(完整版)高分子化学公式

(完整版)高分子化学公式
(完整版)高分子化学公式

第一章绪论(Introduction)(1)分子量的计算公式:

M0:重复单元数的分子量

M1:结构单元数的分子量

(2)数均分子量:

N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。x i表示相应的分子所占的数量分数。

(3)重均分子量:

m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量

W i表示相应的分子所占的重量分数

(4)Z均分子量:

(5)粘均分子量:

α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在0.5~0.9之间

(6)分布指数

:分布指数

第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学

:引发剂的分解速率

:引发剂的浓度

引发剂分解一般属于一级反应,因而分解速率为的一次方。

将上式积分得:

进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:

半衰期

(2)自由基聚合微观动力学

链引发速率:

链增长速率:

链终止速率:

式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。

推导如下:

链引发反应由以下两个基元反应组成:

式中:为初级自由基;为单体自由基。

若第二步的反应速率远大于第一步反应(一般均满足此假设),有:

引入引发剂效率后,得引发速率的计算式如下:

一般用单体的消失速率来表示链增长速率,即:

链增长反应如下式:

引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp

推得:

自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:

偶合终止:

歧化终止:

终止总速率:

式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常

数。

在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:

以及单体浓度随时间的变化关系为:

若引发剂浓度可视为常数,则上式还原为:

以上公式推导如下:

自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等,Ri=Rt

即:

解出:

再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体,Ri <

由此,用单体消失速率来表示的聚合总速率就等于链增长速率

代入引发速率的表达式得:

代入引发剂浓度随时间的变化关系得到:

积分得:

两边同时变号

当引发剂的浓度可看作常数时即:

即:

此时:

可略去高阶无穷小量得:

(3)动力学链长及平均聚合度1)不考虑链转移反应

自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:

式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。

V:动力学链长

而若已知二者所占的分率时,如偶合终止所上分率为C,歧化终止所占分率为D,则有平均聚合度的计算公式为:

以上三个公式是建立在双基终止为唯一的终止方式,及三个假设的基础上的。原因在以下推导过程中给出。

公式推导如下:

动力学链长可以由增长速率和引发速率之比求得,稳态时引发速率等于终止速率,并且在(2)中已由三个假设推得:

得:

平均聚合度的定义为大分子的总的结构单元数比去大分子的个数。

自由基聚合中结构单元数取决于链增长速率

而大分子的个数取决于终止速率(在这里提到的终止都是指双基终止)

双基偶合终止时两个自由基反应只生成一个大分子,因而除以系数2。因为双基偶合终止、歧化终止的速率都是用反应掉的自由基数来表示的。因而:

若已知双基偶合终止和歧化终止的分率,设总双基终止速率为R t ,就有

再由稳态假设,终止速率等于引发速率得

再由:

可得到:

因而以上公式推导是建立在双基终止为唯一的终止方式,及稳态假设的基础上的。

2)考虑链转移反应

由于链转移后,动力学链尚未终止,因此动力学链长应是每个初级自由基自链引发开始到活性中心真正死亡为止所消耗的单体分子数,因而在有链转移存在时动力学链长的计算式与无链转移时相同

而聚合度则要考虑链转移终止,计算式为:

式中:C X 定义为链转移常数,是链转移速率常数和增长速率常数之比,代表这两反应的竞争能力,计算式如下:

k tr,M、k tr,I、k tr,S分别代表向单体、向引发剂、向溶剂的链转移反应的速率常数。当终止方式为全部双基偶合终止时,即C=1,D=0时,上式还原成

当终止方式为全部双基歧化终止时,即C=0,D=1时,原式还原成

公式推导如下:

由平均聚合度的定义:

存在链转移反应,因而:

式中:为各种链转移速率的加和。

式中:,,分别表示活性自由基向单体,引发剂,溶剂的链移转移速率。

其中:

上式中其实为大分子的生成速率,才是真正的以自由基消耗速率来表示的终止速率,它等于引发速率(稳态)。

再由:

得到:

以及已知:

将以上方程代入的定义式得到

转成倒数,再代入:

得:

由C X的定义式得:

再由稳态假设下:

得到:

代入平均聚合度的计算式得到:

