统主要用于控制冷却塔类冷却水的液位,确保也未能随时保持在一个合理的范围内,并且能够实现液位的实时监控和异常报警功能,以确保不会造成空气压缩机高温故障或损坏。 2. 液位控制原理 2.1 液位控制系统的组成 冷却塔液位控制系统的设计是一个简单控制系统,是由一个被控对象、一个检测变送单元(检测元件及变送器)、一个控制器和一个执行器(控制阀)所组成的单闭环负反馈控制系统,也称为单回路控制系统。 简单控制系统有着共同的特征,它们均有四个基本环节组成,即被控对象、测量变送装置、控制器和执行器。 图2-1 闭环控制结构框图 由这个简单控制系统通用的框图设计出冷却塔液位控制系统的原理框图如图2-2所示。 控制器 执行机构 被控对象 - 测量变送器 — 设定值

图2-2 冷却塔控制系统结构框图 这是单回路冷却塔液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制冷却塔液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。 2.2液位控制系统的功能 1)液位控制系统基本功能 设置液位高度后,通过控制变送器,自动调节液位高度到设置值。如果自动调节出现错误时,可以切换到手动进行调节和诊断。可以通过实时曲线去分析系统的稳态误差、超调量、调整时间等动态性能指标。 操作员可以通过微机进行实时监控,包括查看现场工作设备情况、手动/自动无扰切换、液位设置和液位显示、报警显示、实时曲线。 2)异常报警功能 在异常状况下可以实现音响报警,通过查看报警次数和时间,对液位的状况进行跟踪分析,最后进行确认报警。 3.液位控制系统结构设计 3.1单回路过程控制系统概述 单回路过程控制系统亦称单回路调节系统简称单回路系统,一般指针对一个被控过程,采用一个测量变送器监测被控过程,采用一个控制器来保持一个被控参数恒定,其输出也只控制一个执行机构。从系统的框图3-1看,是一个闭环回路。

水温自动控制系统设计

水温自动控制系统设计 摘要 水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System ABSTRACT The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

锅炉水位的自动控制

锅炉水位的自动控制 摘要:本文介绍了锅炉汽包水位的动态特性,单冲量、双冲量、三冲量控制方案的特点及工程中需注意的问 题,着重介绍了汽包三冲量控制方案。 关键词:汽包水位;动态特性;控制方案;单冲量;双冲量;三冲量 引言 汽包水位是锅炉运行的主要指标,是一个非常重要的被控变量,维持水位在一定范围内是保证锅炉安全运行的首要条件,这是因为: (1) 水位过高会影响汽包内汽水分离,饱和水蒸汽带水过多,同时过热蒸汽温度急剧下降。该过热蒸汽作为汽轮机动力的话,将会 损坏汽轮机叶片,影响运行的安全性与经济性。(2) 水位过低,说明汽包内的水量较少,而当负荷很大时,水的汽化速度加快,则汽包内的水位变化速度亦随之加快,如不及时调节,就会使汽包内的水全部汽化,导致炉管烧坏,甚至引起爆炸。因此,锅炉汽包水位必须严加控制。 1 汽包水位的动态特性 锅炉汽水系统结构如图1 所示。汽包水位不仅受汽包(包括循环水管) 中储水量的影响,亦受水位下汽泡容积的影响。而水位下汽泡容积与蒸汽负荷蒸汽压力炉膛热负荷等有关。因此,影响水位变化的因素很多,其中主要的因素是锅炉蒸发量(蒸汽流量S) 和给水流量W。 1. 1 汽包水位在给水流量作用下的动态特性,见图2 : 图1 锅炉的汽水系统

