顺序启动控制电路图

顺序启动控制电路图

顺序启动控制电路图

有三台电动机,要求三台电动机依次启动,KM1控制第一台,KM2控制第二台,KM3控制第三台,顺序启动控制电路图

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电动机顺序启动停止控制

湖南人文科技学院 课程设计报告课程名称:电器控制与PLC课程设计 设计题目:电动机顺序启动/停止控制 系别:通信与控制工程系 专业:自动化 班级:07自二 学生姓名: 况武 学号: 07421236 起止日期: 2010年12月20日~ 2011年1月19日指导教师: 教研室主任:方智文

PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强、功能完善等优点。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。本文设计了三相异步电动机的PLC控制电路,该电路主要以性能稳定、简单实用为目的。 关键词:PLC,编程语言,电动机,顺序启动/停止

1 引言 (1) 1.1 设计概述 (1) 1.2 设计要求 (2) 2系统总体方案设计 (3) 2.1 系统硬件配置及组成原理图 (3) 2.2 系统变量定义及分配 (4) 2.3 系统接线图设计 (7) 3控制系统设计 (9) 3.1 控制电路设计 (9) 3.2 控制程序设计 (9) 4上位监控系统设计 (10) 5系统调试及结果分析 (10) 6结束语 (12) 参考文献 (13) 附录:程序 (14)

电动机顺序启动/停止控制 1引言 1.1 设计概述 三相异步电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三项异步电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。 在生产过程,科学研究和其他产业领域中,电气控制技术应用十分广泛。在机械设备的控制中,电气控制也比其他的控制方法使用的更为普遍。 本系统的控制是采用PLC的编程语言——梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计。它采用可编程序的存储器,用来在内部存储执行逻辑运算、顺序控制,定时、计数和算术等操作的指令,并采用数字式、模拟式的输入和输出,控制各种的机械或生产过程。 长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。进入20世纪80年代,由于计算机技术和微电子技术的迅速发展,极大的推动了PLC的发展,使的PLC的功能日益增强。如PLC可进行模拟量控制、位置控制和PID控制等,易于实现柔性制造系统。远程通信功能的实现更使PLC 如虎添翼。目前,在先进国家中,PLC已成为工业控制的标准设备,应用面几乎覆盖了所有工业企业。PLC是一种固态电子装置,它利用已存入的程序来控制机器的运行或工艺的工序。PLC 通过输入/输出(I/O)装置发出控制信号和接受输入信号。由于PLC综合了计算机和自动化技术,所以它发展日新月异,大大超过其出现时的技术水平。它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制。特别是超大规模集成电路的迅速发展以及信息、网络时代的

电动机启动控制过程详解

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

两台电机顺序启动顺序停止控制线路的设计与分析.

两台电机顺序启动顺序停止控制线路的设计与分析 班级: 姓名: 学号: 2012年10月30日

摘要 本文介绍了基于电力拖动的一种电动机的启动停止的设计方案,将两台电动机成功的顺序启动,逆序停止。我们运用其原理的思路是:用两套异步电机M1和M2,在M2控制回路中串入常开触头,实现只有先开M1才能后开M2,在M1停机按钮上并联一常开触头,实现只有先停M2才能后停M1。系统用到的元件有常开常闭开关,熔断器,继电器等一些常用的电气元件。绘制电路图与工作流程图,并进行改进。因为三相电机的仿真具有很高的难度,在短时间内无法完成,故只使用原理图和电路图进行说明。 关键词:异步电机 M1和M2;常开常闭开关;熔断器;继电器

Abstract This paper introduces the electric drive based on a motor start stop design scheme, the two electric motors successful sequence startup, inverted order to stop. We use the train of thought of its principle is: with two sets of asynchronous motor M1 and M2, in M2 control loop of the string into normally open contacts, realize only first open M1 after can open M2, in M1 stop button on the parallel a normally open contacts, realize only first stop M2 can stop after the M1. The system use components have normally open normally closed switch, fuse, relay and so on some commonly used electrical components. Draw circuit diagram and working flow chart, and makes some improvement. For the simulation of the three-phase motor has high difficulty, unable to complete in a short time, so only use principle diagram and the circuit diagram shows. Keywords: asynchronous motor M1 and M2; Normally open normally closed switch; Fuse; relay

