高频电子线路实验报告2——高频丙类功率放大器

高频电子线路实验报告2——高频丙类功率放大器
高频电子线路实验报告2——高频丙类功率放大器

实验报告

课程名称高频电子线路

专业班级

姓名

学号

电气与信息学院

和谐勤奋求是创新

(2)集电极电源电压c E 对放大器工作状态的影响

保持激励电压b U (11TP01电压为200mv 峰—峰值)、负载电阻L R =10K Ω不变(11W02

.功放调谐特性测试

11K01置“ON ”,11KO2往下拨,11K03置“左侧”,拔掉11K05跳线器。高频信号源接入前置级输入端(11P01),峰-峰值800mV 。以6.3MHZ 的频率为中心点,以200KHZ 为频率间隔,向左右两侧画

2013-3-3高频电子线路课程设计指导书

高频电子线路课程设计指导书 赵海涛逄明祥孙绪保王立奎 山东科技大学信息与电气工程学院

目录 第一章概述3 1.1 何谓课程设计 3 1.2 课程设计的目的要求 4 1.3 课程设计的主要步骤 4 第二章线路板的组装与调试6 2.1 元器件的识别与应用 6 2.2 焊接技术9 2.3 调试技术9 第三章高频电路课程设计14课题一小型等幅(调幅)发射机的设计与制作14 课题二高频信号发生器的设计与制作22 附录:常用阻容元件性能与规格32

第一章概述 在高等学校课程设计是一个重要的教学环节,它与实验、生产实习、毕业设计构成实践性教学体系。由此规定了课程设计的三个性质:一是教学性,学生在教师指导下针对某一门课程学习工程设计;二是实践性,课程设计包括电路设计、印刷板设计、电路的组装和调试等实践内容;三是群众性或主动性,课程设计以学生为主体,要求人人动手,教师只起引导作用,主要任务由学生独立完成,学生的主观能动性对课程设计的完成起决定性作用。学生较强的动手能力就是依靠实践性教学体系来培养的。 1.1 何谓课程设计 所谓课程设计就是大型实验,是具有独立制作和调试的设计性实验,其基本属性体现在工程设计上。但课程设计毕竟不同于一般实验。 首先是时间和规模不同,一般实验只有两学时,充其量为四学时;而课程设计一般为一~两周。实验所要达到的目的较小。通常只是为了验证某一种理论、掌握某一种参数的测量方法、学习某一种仪器的使用方法等等;而课程没计则是涉及一门课程甚至几门课程的综合运用,所以课程设计是大型的。 其次,完成任务的独立性不同,一般实验学生采用教师事先安排好的实验板和仪器,实验指导书上详细地介绍了做什么和如何做,实验时还有教师现场指导,学生主要任务是搭接电路,用仪器观察现象和读取数据,因此实验是比较容易完成的;而课程设计不同,课程设计只给出所要设计的部件或整机的性能参数,由学生自己去设计电路、设计和制作印刷电路板,然后焊接和调试电路,以达到性能要求。 课程设计和毕业设计性质非常接近,毕业设计是系统的工程设计实践,

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

通信电子电路实验讲义完全版

《通信电子电路实验》实验讲义 2012修正 高频电路实验代前言 本实验讲义是为配合清华大学TPE—GP2型高频电路实验学习机专门编写的。多年前,学校电子技术实验室购买了几十台TPE—GP2学习机供学生做高频实验,但是,始终没有与之配套的实验讲义。结合我校实验室现有实验条件和实验教学时间的需要,特地编写《高频电子线路实验讲义09版》。 实验一高频小信号调谐放大器(实验版G1)、实验二高频谐振功率放大器(实验版G2)是一类、实验三LC振荡和石英晶体振荡(实验版G1)都是单独实验;实验四振幅调制与解调(实验版G3)、实验五变容二极管调频振荡器(G4)、实验六集成电路压控振荡器构成的频率调制与解调(实验版G5),都是含有调制解调内容,是复合实验。这样的实验安排涵盖了高频电路教学的主要内容。本学期(2012秋)新购入扫频仪,所以再次修订实验讲义。 在此,特别感谢06、07、08、09级电子信息科学与技术专业学生。正是通过他们的使用,使本教材得到不断改进与完善。 TPE—GP2型高频电路实验学习机说明 1.技术性能 1.1电源:输入AC220V; 输出DCV+5V、-5V、+12V、-12V,最大输出电流200mA 1.2信号源:(函数信号发生器) 输出波形:有方波、三角波、正弦波 幅值:正弦波V P-P :0~14V(14V为峰—峰值,且正负对称) 方波V P-P :0~24V(24V为峰—峰值,且正负对称) 三角波V P-P :0~24V(24V为峰—峰值,且正负对称) 频率范围:分四档2~20Hz、20~200Hz、200~2KHz、2K~20KHz 1.3电路实验板:备有五块实验板,可完成11项高频电路实验。 2.使用方法 1.1将标有220V的电源线插入市电插座,接通开关,电源指示灯亮。 1.2使用实验专用电导线进行连线。 1.3实验时先阅读实验指导书,然后按照实验电路接好连线,检查无误后再接通主电源。 特别注意:电源极性不可以接反。