图2 给水流量作用下水位阶跃响应曲线 上图所示是给水流量W 作用下,水位L 的阶跃响应曲线。如果把汽包的给水看作单容量无自衡过程,水位阶跃响应曲线如上图L1 曲线。但由于给水温度比汽包内饱和水的温度低,所以给水流量W增加后,从原有饱和水中吸收部分热量,这使得水位下汽泡容积有所减少。当水位下汽泡容积的变化过程逐渐平衡时,水位就由于汽包中储水量的增加而逐渐上升,最后当水位下汽泡容积不再变化时,水位变化就完全反映了由于储水量的增加而逐渐上升。因此,实际水位曲线如图中L 线。即当给水量作阶跃变化后,汽包水位一开始不立即增加,而要呈现出一段起始惯性段。给水温度越低,时滞τ亦越大。 1. 2 汽包水位在蒸汽流量作用下的动态特性,见图3 :

锅炉的自动控制系统

锅炉自动控制系统 摘要 锅炉是国民经济中主要的供热设备之一。电力、机械、冶金、化工、纺织、造纸、食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小不尽相同。锅炉是供热之源,锅炉及其设备的任务在于安全,可靠,有效把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着现代工业技术的飞速发展,对能源利用率的要求越来越高。锅炉作为将一次能源转化为二次能源的重要设备之一,其控制和管理的水平也日趋提高。但在我国,大部分锅炉还采用仪表和继电器控制,甚至人工操作,已无法满足生产需求。因此,对锅炉控制系统采用先进的控制技术,不仅能够保证安全生产,而且能够节能增效,具有很好的市场发展空间和投资收益前景。 本论文的主要方向就是采用过程控制对工业锅炉进行控制。 关键字:锅炉;过程控制;控制算法;DCS;现场总线;工业以太网;监控软件 一、锅炉的基本构造及其工作原理 锅炉的主要设备包括汽锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧热备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃烧供给设备以及除灰除尘设备等。 锅炉的原理及过程 锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程,烟气向水的传热过程,水的汽化过程。 一个锅炉进行工作,其主要任务是:(1) 要使锅炉出口蒸汽压力稳定;(2)保证燃烧过程的经济性;(3)保持锅炉负压稳定,通常我们是炉膛负压保持在微负压(-10~80Pa)。为了完成上述三项任务,我们对三个变量进行控制:燃烧

水温自动控制系统

《电子技术综合设计》 设计报告 设计题目:水温自动控制系统 组长姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 时间: 2016 ~ 2017 学年第(1)学期指导教师:陈烨成绩:评阅日期:

一、课题任务 设计并制作一个水温自动控制系统,对1.5L净水进行加。水温保持在一定范围内且由人工设定。 细节要求如下: 1.温度设定范围为40℃~90℃,最小分辨率为0.1℃,误差≤1℃。 2.可通过LCD显示屏显示温度目标值与实时温度。 3.可以通过键盘调整目标温度的数值。 二、方案比较 1.系统模块设计 为完成任务目标,可以将系统分为如下几个部分:5V直流电供电模块、测温模块、80C52单片机控制系统、键盘控制电路、温度显示模块、继电器控制模块、强电加热电路。通过各模块之间的相互配合,可以完成水温检测、液晶显示、目标值设置、水温控制等功能。 系统方框图如下:

2.5V直流电供电模块 方案一:直接用GP品牌的9v电池,然后接通过三端稳压芯片7805稳压成5伏直流电源提供给单片机系统使用,接两个5伏电源的滤波电容后输出。 方案二:通过变压器,将220v的市电转换成9v左右的交流电,变压器输出端的9V电压经桥式整流并电容滤波。要得到一个比较稳定的5v电压,在这里接一个三端稳压器的元件7805。 由于需要给继电器提供稳定的5V电压,而方案一中导致电池的过度损耗,无法稳定带动继电器持续工作,所以我们选用能够提供更加稳定5v电源的方案二。 3.测温模块 经查阅资料,IC式感温器在市场上应用比较广泛的有以下几种: AD590:电流输出型的测温组件,温度每升高1 摄氏度,电流增加1μA,温度测量范围在-55℃~150℃之间。其所采集到的数据需经A/D 转换,才能得到实际的温度值。 DS18B20:内含AD转换器,所以除了测量温度外,它还可以把温度值以数字的方式(9 B i t ) 送出,因此线路连接十分简单,它无需其他外加电路,直接输出数字量,可直接与单片机通信,读取测温数据。它能够达到0.5℃的固有分辨率,使用读取温度暂存寄存器的方法还能达到0.0625℃以上精度,温度测量范围在-55℃~125℃之间,应用方便。 SMARTEC感温组件:这是一只3个管脚感温IC,温度测量范围在 -45℃~13℃,误差可以保持在0.7℃以内。 max6225/6626:最大测温范围也是-55~+125℃,带有串行总线接口,测量温度在可测范围内的的误差在4℃以内,较大,故舍弃该方案。 本设计选用DS18B20感温IC,这是因其性能参数符合设计要求,接口简单,内部集成了A/D 转换,测温更简便,精度较高,反应速度快,且经过市场考察,该芯片易购买,使用方便。 下面是DS18B20感温IC的实物和接口图片

锅炉温度自动控制

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。

一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择 硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。

锅炉液位控制系统的设计

锅炉液位控制系统的设计 摘要:设计了一种数字式锅炉液位控制系统,并给出了硬件原理图和软件流程图。该控制系统主要由8051单片机、传感器、L E D显示、声光报警、电机驱动、键盘输入等相关硬件来实现,利用传感器(干簧管阵列)监测锅炉液位、CPU循环检测传感器的输出状态,并用光柱和数码管L E D指示液位高度。当液位达到设定值时,系统自动关闭水泵停止上水。当水位处于危险高水位和危险低水位时,单片机发出信号,触发蜂鸣器报警装置,蜂鸣器发出响声。同时,和它并联的发光二极管发光,提醒工作人员采取相应措施,进而避免危险事故发生。该系统结构简单,性能可靠、具有很好的容错能力,简化了系统安装和维护,具有较高的性价比,能很好地完成锅炉液位控制的要求。 关键词;锅炉液位;单片机;传感器;干簧管;报警 0引言 锅炉的液位监控是锅炉运行过程中的一个重要环节。在锅炉运行中,要同时控制锅炉的液位、流量按一定规律变化,才能保证锅炉的正常运行。 目前常用的液位传感器有:旋转编码浮子式传感器(机械式和光电式)、非接触式超声波传感器、压力式传感器、磁浮子接点式传感器(连续式和液位开关式)等。其分辨率从毫米级到厘米级不等,测量范围从几十厘米到几十米。除磁浮子接点式传感器外,其余传感器均比较适合测量范较宽的应用场合。一般压力式和超声波传感器均带有变送部分,即将液位信号转换成标准电流信号(4~20mA)。旋转编码浮子式传感器分为机械式和光电式两种,光电式又分为绝对型和增量型。除智能型一体化传感器外(压力式或超声波),其他传感器一般没有就地显示和数字通信功能,控制和使用都很不方便。 为此,设计了一种数字式锅炉液位控制系统,该系统采用干簧管阵列作为传感器,利用单片机循环检测其输出状态,从而控制锅炉液位达到用户预先设定的高度。当水位超过最高水位或低于最低水位时,系统报警,同时控制停炉。

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

锅炉夹套水温定值控制系统

锅炉温度定值S7-300控制系统课程设计(论文)报告 专业班级:10级自动化3班 姓名:庞小双(080310170) 谢宗利(080310191) 阮涛(080310148) 指导教师:陈世军 设计时间: 2013.6.15 物理与电气工程学院 2013年6月15日