当全部为双基偶合终止时,C=1,D=0

当全部为双基歧化终止时,C=0,D=1

在一些特殊条件下,如聚氯乙烯的链转移速率远远大于其正常终止速率,并且主要向单体转移,此时

第三章自由基共聚合(Free-Radical Co-polymerization)

(1)以共聚物组成摩尔比(或浓度比)表示的微分方程

式中:,分别为单体1,2的浓度。

上式的推导用到了以下假定:

1)自由基活性与链长无关,这个等活性理论与处理均聚动力学时相同。

2)前末端(倒数第二)单元结构对自由基活性无影响,即自由基活性仅决定于末端单元的结构。3)无解聚反应,即不可逆聚合。

4)共聚物聚合度很大,引发剂和终止对共聚物组成无影响。

5)稳态,要求自由基总浓度和两种自由基的浓度都不变,除引发速率和终止速率相等外,

还要求和两自由基相互转变的速率相等。

上式推导如下:

二元共聚时有2种引发、4种增长、3种终止反应。

链引发:

式中:,分别代表初级自由基引发单体和的速率常数。

链增长:

式中:和分别表示自由基和单体反应的增长速率和增长速率常数,其余类推。链终止:

根据共聚物聚合度很大的假定,单体消耗于引发的比例很少,、的消耗速率仅取决于链增长速率,即:

两单体消耗速率比等于两单体进入共聚物的速率比

(1)

式中:为两单体进入共聚物的速率比。

对和分别作稳态假定,得:

满足上述稳态假定的要求,须有两个条件:一是和的引发速率分别等于各自的终止速率,即自由基均聚中所作的稳态假定;另一是转变成和转变成的速率相等,即=

变换得到:

代入(1)式得:

约去,并上下底同除以k 12 得:

高分子化学 公式推导

浙江大学材化学院 高分子化学公式推导 第一章绪论(Introduction)(1)分子量的计算公式: M0:重复单元数的分子量 M1:结构单元数的分子量 (2)数均分子量: N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。 x i表示相应的分子所占的数量分数。 (3)重均分子量: m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量

W i表示相应的分子所占的重量分数 (4)Z均分子量: (5)粘均分子量: α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间 (6)分布指数 :分布指数 第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学 :引发剂的分解速率 :引发剂的浓度 引发剂分解一般属于一级反应,因而分解速率为的一次方。 将上式积分得:

进而得到半衰期(引发剂分解至起始浓度一半时所需的时间) 对应半衰期时:,由前面的推导有: 半衰期 (2)自由基聚合微观动力学 链引发速率: 链增长速率: 链终止速率:

式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。 推导如下: 链引发反应由以下两个基元反应组成: 式中:为初级自由基;为单体自由基。 若第二步的反应速率远大于第一步反应(一般均满足此假设),有: 引入引发剂效率后,得引发速率的计算式如下: 一般用单体的消失速率来表示链增长速率,即: 链增长反应如下式:

引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp 推得: 自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下: 偶合终止: 歧化终止: 终止总速率: 式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常数。

高分子化学(第五版)潘祖仁版课后习题答案 (2)讲解

第一章绪论 思考题 1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平 X表示。均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n 2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。低聚物的含义更广泛一些。 3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。选择其常用分子量,计算聚合度。 聚合物结构式(重复单元) 聚氯乙烯-[-CH2CHCl-]- n 聚苯乙烯-[-CH2CH(C6H5)-]n 涤纶-[-OCH2CH2O?OCC6H4CO-]n 尼龙66(聚酰胺-66)-[-NH(CH2)6NH?CO(CH2)4CO-]n 聚丁二烯-[-CH2CH=CHCH2 -]n 天然橡胶-[CH2CH=C(CH3)CH2-]n 聚合物分子量/万结构单元分子 DP=n 特征 量/万