实验二丙类高频功率放大器实验要点

实验三丙类高频功率放大器实验 一 . 实验目的 1. 通过实验,加深对于高频谐振功率放大器工作原理的理解。 2. 研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。 3. 了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。 4. 掌握 丙类高频谐振功率放大器的计算与设计方法。 二 . 预习要求: 1. 复习高频谐振功率放大器的工作原理及特点。 2. 熟悉并分析图 3所示的实 验电路,了解电路特点。 三 . 实验仪表设备 1. 双踪示波器 2. 数字万用表 3. TPE-GP5通用实验平台 4. G1N 实验模块 5. G2N 实验模块 四 . 电路特点及实验原理简介 1. 电路特点

本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极 调幅实验。当电路的输出负载为天线回路时,就可以完成无线电发射的任务。为了 使电路稳定,易于调整,本电路设置了独立的载波振荡源。 2. 高频谐振功率放大器的工作原理 参见图 1。 谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重要、最为难调的单元电路之一。根据放大器电流导通角的范围可分为甲类、乙类、丙类 等类型。丙类功率放大器导通角θ<900 ,集电极效率可达 80%, 一般用作末级放大,以获得较大的功率和较高的效率。 图 1中, V bb 为基极偏压, V cc 为集电极直流电源电压。为了得到丙类工作状态, V bb 应为负值,即基极处于反向偏置。 u b 为基极激励电压。图 2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。 V bz 是晶体管发射结的起始电压(或称转折电压。由图可知,只有在 u b 的正半周,并且大于V bb 和 V bz 绝对值之和时,才有集电极电流流通。即在一个周期内,集电极电流 i c

2016_2017第1学年《高频电子线路实验讲义》 (1)解读

实验一小信号调谐放大器 一、实验目的 1.熟悉电子元器件和高频电路实验箱。 2.熟悉谐振回路的幅频特性分析--通频带与选择性。 3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4.熟悉和了解放大器的动态范围及其测试方法。 二、预习要求 1.复习谐振回路的工作原理。 2.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3.实验电路中, 若电感量 L=1μH,回路总电容C=220pf (分布电容包括在内),计算回路中心频率f0 三、实验仪器设备 1.双踪示波器 2.扫频仪 3.高频信号发生器 4.高频毫伏表 5.万用表 6.实验板 四、实验内容及步骤 1.实验电路见图1-1 (1)按图1-1所示连接电路 (注意接线前先测量+12V电源电压,无误后关断电源再接线)。 图1-1 单调谐回路谐振放大器原理图 (2)接线后仔细检查,确认无误后接通电源。 2.静态测量 实验电路中选R e=1K 测量各静态工作点,计算并填表1.1 V B,V E是三极管的基极和发射极对地电压。 3.动态研究 (1). 测放大器的动态范围Vi~V0(在谐振点) 选R=10K,R e=1K。把高频信号发生器接到电路输入端,电路输出端接高频毫伏表,选择正常放大区的输 入电压Vi,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大。此时调节V i由0.02 伏变到0.8伏,逐点记录V0电压,并填入表1.2(仅供参考)。V i的各点测量值可根据(各自)实测情况来确定。 (2).当R e分别为500Ω、2K时,重复上述过程,将结果填入表1.2。在同一坐标纸上画出I C不同时的动态范围曲线,并进行比较和分析。