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/238979527.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

三台电机顺序启动逆向停止控制电路图及工作原理

工作过程分析: 一、启动过程: 1)按下启动按钮SB1,KM1线圈得电吸合,通过其常开触点KM1和KT4延断触点实现自锁,时间继电器KT1得电,开始计时;2)KT1计时时间到,其延闭触点KT1闭合,KM2线圈德电吸合,并通过常开触点KM2、KT3延断触点实现自锁;同时,KM2常闭触点分断,断开时间继电器KT1,其延闭触点KT1立即复位,时间继电器KT2得电,开始计时; 3)KT2计时时间到,其延闭触点KT2闭合,KM3线圈得电吸合,并通过常开触点KM3、KA常闭触点实现自锁;同时,KM3常

闭触点分断,断开时间继电器KT2,其延闭触点KT2立即复位;4)启动过程完毕。 二、停止过程: 1)停止过程:KM1、KM2、KM3启动完成,其常开触点KM1、KM2、KM3闭合,此时按下停止按钮SB2,中间继电器 KA得电吸合,常开触点闭合,KA的常闭触点分断,解除 KM3自锁,KM3线圈失电分断;同时KM3常闭触点复位, 中间继电器KA通过KM1常开触点闭合、KA常开触点闭 合实现自锁; 时间继电器KT3得电开始计时; 2)KT3计时时间到,其延断触点KT3分断,解除KM2自锁,KM2线圈失电分断;同时KT3其延闭触点闭合启动KT4, 时间继电器KT4得电开始计时; 3)KT3计时时间到, 其延断触点KT4分断,解除KM1自锁,KM1线圈失电分断; 4)KM1常开触点分断,解除中间继电器KA自锁, 线圈失电分断; 同时断开时间继电器KT3, 其延闭触点KT3、延断 触点KT3立即复位;其延闭触点KT3复位断开时间继电 器KT4,延断触点KT4立即复位。 5)停止过程完毕。 三、SB3为紧急停止按钮。

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

课题三台电机顺序起动控制电路

课题三台电机顺序起动 控制电路 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

一体化教学教案

项目教学实施过程 班前教育 1、学生仪容仪表 2、劳保用品穿戴是否整齐、清洁。 3、强调安全注意事项 班前教育目的 培养学生良好的职业素养。 一、项目任务分析(5分钟) 本课题讨论的问题主要是顺序起动的问题, 在实际电路中,比如机床电气系统中,往往需要 主轴起动后其他的轴才能起动,这就涉及到一个 顺序动作的问题,而本课题的主要任务就是要搞 清楚顺序起动或逆序起动停止的问题,在下面的 任务中就和同学们一起来进行讨论。 二、任务内容讲解 (一)、顺序起动电路 设计思路:用控制前一台电机的继电器的辅 助常开串于控制后一台电机的电路前段。 1、两台电机顺序起动控制电路设计讲解: 根据所设计电路讲解设计思路和设计方法。 2、三台电动机顺序控制起动设计思路及电路 讲解 (二)、用时间继电器设计控制两台电机的顺序 控制电路。 设计思路:用时间继电器并于控制前一台电机的 继电器,使之一起动作,再用时间继电器的常开 串于控制后一台电机的继电器回路前端。 电路设计讲解: 检查学 生着装是 否整洁, 劳保穿戴 是否整 齐。 老师对电 路的设计 思路、要 求及电路 工作原理 进行讲解 自查劳保 用品穿戴 是否 整齐 学生认真 听讲并做 好笔记

项目教学实施过程 (三)、顺序起动逆序停止控制电气线路的 设计及电路讲解。 1、三台电机顺序起动逆序停止控制电路的 设计。 设计思路:用控制后一台电机的继电器的常 开把控制前一台电机的停止按钮并起来,后一 台电机不停,继电器常开就断不开,前一台停 止按钮就不起作用。 2、用时间继电器设计三台电机顺序起动逆序 停止控制电路。 老师用实物 电路进行通 电讲解 学生注意观 察电器动作 情况,并做 好记录。