高分子化学试题库

1 高分子化学试题库 一、基本概念题 聚合物的化学反应天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。 缩聚反应含有两个或两个以上官能团的低分子化合物,在官能团之间发生反应, 缩去小分子的同时生成高聚物的可逆平衡反应,谓之。 乳化作用某些物质能降低水的表面张力,能形成胶束,胶束中能增溶单体,对单体液滴有保护作用,能使单体和水组成的分散体系成为稳定的难以分层的乳液,这种作用谓之。 动力学链长一个活性中心,从引发开始到真正终止为止,所消耗的单体数目,谓之。 引发剂半衰期引发剂浓度分解至起始浓度的一半所需的时间,谓之。 离子交换树脂离子交换树脂是指具有反应性基团的轻度交联的体型无规聚合物,利用其反应性基团实现离子交换反应的一种高分子试剂。 界面缩聚反应将两种单体分别溶于两种互不相溶的溶剂中,形成两种单体溶液,在两种溶液的界面处进行缩聚反应,并很快形成聚合物的这种缩聚称为界面缩聚。 阴离子聚合增长活性中心是带负电荷的阴离子的连锁聚合,谓之。 平均聚合度平均一个大分子链上所具有的结构单元数目,谓之。 阻聚剂某些物质能与初级自由基和链自由基作用生成非自由基物质,或生成不能再引发单体的低活性自由基,使聚合速率为0, 这种作用称为阻聚作用。具有阻聚作用的物质,称为阻聚剂。 平衡缩聚:缩聚反应进行一段时间后,正反应的速率与逆反应的速率相等,反应达到平衡,平衡时生成物的浓度的乘积与反应物浓度的乘积之比是个常数(称为平稳常数),用K表示。该种缩聚反应谓之。 无定型聚合物:如果聚合物的一次结构是复杂的,二次结构则为无规线团,无规线团聚集在一起形成的聚合物谓之。 反应程度P:已参加反应的官能团的物质的量(单位为mol)占起始官能团的物质的量的百分比,称为反应程度,记作P。 杂链聚合物:大分子主链中除碳原子外,还有O、S、N、P、S i和苯环等杂原子的聚合物。交替共聚物:共聚物大分子链中两种单体单元严格相间排列的共聚物。 体型缩聚的凝胶点Pc:体型缩聚中出现凝胶时的反应程度叫凝胶点,或称临界反应程度,记作Pc 。 引发剂的引发效率f:引发剂分解产生初级自由基,但初级自由基不一定都能引发单体形成单体自由基,用于引发单体形成单体自由基的百分率,称为引发剂的引发效率,记作f,(f <1=。 向大分子转移常数Cp:链自由基可能向已形成的大分子发生转移反应。转移结果,链自由基形成一个大分子,而原来的大分子变为一个链自由基。Cp=ktr,p/kp,它表征链自由基向大分子转移速率常数与增长速率常数之比。 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大,聚合物的结构酷似缩聚物。 聚合度变大的化学反应:聚合物的扩链、嵌段、交联和接枝使聚合物聚合度增大,称为聚合度变大的化学反应。 聚合物相对分子质量稳定化法:聚合物相对分子质量达到要求时,加入官能团封锁剂,使缩聚物两端官能团失去再反应的能力,从而达到控制缩聚物相对分子质量的目的的方法。乳化

《高分子化学》

《高分子化学》 教案 滁州学院材料与化学工程学院 2016年6月

第一章绪论 【教学内容】 引言 1.1高分子的基本概念 1.2聚合物的分类和命名 1.3聚合反应 1.4分子量及其分布 1.5大分子微结构 1.6线形、支链形和交联形大分子 1.7凝聚态和热转变 1.8高分子材料和力学性能 1.9高分子化学发展简史 【掌握内容】 1.高分子化合物的基本概念: 单体、高分子、聚合物、低聚物、结构单元、重复单元、单体单元、链节、主链、侧链、端基、侧基、聚合度、相对分子质量等。 2.聚合反应分类;加成聚合与缩合聚合;连锁聚合与逐步聚合。 3.聚合物分类方法。 4.常用聚合物的命名、来源、结构特征。 5.聚合物相对分子质量及其分布。 【熟悉内容】 1.系统命名法。 2.典型聚合物的名称、符号及重复单元。 【了解内容】 1.高分子化学发展历史。 2.聚合物相对分子质量及其分布对聚合物性能的影响。 【教学难点】 1.结构单元、重复单元、单体单元、链节的辨析。 2.加成聚合与缩合聚合的区别与联系;连锁聚合与逐步聚合的区别与联系。 【教学目标】 1.掌握高分子化学相关基本概念。 2.能对几对重要概念进行辨析。 3.能按规范写出正确的聚合物名称、分子式、聚合反应式。 4.树立对高分子化学学科正确的认识观。 【教学手段】 课堂讲授,辅以多媒体幻灯图片,并辅以具体实例。 【教学过程】 引言: 高分子科学是当代发展最迅速的学科之一。