高频电子技术试题库第三章

一、选择题(每题2分) 1在调谐功率放大器中,晶体管工作延伸到非线性区域包括 。( ) A .截止和饱和区 B .线性和截止区 C .线性和饱和区 答案:A 2下列各参数不能够用于调节基本高频调谐功率放大器导通角的参数是 。( ) A .j U B .b E C .L R 答案:C 3调谐功率放大器工作状态的判定是根据ce min u 与 的比较判定。( ) A .ces U B .bm U C .cm U 答案:A 4 一般不用作调谐功率放大器中自给偏压环节的是 。( ) A .射极电流 B .基极电流 C .集电极电流 答案:C 5 高频调谐功率放大器一般工作在 。( ) A .甲类 B .乙类 C .丙类 答案:C 6 窄带高频功率放大器又被称为 。( ) A .调谐功率放大器 B .非调谐功率放大器 C .传输线放大器 答案:A 7 高频调谐功率放大器分析方法 。( ) A .近似法 B .折线法 C .等效分析法 答案:B 8 高频调谐功率放大器电路中晶体管的发射结 。( ) A .正偏 B .反偏 C .0偏置 答案:B 9 高频调谐功率放大器一般工作时的导通角为 。( ) A .180o B .90o C .小于90o

答案:C 10 高频调谐功率放大器在静态时,晶体管处于 区。( ) A .截止 B .饱和 C .线性放大 答案:A 11 高频调谐功率放大器无发射结偏置时,硅管的导通角为 。( ) A .20o ~ 40o B .40o ~ 60o C .60o ~ 80o 答案:B 12 高频调谐功率放大器无发射结偏置时,锗管的导通角为 。( ) A .20o ~ 40o B .40o ~ 60o C .60o ~ 80o 答案:C 13高频调谐功率放大器集电极电流脉冲展开系数中,对应任意导通角,展开系数最大的是 。( ) A .0α B .1α C .2α 答案:B 14高频调谐功率放大器集电极电流脉冲展开系数中,对应任意导通角,1 0αα最大值为 。( ) A .3 B .2 C .1 答案:B 15高频调谐功率放大器集电极电流脉冲展开系数中,对应任意导通角,1 0αα最小值为 。( ) A .3 B .2 C .1 答案:C 16 某晶体管的转移特性,其转移导纳j b 10mA/V,U 0.6V,E 1V g ===-,激励信号电压幅值bm U =3.2V ,则导通角为 。( ) A .90o B .60o C .30o 答案:B 17高频调谐功率放大器一般工作在 状态。( ) A .基波 B .二次谐波 C .三次谐波 答案:A

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

高频功率放大器(丙类)

实验报告 课程名称高频电子线路 实验名称高频功率放大器(丙类) 实验类型验证(验证、综合、设计、创新)学院名称电子与信息工程学院专业电子信息工程年级班级 2012级电信3 班开出学期 2014-2015上期学生姓名学号 指导教师蒋行达成绩

2014 年 11 月 22 日实验二高频功率放大器(丙类) 一、实验目的 1、了解丙类功率放大器的基本工作原理,三种工作状态,功率、效率计算。 2、掌握丙类功率放大器性能的测试方法。 3、观察集电极负载、输入信号幅度与集电极电压 EC对功率放大器工作情况的影响。 二、实验仪器 1、示波器 2、高频信号发生器 3、万用表 4、实验板 2 三、预习要求 1、复习功率放大器原理及特点。 2、分析图 2-2所示的实验电路,说明各元器件作用。 四、实验内容 1、用示波器观察功率放大器工作状态,尤其是过压状态时的集电极电流凹陷脉

冲。 2、观察并测量集电极负载变化对功率放大器工作的影响。 3、观察并测量输入信号幅度变化对功率放大器工作的影响。 4、观察并测量集电极电源电压变化对功率放大器工作的影响。 五、基本原理及实验电路 高频功率放大器是通信系统中发送装置的重要组件。它的作用是放大信号,使之达到足够功率输出,以满足天线发射或其他负载的要求。它的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)。 1、基本原理 功率放大器的效率是一个最突出的问题,其效率高低与放大器的工作状态有直接的关系。放大器工作状态可分为甲类、乙类和丙类等。图 2-1 表示了不同Ube时,谐振功率放大器不同工作状态的基极电压和集电极电流波形。