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

两台电动机顺序起动、顺序停止电路

两台电动机顺序起动、顺序停止电路原理图 顺序启动、停止控制电路是在一个设备启动之后另一个设备才能启动运行的一种控制方法,常用于主、辅设备之间的控制,如上图当辅助设备的接触器KM1启动之后,主要设备的接触器KM2

才能启动,主设备KM2不停止,辅助设备KM1也不能停止。但辅助设备在运行中应某原因停止运行(如FR1动作),主要设备也随之停止运行。 工作过程: 1、合上开关QF使线路的电源引入。 2、按辅助设备控制按钮SB2,接触器KM1线圈得电吸合,主触点闭合辅助设备运行,并且KM1辅助常开触点闭合实现自保。 3、按主设备控制按钮SB4,接触器KM2线圈得电吸合,主触点闭合主电机开始运行,并且KM2的辅助常开触点闭合实现自保。 4、KM2的另一个辅助常开触点将SB1短接,使SB1失去控制作用,无法先停止辅助设备KM1。 5、停止时只有先按SB3按钮,使KM2线圈失电辅助触点复位(触点断开),SB1按钮才起作用。 6、主电机的过流保护由FR2热继电器来完成。 7、辅助设备的过流保护由FR1热继电器来完成,但FR1动作后控制电路全断电,主、辅设备全停止运行。 常见故障; 1、KM1不能实现自锁:

一、KM1的辅助接点接错,接成常闭接点,KM1吸合常闭断开,所以没有自锁。 二、KM1常开和KM2常闭位置接错,KM1吸合式KM2还未吸合,KM2的辅助常开时断开的,所以KM1不能自锁。 2、不能顺序启动KM2可以先启动; 分析处理: KM2先启动说明KM2的控制电路有电,检查FR2有电,这可能是FR2接点上口的7号线,错接到了FR1上口的3号线位置上了,这就使得KM2不受KM1控制而可以直接启动。 3、不能顺序停止KM1能先停止; 分析处理: KM1能停止这说明SB1起作用,并接的KM2常开接点没起作用。分析原因有两种。 一、并接在SB1两端的KM2辅助常开接点未接。 二、并接在SB1两端的KM2辅助接点接成了常闭接点。 4、SB1不能停止;

相电动机星三角降压启动控制电路图解精编版

相电动机星三角降压启动控制电路图解精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

三相电动机星三角降压启动控制电路图解 文章目录 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种方式。 接触器控制星三角降压启动 如右图所示是用按钮和控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,SB2是星~三角转换按钮,SB3是停止按钮,熔断器FU1作为主电路的短路保护,熔断器FU2

作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy 线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。 线路的工作原理如下:先合上电源开关QS: 按下SB1→时间继电器KT线圈通电、KMy线圈通电→KMy互锁触头分断、KMy主触头闭合、KMy动合触头闭合→KM线圈通电→KMy常开触头分断、KM自锁触头闭合自锁、KM主触头闭合→电动机M接成星形降压启动,当M转速上升到一定数值,KT常闭触头分断→KMy线圈断电→

电动机顺序启动控制电路原理图解

电动机顺序启动控制电路原理图解 在装有多台电动机的生产机械上,各电动机所起的作用是不同的,有时需按一定的顺序启动或停止,才能保证操作过程的合理和工作的安全可靠。 顺序控制——要求几台电动机的启动或停止必须按一定的先后顺序来完成的控制方式。 1、电路原理图 2、电路组成 本电路由电源隔离开关 QS;熔断器 FU1、FU2;交流接触器 KM1、KM2;

热继电器 FR1、FR2;启动按钮 SB1、SB2;停机按钮 SB3 及电动机M1、M2 组成。 3、技术要求 电动机 M1 先行启动后电动机 M2 才可启动,停止,两台电动机同时停止。 4、工作原理 (1)合上 QS,电源引入。 (2)启动 M1 按下按钮SB1→KM1 线圈得电→ →KM1 主触头闭合→电动机 M1 启动连续运转。 →KM1 动合触头闭合→实现自锁。