高分子科学既是一门应用科学,又是一门基础科学。 高分子科学已发展成高分子化学和高分子物理两个主要分支。 高分子简介 高分子是由碳、氢、氧、硅、硫等元素组成的分子量足够高的有机化合物。之所以称为高分子,就是因为它的分子量高。常用高分子材料的分子量在一万到几百万之间,高分子量对化合物性质的影响就是使它具有了一定的强度,从而可以作为材料使用。这也是高分子化合物不同于一般化合物之处。又因为高分子化合物一般具有长链结构,每个分子都好像一条长长的线,许多分子纠集在一起,就成了一个扯不开的线团,这就是高分子化合物具有较高强度,可以作为结构材料使用的根本原因。另一方面,人们还可以通过各种手段,用物理的或化学的方法,或者使高分子与其他物质相互作用后产生物理或化学变化,从而使高分子化合物成为能完成特殊功能的功能高分子材料。 高分子材料的应用 高分子具有许多优良性能,高分子材料是当今世界发展最迅速的产业之一,目前世界上合成高分子材料的年产量已经超过1.4亿吨。 塑料、橡胶、纤维、涂料、粘合剂……几大类高分子材料已经广泛应用到电子信息、生物医药、航天航空、汽车工业、包装、建筑等各个领域。 功能高分子材料:导电高分子、高分子半导体、光导电高分子、压电及热电高分子、磁性高分子、光功能高分子、液晶高分子和信息高分子材料等近年发展迅速,具有特殊功能。 1.1高分子的基本概念 高分子化学:研究高分子化合物的合成和反应。 高分子化学 高分子物理:研究高分子的结构与性能间的关系。 高分子物理 什么是高分子? 高分子化合物、大分子化合物、高分子、大分子、高聚物、聚合物。这些术语一般可以通用。另:Macromolecules,High Polymer,Polymer 常用的高分子的分子量一般高达几万、几十万,甚至上百万,范围在104~106 由许多结构和组成相同的单元相互键接而成的大分子称为高分子或聚合物,如聚氯乙烯。 齐聚物(oligomer):由几个或十几个单元相互键接而成;不能称为聚合物。 均聚物:由一种单体聚合而成的聚合物。 共聚物:由两种或两种以上单体共聚而成的聚合物。 高分子也叫高分子化合物,是指分子量很高并由共价键连接的一类化合物。 1.由一种结构单元组成的高分子 一个大分子往往是由许多相同的、简单的结构单元通过共价键重复连接而成。 例如:聚苯乙烯 缩写成: 合成聚合物的起始原料称为单体(Monomer)。

高分子化学概念总结

高分子化学试题 目录 高分子化学试题 (1) 一、名词解释 (1) 第一章绪论(Introduction) (1) 第二章自由基聚合(Free-Radical Polymerization) (4) 第三章自由基共聚合(Free-Radical Co-polymerization) (9) 第四章聚合方法(Process of Polymerization) (11) 第五章离子聚合(Ionic Polymerization) (12) 二、填空题 (15) 一、名词解释 第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。

聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量 (Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index) :重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。

高分子化学常用公式集合

高分子化学公式推导浙江大学 第一章绪论(Introduction)(1)分子量的计算公式: M0:重复单元数的分子量,DP为重复单元数 M1:结构单元数的分子量, Xn为结构单元数 (2)数均分子量:定义为某体系的总质量m被分子总数所平均. N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。 x i表示相应的分子所占的数量分数。 (3)重均分子量:i聚体的分子量乘以其重量分数的加和. m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量

W i表示相应的分子所占的重量分数 (6)分布指数 :分布指数 第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学 :引发剂的分解速率:引发剂的浓度 引发剂分解一般属于一级反应,因而分解速率为的一次方。 将上式积分得: 进而得到半衰期(引发剂分解至起始浓度一半时所需的时间) 对应半衰期时:,由前面的推导有: 半衰期 (2)自由基聚合微观动力学