高频电子线路实验教学大纲

《高频电子线路》实验教学大纲 一、面向专业:电子信息工程、通信工程 二、实验总学时:18学时(必做实验7个,共14学时,余下3学时可根据教学进度情况,选择余下10个实验项目进行),不独立开课,占总成绩30% 三、实验中心(室):电子信息工程实验教学中心 四、实验目的: 通过实验教学,使学生进一步掌握高频电子线路的分析与设计的基本方法,掌握高频电子线路的性能指标的测量方法和测试技术,初步建立电子系统的概念。旨在培养学生综合运用知识能力、严谨细致的工作作风和一丝不苟的科学态度。 五、实验项目 实验项目一 实验名称:小信号调谐放大器 实验目的:掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算,掌握信号源内阻及负载对谐振回路的影响,了解放大器的动态范围及 测试方法。 实验类型:验证实验学时:2学时每组人数:1人 实验内容及方法:通过实物实验和仿真实验,观察和测量单调谐回路谐振放大器单元电路相关参数。 实验仪器设备:小信号调谐放大器实验板、示波器、高频信号发生器、扫频仪、交流毫伏表、直流稳压电源、万用表、计算机、Electronics Workbench Multisim电子电路仿真软件、LabVIEW软件。 *实验项目二 实验名称:集中选频放大器 实验目的:了解集中选频放大器的基本工作原理。 实验类型:验证实验学时:2学时每组人数:1人 实验内容及方法:通过实物实验和仿真实验,观察和测量集中选频放大器单元电路相关参数。 实验仪器设备:集中选频放大器实验板、示波器、高频信号发生器、交流毫伏表、直流稳压电源、万用表、计算机、Electronics Workbench Multisim 电子电路仿真软件、LabVIEW软件等。

高频复习题 第3章 高频信号放大器

第3章高频信号放大器 3.1自测题 3.1-1晶体管的截止频率f?是指当短路电流放大倍数|?|下降到低频? 0的时所对应的工作频率。 3.1-2矩形系数是表征放大器好坏的一个物理量。 3.1-3消除晶体管y re的反馈作用的方法有和。 3.1- 4.为了提高效率,高频功率放大器应工作在状态。 3.1-5.为了兼顾高的输出功率和高的集电极效率,实际中多选择高频功率放大器工作在状态。 3.1-6.根据在发射机中位置的不同,常将谐振功率放大器的匹配网络分为、、三种。 3.2 思考题 3.2-1 影响谐振放大器稳定性的因素是什么?反向传输导纳的物理意义是什么? 3.2-2声表面波滤波器、晶体滤波器和陶瓷滤波器各有什么特点,各适用于什么场合? 3.2-3说明fβ、f Tβ、fɑ和f max的物理意义。分析说明它们之间的关系 3.2-4为什么晶体管在高频工作时要考虑单向化或中和,而在低频工作时,可以不必考虑? 3.2-5. 谐振功率放大器工作于欠压状态。为了提高输出功率,将放大器调整到临界状态。可分别改变哪些参量来实现?当改变不同的量时,放大器输出功率是否一样大? 3.2-6.为什么高频功率放大器一般要工作于乙类或丙类状态?为什么采用谐振回路作负载?谐振回路为什么要调谐在工作频率? 3.2-7.为什么低频功率放大器不能工作于丙类?而高频功率放大器可以工作于丙类? 3.2-8.丙类高频功率放大器的动态特性与低频甲类功率放大器的负载线有什么区别?为什么会产生这些区别?动态特性的含意是什么? 3.2-9.一谐振功放如图3.2-9所示,试为下列各题选取一正确答案: (1)该功放的通角θ为:(a)θ>90。;(b)θ=90。;(c)θ<90o。 (2)放大器的工作状态系:(a) 由E c、E B决定;(b)由U m、U bm决定;(c)由u BE max、u CE min决定。 (3)欲高效率、大功率工作,谐振功放应工作于:(a)欠压状态(b)临界状态(c) 过压状态 (4)当把图中的A点往上移动时,放大器的等效阻抗是:(a)增大;(b)不变;(c)减小。相应的工作状态是:(a)向欠压状态变化;(b)向过压状态变化;〈c〉不变。