(3)启动 M2 当M1启动后,按下启动按钮SB2→KM2线圈得电→ →KM2 主触头闭合→电动机 M2 启动连续运转。 →KM2动合触头闭合→实现自锁。

(4)停止 按下按钮SB3→ → KM1 线圈失电→ →KM1 主触头分断→电动机 M1 失电停转。→KM1 动合触头分断→解除自锁。 → KM2 线圈失电→ →KM2 主触头分断→电动机 M2 失电停转。→KM2 动合触头分断→解除自锁。

(5)停止使用时,断开电源开关 QS。 5、顺序控制线路的其它形式 (1)主电路实现顺序控制 线路的特点是电动机 M2 的主电路接在 KM(或 KM1)主触头的下面。

主电路实现顺序控制的工作原理 (2)合上电源开关 QS。 (3)启动: 按下按钮SB1→KM1 线圈得电→ →KM1 主触头闭合→电动机 M1 启动连续运转。 →KM1 动合触头闭合→实现自锁。 再按下按钮SB2→KM2线圈得电→ →KM2主触头闭合→电动机 M2 启动连续运转。 →KM2 动合触头闭合→实现自锁。 (4)停止:按下SB3→控制电路失电→KM1、KM2 主触头分断→电动机 M1、M2 同时停转。 (5)停止使用时,分断电源开关 QS。

电动机正反转控制电路图及其原理分析

如对您有帮助,请购买打赏,谢谢您! 正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示 图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

直流电动机启动、调速控制电路实验.

实验题目类型:设计型 《电机与拖动》实验报告 实验题目名称:直流电动机启动、调速控制电路 实验室名称:电机及自动控制 实验组号:X组指导教师:XXX 报告人:XXX 学号:XXXXXXXXX 实验地点:XXXX 实验时间:20XX年XX月X日指导教师评阅意见与成绩评定

一、实验目的 掌握直流电动机电枢电路串电阻起动的方法; 掌握直流电动机改变电枢电阻调速的方法; 掌握直流电动机的制动方法; 二、实验仪器和设备 三、实验内容 (1)电动机数据和主要实验设备的技术数据

四、实验原理 直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率较小)、无极(电机额定功率较大)之分。是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。 直流电动机的调速:改变Ra、Ua和?中的任意一个使转子转速发生变化。 直流电动机的制动:使直流电动机停止转动。制动方式有能耗制动:制动时电源断开,立即与电阻相连,使电机处于发电状态,将动能转化成电能消耗在电路内。反接制动:制动时让E与Ua的作用方向一致,共同产生电流使电动机转换的电能与输入电能一起消耗在电路中。回馈制动:制动时电机的转速大于理想空转,电机处于发电状态,将动能转换成电能回馈给电网。 五、实验内容 (一)、实验报告经指导教师审阅批准后方可进入实验室实验 (二)、将本次实验所需的仪器设备放置于工作台上并检查其是否正常运行,检验正常后将所需型号和技术数据填入到相应的表内(若是在检验中发现 问题要及时调换器件) (三)、按实验前准备的实验步骤实验

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

实验七、两台电机顺序启动顺序停止

电机实验报告

实验七两台电机顺序启动顺序停止.实验目的 1.理解自锁开关、交流接触器、时间继电器、三相电动机的工作原理 2.掌握基本电路的连接方法及各器件在电路中的作用 .实验器材 1、380V三相四线制电源(由DJDK-3型电工实验装置提供) 2、三相闸刀开关1个 3、交流接触器2个(380V) 4、时间继电器3个 5、按钮开关1个 6、鼠笼式异步电动机2台(380V) 7、起子、钳子(自备) 8、万用表1个 9、导线若干三?试验线路 图1、控制电路连线图