链引发速率: 链增长速率: 链终止速率: 式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。 推导如下: 链引发反应由以下两个基元反应组成: 式中:为初级自由基;为单体自由基。 若第二步的反应速率远大于第一步反应(一般均满足此假设),有:

引入引发剂效率后,得引发速率的计算式如下: 一般用单体的消失速率来表示链增长速率,即: 链增长反应如下式: 引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等, kp1=kp2=kp3=…kp x=kp 推得: 自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

《高分子化学教程》习题答案(第三版)

《高分子化学教程》习题答案(王槐三第三版) 第1章 1、解释下列概念 (1) 高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。 (2) 重复结构单元:将大分子链上化学组成和结构可重复的最小单位称为重复结构单元(在高分子物理里也称为链节)。 (3) 结构单元:由1个单体分子通过聚合反应而进入聚合物重复单元的那一部分叫结构单元。 (4) 平均相对分子质量:高分子化合物中同系物相对分子质量的统计平均值。 (5) 平均聚合度:所有大分子链上所含重复结构单元数量的统计平均值。 (6) 多分散性和分散指数: 多分散性是指聚合物材料中所含大分子同系物的相对分子质量不相等的这一特性。 分散指数是指重均相对分子质量与数均相对分子质量的比值。 2、写出合成下列聚合物的聚合反应方程式并标出结构单元 (1) 涤纶 n HOOC COOH n HO(CH 2)2OH (2n -1)H 2O HO[OC COO(CH 2)2O]n H += +结构 结构单元 单元

(2) 尼龙-610 n HOOC COOH n H 2N(CH 2)6NH 2(2n -1)H 2O HO [ OC(CH 2)8COHN(CH 2)6NH ]+= +(CH 2)8n H 结构单元 结构单元 (3) 有机玻璃 n CH 2CH 3 COOCH 3 C CH 2 CH 3C 3 =[]n CH 2 CH 3C 3结构单元: (4) 聚乙烯醇 n CH 2 = CHOCOCH 3 CH 2 CH []OCOCH 3 n 水解 聚合 []CH 2 CH OH n (5) 环氧树脂 (见P8) (6) 聚碳酸酯 HO CH 3 CH 3 C Cl C O Cl H O C 3 CH 3 O C Cl + (2n - 1)HCl = +n n []OH n O (7) 聚己二氨基甲酸丁二酯 n OCN(CH 2)6NCO + n HO(CH 2)2OH = []OCNH(CH 2)6NHCOO(CH 2)4O n (8) 维尼纶 []CH 2 CH OH n + CH 2O CH 2CH CH 2CH CH 2CH O CH 2 O OH (9) 丁腈橡胶

高分子化学中聚合度的计算

高分子化学中聚合度的计算 1、自由基聚合 2、自由基共聚 3、乳液聚合 4、阳离子聚合 5、阴离子聚合 6、线形缩聚 (一)线型缩聚动力学: (1)不可逆条件下 a 、自催化聚合(无外加酸) 积分得: p t 2 2p R k 2]M [k =ντν]M [k p =i p i p n R N n ]M [k r r x ==Xn 1=k P k t [M]+C M +C S [M][S]]C []M [n n ]M []M [n X ==-N N X 0n =大分子数结构单元数目=P X n -11=3 k C dt dC =-t k 2C 1C 120 2=-

由 C = Co (1-P),代入上式 b 、外加酸催化 积分得: 将 C = Co (1-P ) 代入上式 (2)平衡条件下 a 、水未排出时(密闭体系) 根据反应程度关系式 0N N 1P -=1t k C 2) P -1(1202+=1 t k C 2)X 202n +(=2 C `k dt dC =-t `k C 1C 10 =-1t C `k P 110+=-1 t C `k X 0n +=()2121C 1k C k dt dC ----=1C 1C C C N N N P 0000---===P 1C -=∴