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

电信系-高频电子线路实验

实验1 单调谐回路谐振放大器 —、实验准备 1.做本实验时应具备的知识点: ●放大器静态工作点 ●LC并联谐振回路 ●单调谐放大器幅频特性 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法; 4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 5.掌握测量放大器幅频特性的方法。 三、实验内容 1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点; 2.用示波器测量单调谐放大器的幅频特性; 3.用扫频仪观察静态工作点对单调谐放大器幅频特性的影响; 4.用扫频仪观察集电极负载对单调谐放大器幅频特性的影响。 四、基本原理 1.单调谐回路谐振放大器原理 小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C是输入、输出耦

晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。 图1-1 单调谐回路放大器原理电路

图1-2 单调谐回路谐振放大器实验电路图 2

2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。1Q02为射极跟随器,主要用于提高带负载能力。 五、实验步骤 1.实验准备 (1)插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01。 (2)接通电源,此时电源指示灯亮。 2.单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下:(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右,这样放大器工作于放大状态。高频信号源输出连接到单调谐放大器的输入端(1P01)。示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为200mv (示波器CH1监测)。调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。此时回路谐振于6.3MHZ。比较此时输入输出幅度大小,并算出放大倍数。 (2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。

丙类高频功率放大器课程设计

高频电子线路课程设计报告 题目:丙类功率放大器 院系: 专业:电子信息科学与技术 班级: 姓名: 学号: 指导教师: 报告成绩: 2013年12月20日

目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (2) 3.1、系统方案论证 3.1.1 丙类谐振功率放大器电路 3.2、模块电路设计 3.2.1丙类谐振功率放大器输入端采用自给偏置电路 3.2.2丙类谐振功率放大器输出端采用直流馈电电路 3.2.3匹配网络 3.2.4 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析 四、整体电路与系统调试及仿真结果 (11) 4.1 电路设计与分析 4.2.仿真与模拟 4.2.1 Multisim 简介 4.2.2 基于Multisim电路仿真用例 五、主要元器件与设备 (14) 5.1 晶体管的选择 5.1.2 判别三极管类型和三个电极的方法 5.2电容的选择 六、课程设计体会与建议 (17) 6.1、设计体会 6.2、设计建议 七、结论 (18) 八、参考文献 (19)

一、设计目的 电子技术迅猛发展。由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。基本放大器是组成各种复杂放大电路的基本单元。弱电控制强电在许多电子设备中需要用到。放大器在当今和未来社会中的作用日益增加。 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。 设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。 二、设计思路 丙类谐振功率放大器工作原理 图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V BB 应设置在功率的截止区。 输入回路 由于功率管处于截止状态,基极偏置电压V BB 作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。 由i C ≈βi B 知,i C 也严重失真,且脉宽小于90o。 输出回路 若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线 (i C ~V BE )上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半 个周期。

第3章高频功率放大器详解

第3章高频功率放大器 一、本章的基本要求 (1)掌握丙类谐振功率放大器的工作原理及其特点。 (2)掌握谐振功率放大器三种工作状态的特点以及负载特性;了解集电极直流电源,基极直流电源以及基极输入电压对工作状态的影响。 (3)掌握谐振功率放大器电路的组成,了解谐波匹配网络的作用。 (4)了解传输线变压器的工作原理以及阻抗变换,功率合成与分配技术 二、重点和难点 重点: (1)丙类谐振功率放大器的工作原理及其特点。 (2)谐振功率放大器三种工作状态以及负载特性。 (3)谐振功率放大器电路的组成。 (4)传输线变压器阻抗变换原理。 难点: (1)谐振功率放大器特性分析。 (2)LC网络的阻抗变换原理及电路参数的计算。 (3)传输线变压器功率合成与分配原理。