图3、三相调压电流保护端 四?实验原理 接线正确合上电源后,按下按钮开关,交流接触器线圈1CJ得电吸合,与按钮开关常 开触点并接的1CJ常开触点闭合,锁住按钮开关,控制电路中的交流接触器线圈1CJ始终处于得电状态,与此同时主电路中的三个1CJ常开触点闭合,电动机得电处于星形转动状 态。过五秒后,2CJ得电,过程与1CJ得电一样,两台电机开始同时转动。再过5秒后时间继电器失电,电动机2停转,再过五秒后电动机1停转。 五.实验步骤 注意:该实验为380V强电实验,在实验过程中身体应该远离裸露在外的带电触点。 1、用万用表检测交流接触器、闸刀开关各触点是否完好。 2、按照按图1、图2正确接线。

3、检查线路是否连接正确。 4、把闸刀开关电源线和控制电路电源线依次接入到实验台控制面板上的三相调压电流 保护一端的U端插孔、V端插孔和W端插孔。如图3所示 5、为保证安全,先合上闸刀开关,打开实验台上的钥匙总开关,按下实验台上的电压 启动按钮(绿色按钮),再按下图1控制电路中的按钮常开触点。 6、观察实验现象,如运转正常,1分钟后再按下按钮开关常闭触点,电路失电,电机停转。 7、若电路运行不正常,按下实验台上的停止按钮,关闭实验台上的钥匙总开关,拔出 实验电路的各个电源插线,然后检查线路连接是否出了问题,直到问题解决,重复实 验。 8、实验完成后,断开电源,拔出实验线路电源插线,整理器材,写出实验报告。 六?实验过程(图片) 七?实验过程中存在的问题及心得体会 在本次试验中,我们尝试了让两台电机有序的自动运行自动停止,主电路的连接比较简单,控制电路通过时间继电器的设定,可以实现我们需要的运行方式,我们现在已经可以灵活的用定时器,并且能读懂复杂一些的控制电路。

基于PLC的两台电动机顺序启动顺序停止控制设计

目录 摘要 (3) 第一章绪论 (4) 第二章课程设计的原理及选用器材的介绍 (5) 2.1电动机的顺序启动/停止控制电路 (5) 2.2电动机的选型 (6) 2.3两台电动机顺序控制PLC方案的选择 (7) 2.4熔断器的原理 (7) 2.5继电器 (8) 2.6常开常闭开关器的选择 (10) 第三章工作原理 (12) 3.1两台电动机的顺序启动/停止控制电路如下: (12) 3.2工作过程: (12) 3.3PLC控制两台电动机的顺序启动/停止 (13) 第四章软件仿真 (15) 基于GX-DEVELOPER和GX S IMULATOR6-C的仿真图 (15) 课程设计的体会 (17) 参考文献 (18)

摘要 本文介绍了基于电力拖动的2台电动机的顺序启动停止的设计方案。我们运用其原理的思路是:用两套异步电机M1和M2,顺序启动、停止控制电路是在一个设备启动之后另一个设备才能启动运行的一种控制方法,常用于主、辅设备之间的控制,我们使用了时间继电器,当按下SB1时,电动机M1会立即启动,而M2会延迟几秒启动。当按下SB2时。电动机M1会停止,而M2会延迟几秒钟停止。同时我们还采用PLC进行控制。本设计两台电动机的顺序启动/停止可以运用到生活的各个方面这也充分体现了PLC在当今社会对生活的重要之处。本设计在顺序控制的基础上采用PLC对电动机的控制通过合理的选择和设计提高了电动机的控制水平使电动机达到了较为理想的控制效果。根据顺序功能图的设计法联系到现实做出了本设计两台电动机顺序启动/停止控制的PLC系统设计。 关键词:继电器、PLC控制

第一章绪论 与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。 在这种情况的要求下,将电动机的转动规律设计清楚显得尤为重要。电力拖动基础课程设计是电气工程及其自动化专业领域重要的实践环节之一,主要以小型实用性电力拖动系统的软、硬件设计为主。 本设计是根据顺序控制设计法对电动机进行顺序启动/停止控制。运用三菱FX2N编程软件进行绘图。

相关文档
最新文档