所以 正、逆反应达到平衡时,总聚合速率为零,则 解得 b 、水部分排出时(非密闭体系) 根据反应程度关系式 所以 平衡时 ()[]K P P 1k dt dP 221--=()0K P P 122=--()0K KP 2P 1K 2=+--1K K 1K K K P +==--1K 1 K K 11P 11X n +===+--()W 121n C 1k C k dt dC ----=1C 1C C C N N N P 0000---===P 1C -=∴()[] K n P P 1k dt dP w 21--=()K n P P 1W 2=-

高分子化学潘祖仁版课后习题答案

第一章 绪论 计算题 1.求下列混合物的数均分子量、质均分子量和分子量分布指数。 =10g ,分子量 =30 000 ; b 、组分 B:质量=5g ,分子量 =70 000 解:数均分子量 n i M i g/M j ) 质均分子量 m ,M i M w w i M i m i 10 30000 5 70000 1 100000 46876 10 5 1 分子量分布指数 M w / M n =46876/38576 = 第2章 缩聚与逐步聚合 计算题 2.羟基酸HO-(CH) 4-COOH t 行线形缩聚,测得产物的质均分子量为 18,400 g/mol -1,试计算:a.羧基已经 醌化的百分比 b. 数均聚合度 c. 结构单元数X n 解:已知 M w 18400, M 0 100 根据X W 匹和 X W 1一p 得:p=,故已酯化羧基百分数为% M 0 1 P M w 1 P,M n 9251 M n M n 9251 X n 92.51 M 0 100 a 、组分A :质量 c 、组分C:质量 =1g ,分子量 =100 000 m i 10 5 1 10/30000 5/70000 1/100000 38576

8.等摩尔的乙二醇和对苯二甲酸在280C下封管内进行缩聚,平衡常数K=4,求最终X n。另在排除副产物水的条件下缩聚,欲得X n 100,问体系中残留水分有多少? 1 . 解: X n K 1 3 1 p n w4* 10 4mol /L 9.等摩尔二元醇和二元酸缩聚,另加醋酸% p=或时聚酯的聚合度多少? 解:假设二元醇与二元酸的摩尔数各为1mol,则醋酸的摩尔数为。N a=2mol,NL=2mol,N b 0.015mol N b 2N b 2 2* 0.015 0.985 当p=时, 1 r 1 r 2rp 1 0.985 1 0.985 2* 0.985* 0.995 79.88 当p=时, X n 1 r 1 r 2rp 1 0.985 1 0.985 2* 0.985* 0.999 116.98 14题 18.制备醇酸树脂的配方为季戊四醇、邻苯二甲酸酐、丙三羧酸[C3H(COOH3],问能否不产生凝胶而反

高分子化学第五版资料

名词解释: 1、溶胶效应→当转化率达到一定数值时,由于粘度的增加而导致聚合速度迅速增大的现象叫做凝胶效应 2、凝胶点→多官能团单体聚合到某一程度,开始交联,气泡也难以上升,出现凝胶化现象,这时所对应的反应程度叫做凝胶点 3、半衰期→引发剂分解至其实浓度一般所需要的时间 4、引发剂效率→引发聚合的引发剂占引发剂分解或者消耗总量的分数 5、自由基寿命→自由基从产生到终止所经历的时间 5、动力学连场→每一个单体从链引发到链终止所消耗的单体分子数 6、均聚物→有一种单体引发聚合的聚合物 7、官能度→一分子物质能参与反应的官能团数目 8、立构规整度→立构规整聚合物占总聚合物的百分数 填空: 1、聚合反应按聚合机理可分为逐步聚合和连锁聚合,按单体结构变化可分为缩聚反应、加聚反应和开环聚合。其中属于连锁反应的又分为自由基聚合、阴离子聚合和阳离子聚合。连锁反应的基元反应包含链引发、链增长、(链转移)、链终止。 2、聚合物按主链结构可分为碳链聚合物、杂链聚合物、半有机聚合物、(无机聚合物)。 3、有机合成材料包含橡胶、纤维、树脂三大类。 4、著名的化学家 Carothers 提出了凝胶点理论,Ziegler-Natta 发现了金属络合催化体系。 5、甲苯和甲醛进行共聚的时候甲苯的聚合度为 3 。 6、共聚中影响聚合度的因素有反应程度、平衡常数和集团数比,如果集团数比不相同时一 般通过控制集团数比来控制预聚合度 7、线型缩聚通过外加酸催化时平均聚合度和时间的关系为X k ' Ct 1 8、逐步聚合的实施方法有:溶液聚合、熔融聚合、界面聚合和固相聚合,其中酯交换法合 成聚氨酯和涤纶聚酯的合成时用熔融聚合的方法,光气法合成聚氨酯应当用界面聚合。 9、自由基聚合从微观角度看其聚合特点是:慢引发、快增长、速终止。故其控速步骤是链 引发阶段。 10、聚合反应中所应用的引发剂可分为偶氮类、有机过氧类和无机过氧类三种。 fk 11、自由基聚合中聚合速率与引发剂浓度之间的关系为:R k k I M,此关系 成立的前提是做出了聚合度比较大、等活性理论和稳态假设三个假定。 ln 2 12、自由基聚合反应中一引发剂的分解速率常数为k d,则这个引发剂的半衰期t1/2= ,一 k 般选取引发剂的时候,其半衰期应在聚合温度下达到 10h 左右。 13、自由基共聚会生成交替共聚、无规共聚、嵌段共聚和接枝共聚四中类型聚合物。 14、自由基共聚中影响单体竞聚率的因素有溶剂、温度、压力等。对竞聚率的测定方法有曲线拟合法、直接交叉法和截距斜率法三种。 15、聚合反应中常用的聚合方法有溶液聚合、本体聚合、乳液聚合和悬浮聚合四种,其中乳液聚合的组成有:单体、水溶性引发剂、水、乳化剂;悬浮聚合的组成包含:单体、油溶性引发剂、水和分散剂。四类聚合方法中在能提高聚合速率的同时提高聚合度的是乳液聚合。