引言 1、使用高频功率放大器的目的 放大高频大信号使发射机末级获得足够大的发射功率。 2、高频功率信号放大器使用中需要解决的两个问题 ①高效率输出②高功率输出 联想对比: 高频功率放大器和低频功率放大器的共同特点都是输出功率大和高。 3、谐振功率放大器与小信号谐振放大器的异同之处 相同之处:它们放大的信号均为高频信号,而且放大器的负 载均为谐振回路。 不同之处:为激励信号幅度大小不同;放大器工作点不同; 晶体管动态范围不同。 4、谐振功率放大器与非谐振功率放大器的异同 共同之处:都要求输出功率大和效率高。 功率放大器实质上是一个能量转换器,把电源供给的直流能量转化为交流能量,能量转换的能力即为功率放大器的效率。 谐振功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),其工作状态通常选为丙类工作状态(θc<90?),为了不失真的放大信号,它的负载必须是谐振回路。 非谐振放大器可分为低频功率放大器和宽带高频功率放大器。低频功率放大器的负载为无调谐负载,工作在甲类或乙类工作状态;宽带高频功率放大器以宽带传输线为负载。 工作状态 功率放大器一般分为甲类、乙类、甲乙类、丙类等工作方式,为了进一步提高工作效率还提出了丁类与戊类放大器。谐振功率放大器通常工作于丙类工作状态,属于非线性电路功率放大器的主要技术指标是输出功率与效率。 3.1 谐振功率放大器的工作原理 1、原理电路 晶体管的作用是在将供电电源的直流能量转变为交流能量的过程中起开关控制

实验报告三高频丙类功率放大器设计

实验高频丙类功率放大器设计 时间:第周星期节课号: 院系专业: 姓名:学号:座号: ============================================================================================ 一、实验目的 1、理解掌握高频丙类功率放大器的工作原理; 2、掌握功率放大器输出功率、直流功率、效率的计算; 3、掌握高频谐振功率放大器的计算和设计方法; 4、提高高频电路综合设计能力。 二、实验预习 1、下图所示谐振功率放大器中,已知V CC =24V,P O=5W,θ=700,ξ=0.9,试求该功 率放大器的η C 、P D、P C、i Cmax和谐振回路谐振电阻 R e 。 2、谐振功率放大器原来工作在临界状态,若谐振回路的外接负载电阻R L(如上图所示)增大或减小,放大器的工作状态如何变化?I C0、I c1m、P o、P C将如何变化? 成绩指导教师批阅日期

3、谐振功率放大电路集电极直流馈电电路有哪几种形式?并联馈电电路有何特点? 4、谐振功率放大电路中自给偏压电路有何特点?说明产生自给偏压的条件。 5、谐振功率放大器中滤波匹配网络有何作用?对它有哪些主要要求? 三、设计任务及要求 设计制作一个高频丙类功率放大器,要求直流电源电压+12V,中心频率为40.7MHz,放大器输出功率P o > 200mW(R L = 50Ω),效率ηC > 60%。 (注:设计流程步骤,请参考实验指导书71页,涉及相关的理论计算请参考教材和其他参考书。采用两级放大器设计思路,整体电路由两大部分构成:激励级放大电路和丙类功放级放大电路。参考电路如下图所示。要求按照设计要求,计算电路中电阻、电容、电感(扼流圈除外)的理论值。)

《高频电子线路》实验报告合集包解析

《高频电子线路》实验报告合集包 姓名:薛超 学号:1111431168 专业:电子信息工程 指导老师:钟读贤 2013年6月

目录 第一部分 实验1 单调谐回路谐振放大器................3实验2 双调谐回路谐振放大器.................11实验3 电容三点式LC振荡器......................17实验4 石英晶体振荡器....................28实验5 晶体三极管混频实验....................32实验6 集成乘法器混频器实验....................37实验7 中频放大器.........................42实验8 集成乘法器幅度调制电路....................45实验9 振幅解调器(包络检波、同步检波)..............56实验10 高频功率放大与发射实验....................65实验11 变容二极管调频器....................74实验12 电容耦合回路相位鉴频器....................78实验13 锁相环频率调制器.........................81实验14 锁相环鉴频器.........................88实验15 自动增益控制(AGC)....................92实验16 发送部分联试实验....................96实验17 接收部分联试实验....................98实验18 发射与接收完整系统的联调....................100