摘要 温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 关键字:温度控制 PLC 组态

目录 1. 绪论 (1) 2. 检测仪表及控制原理框图 (1) 2.1 被控对象 (1) 2.2 检测仪表 (1) 2.3 执行机构 (1) 2.4 控制屏组件 (2) 2.4.1 西门子S7-300系列PLC简介 (2) 2.4.2 三菱D700变频器简介 (2) 2.4.3 磁力驱动泵CQ型 (3) 2.4.4 数据采集模块 (3) 2.4.5 智能调节阀 (3) 2.5 控制原理框图 (4) 2.6 实验内容与步骤 (4) 3.组态软件界面、逻辑、代码 (4) 3.1 MCGS组态软件 (5) 3.2 组态软件设计 (6) 3.3 代码 (7) 4.数据采集硬件系统构件、连线 (8) 4.1 数据采集硬件系统构件 (8) 4.2 硬件系统连线 (9) 5.控制算法代码 (10) 5.1 PID控制器简介 (11) 5.2 PID控制系统 (12) 5.3 PID控制参数的整定及方法 (12) 5.3.1 PID控制参数的整定简介 (13) 5.3.2 PID控制参数整定方法 (12) 6.实验结果曲线及分析 (15) 7. 心得体会 (15) 8.参考文献 (17)

基于单片机的水温控制系统毕业设计

基于单片机的水温控制系统设计 摘要 温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT80C51为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。 关键词:单片机、数码管显示、单总线、DS18B20. Based Temperature Control System Abstract Temperature control system can be said to be ubiquitous, water heaters, air conditioning systems, refrigerators, rice cookers, electric fans and other home appliances as well as high-speed and efficient hand-held computers and electronic equipment are required to provide temperature control. The system design can be used for drinking water heater temperature control systems and other electrical circuits. AT80C51 microcontroller as the core of it, through the three temperature digital display and 4 keys to achieve man-machine dialogue, the use of single-chip bus temperature conversion temperature DS18B20 real-time acquisition and through the digital display and offers a variety of operating light to indicate system now live in the state, such as: temperature setting, heating, and stop heating, the entire system through the four buttons to set the heating temperature and control the operating mode. KEY WORDS:Microcontroller, digital display, single bus, DS18B20 绪论

基于PLC控制的锅炉自动输煤系统设计..

摘要 本论文主要是以锅炉的自动输煤系统为研究对象,自动输煤系统的出现不仅仅解决了在锅炉输煤过程中只能使用人力的现状,也解决了工作强度大、工作时间长的问题。论文首先简述了锅炉概况,对自动输煤系统的工艺流程进行分析设计,然后对输入输出点进行分配,设计了主电路,对PLC进行分析选择,最后画出梯形图。通过对原有锅炉输煤系统控制方面存在的问题进行分析,采用PLC 控制系统选用日本三菱F1-30MR型PLC,通过硬件选取,软件调试,实现整体控制系统结构合理,运转良好的目的。个机械之间均涉及安全连锁保护控制共嫩:系统的输煤电机启停有严格控制顺序,彼此间有相应的联锁互动关系,当启停某台输煤系统设备时。从该设备下面流程的最终输煤设备开始向上逐级启用,最后才能使该台设备启动;当停止某台输煤设备或某台设备故障时,从该设备上面流程的源头给煤设备开始向下逐级停机,左后才能使该台设备停止。这样就保证了上煤传输的正常运行在线控制煤流量,避免了皮带上煤的堆积,也保护了皮带。PLC控制系统硬件设计布局合理,工作可靠,操作,维护方便,工作良好。用PLC 输煤程控系统。用PLC来对锅炉输煤系统进行控制。锅炉输煤系统,是指从卸煤开始,一直到将合格的煤块送到煤仓的整个工艺过程,它包括以下几个主要环节:卸煤生产线、煤场、输煤系统、破碎与筛分、配煤系统以及一些辅助生产环节。本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。采用了顺序控制的方法。不但实现了设备运行的自动化管理和监控。提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。因此PLC电气控制系统具有一定的工程引用和推广价值。 关键词:PLC;自动输煤系统;煤料自动控制

燃气蒸汽锅炉DCS控制系统

河南xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统有限公司

一:概述 xxxx电气有限公司是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国内最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国内锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国内唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

相关文档
最新文档