高频电子线路第三章习题答案

习题 3.1 高频功率放大器的主要作用是什么?应对它提出哪些主要要求? 答:高频功率放大器的主要作用是放大高频信号或高频已调波信号,将直流电能转换成交流输出功率。要求具有高效率和高功率输出。 3.2 为什么丙类谐振功率放大器要采用谐振回路作负载?若回路失谐将产生什么结果?若采用纯电阻负载又将产生什么结果? 答:因为丙类谐振功率放大器的集电极电流i c为电流脉冲,负载必须具有滤波功能,否则不能获得正弦波输出。若回路失谐集电极管耗增大,功率管有损坏的危险。若采用纯电阻负载则没有连续的正弦波输出。 3.3 高频功放的欠压、临界和过压状态是如何区分的?各有什么特点? 答:根据集电极是否进入饱和区来区分,当集电极最大点电流在临界线右方时高频功放工作于欠压状态,在临界线上时高频功放工作临界状态,在临界线左方时高频功放工作于过压状态。 欠压状态的功率和效率都比较低,集电极耗散功率也较大,输出电压随负载阻抗变化而变化,较少使用,但基极调幅时要使用欠压状态。 临界状态输出功率大,管子损耗小,放大器的效率也较高。 过压状态下,负载阻抗变化时,输出电压比较平稳且幅值较大,在弱过压时,效率可达最高,但输出功率有所下降,发射机的中间级、集电极调幅级常采用过压状态。 3.4 分析下列各种功放的工作状态应如何选择? (1) 利用功放进行振幅调制时,当调制的音频信号加到基极或集电极时,如何选择功放的工作状态? (2) 利用功放放大振幅调制信号时,应如何选择功放的工作状态? (3) 利用功放放大等幅度信号时,应如何选择功放的工作状态? 答:(1) 当调制的音频信号加到基极时,选择欠压状态;加到集电极时,选择过压状态。 (2) 放大振幅调制信号时,选择欠压状态。、 (3) 放大等幅度信号时,选择临界状态。 3.5 两个参数完全相同的谐振功放,输出功率P o分别为1W和0.6W,为了增大输出功率,将V CC提高。结果发现前者输出功率无明显加大,后者输出功率明显增大,试分析原因。若要增大前者的输出功率,应采取什么措施? 答:前者工作于欠压状态,故输出功率基本不随V CC变化;而后者工作于过压状态,输出功率随V CC明显变化。在欠压状态,要增大功放的输出功率,可以适当增大负载或增大输入信号。 3.6 一谐振功放,原工作于临界状态,后来发现P o明显下降,ηC反而增加,但V CC、U cm 和u BEmax均未改变(改为:V CC和u BEmax均未改变,而U cm基本不变(因为即使Ucm变化很小,工作状态也可能改变,如果Ucm不变,则Uce不变,故工作状态不应改变)),问此时功放工作于什么状态?导通角增大还是减小?并分析性能变化的原因。 答:工作于过压状态(由于Ucm基本不变,故功率减小时,只可能负载增大,此时导通角不变);导通角不变 3.7 某谐振功率放大器,工作频率f =520MHz,输出功率P o=60W,V CC=12.5V。(1) 当ηC=60%时,试计算管耗P C和平均分量 I的值;(2) 若保持P o不变,将ηC提高到80%,试问管耗 c0 P C减小多少? 解:(1) 当ηC=60%时,

高频电子线路实验合集

实验名称:高频小信号放大器 系别:计算机系年级:2015 专业:电子信息工程 班级:学号: 姓名: 成绩: 任课教师: 2015年月日

实验一高频小信号放大器 一、实验目的 1、掌握小信号调谐放大器的基本工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3、了解高频小信号放大器动态范围的测试方法; 二、主要仪器设备 在计算机上用仿真软件模拟现实的效果, 通过采用仿真技术,虚拟构建一个直观、可视化的2D、3D 实验环境,从而达到对实验现象和实验结果的虚拟仿真以及对现实实验的操作,为处于不同时间、空间的实验者提供虚拟仿真的实验环境,使学习者仿佛置身其中,对仪器、设备、内容等实验项目进行互动操作和练习。 二、实验原理 二、实验步骤 1、绘制电路 利用Mulisim软件绘制如图1-1所示的单调谐高频小信号实验电路。

图1-1 单调谐高频小信号实验电路 2、用示波器观察输入和输出波形; 输入波形:

输出波形: 3、利用软件中的波特测试仪观察通频带。 5.实验数据处理与分析 根据电路中选频网络参数值,计算该电路的谐振频率ωp ; s rad CL w p /936.210 58010 2001 16 12 =???= = -- 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。 ,708.356uV V I = ,544.1mV V O = === 357 .0544 .10I O v V V A 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,根据图粗略计算出通频带。 f 0(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0 (mv) 0479 A V (5)在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

高频电子线路实验指导书高频电子线路实验箱简介

高频电子线路实验箱简介 THCGP-1型 仪器介绍 ●信号源: 本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下: 1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调); 频率稳定度:10E–4;输出波形:正弦波; 输出幅度:1Vp-p 输出阻抗:75?。 2)低频信号源: 输出频率范围:0.2kHz~20 kHz(连续可调); 频率稳定度:10E–4;输出波形:正弦波、方波、三角波; 输出幅度:5Vp-p;输出阻抗:100Ω。 信号源面板如图所示 使用时,首先按下“POWER”按钮,电源指示灯亮。 高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。 按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED

亮,当三灯齐亮时,即为1MHz档。旋转高频频率调节旋钮可以改变输出高频信号的频率。另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。 音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。按频率档位选择可在两个档位间切换,并且相应的指示灯亮。调节音频信号频率调节旋钮可以改变信号的频率。分别改变三种波形的幅度调节旋钮可以调节输出的幅度。 本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。调频波的音频信号为正弦波,载波为信号源内的高频信号。改变“FM频偏”旋钮调节输出的调频信号的调制指数。按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。调节“AM调幅度”可以改变调幅波的幅度。面板下方为5个射频线插座。“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。另外3个射频线插座为音频信号3种波形的输出:正弦波、三角波、方波,频率范围为0.2k至20kHz。 ●等精度频率计 (1)等精度频率计面板示意图: (2)等精度频率计参数如下: 频率测量范围:20Hz——100MHz 输入电平范围:100mV——5V 测量误差:5×10-5±1个字 输入阻抗:1MΩ//40pF (3)使用说明: 频率显示窗口由五位数码管组成,在整个频率测量范围内都显示5位有效位数。按下‘电源’开关,电源指示灯亮,此时频率显示窗口的五位数码管全显示8.,且三档频率指示灯同时亮,约两秒后五位数码全显示0,再进入测量状态。

高频电子线路实验报告

河北联合大学轻工学院 实验报告 实验名称:双调频回路谐振放大器成绩: 姓名:秦超班级:09电科1 组数:200915420132 设备编号:日期:2011.11.30 指导老师:安老师 批阅老师: 年日

实验2 双调谐回路谐振放大器 —、实验准备 1.做本实验时应具备的知识点: ●双调谐回路 ●电容耦合双调谐回路谐振放大器 ●放大器动态范围 2.做本实验时所用到的仪器: ●双调谐回路谐振放大器模块 ●双踪示波器 ●万用表 ●频率计 ●高频信号源 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.熟悉耦合电容对双调谐回路放大器幅频特性的影响; 3.了解放大器动态范围的概念和测量方法。 1.采用点测法测量双调谐放大器的幅 频特性; 2.用示波器观察耦合电容对双调谐回 路放大器幅频特性的影响; 3.用示波器观察放大器动态范围。

四、基本原理 1.双调谐回路谐振放大器原理 顾名思义,双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。两者之间,可采用互感耦合,或电容耦合。与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。电容耦合双调谐回路谐振放大器原理图如图2-1所示。 与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图2-1中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。 2.双调谐回路谐振放大器实验电路 双调谐回路谐振放大器实验电路如图2-2所示,其基本部分与图2-1相同。图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。2K01用以改变集电极负载。2K03用来改变放大器输入信号,当2K03往上拨时,放大器输入信号为来自天线上的信号,2K03往下拨时放大器的输入信号为直接送入。

相关文档
最新文档