高分子化学的认识与感悟

高分子化学的认识与感悟 摘要:高分子化学是研究高分子化合物的合成、化学反应的一门学科,同时还涉及聚合物的结构和性能。本文是讲述我在学习了高分子化学这门课程之后对这门课程的掌握、理解,以及我感兴趣的高分子化学课程中的聚合方法的理解。 关键字:高分子化学高分子聚合物聚合方法 一.我对高分子化学的掌握 1.什么是高分子化学 高分子化学是研究高分子化合物(简称高分子)合成(聚合)和化学反应的一门科学;同时还会涉及聚合物的结构和性能。同时也涉及高分子化合物的加工成型和应用等方面。 高分子也成聚合物(或高聚物),有时高分子可指一个大分子,而聚合物则指许多大分子的聚集体。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。 2.高分子的分类和命名 2.1高分子分类 从不同的专业角度,对高分子进行多种分类,例如按来源、合成方法、用途、热行为、结构等来分类。 在高分子课程学习中,我们对高分子的分类是按有机化学和高分子化学角度来考虑,是按照主链结构将高分子分成三大类: ①碳链聚合物:主链完全有碳原子组成,比如绝大部分的烯类和二烯类的加 成聚合物。 ②杂链聚合物:主链除了碳原子外,还有氧、氮、硫等杂原子,比如聚醚、 聚酯、聚酰胺等缩聚物和杂环开环聚合物以及大多数天然高分子。 ③元素有机聚合物:主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、 磷等原子组成,但多半是有机基团,比如甲基、乙基、乙烯基、苯基等。 如果主链和侧基均无碳原子,则称物价高分子,像硅酸盐之类。 2.2高分子命名 在有机化学中我们就学过聚合物的命名,在高分子化学中聚合物的命名跟我们以往的命名没有什么区别,在这里命名方法主要分两类: ①单体来源命名法:就是聚合物名称以单体名为基础。比如乙烯的聚合物我 们称为聚乙烯。 ②结构单元命名法:就像有机化学里一样,先确定重复单元结构,排好单元 次序,命名。最后在名字前加一个聚就可以了。 3.聚合反应与聚合方法 3.1聚合反应 在我们学习高分子化学过程中,聚合反应贯穿了我们整个课本,从缩聚和逐步聚合到自由基聚合、自由基共聚合、离子聚合、配位聚合、开环聚合等,聚合反应中有涉及到聚合物的分子量和分布还有聚合物的大分子的结构、它们的链状和聚合物的聚集态、热转变之类的。我们知道聚合反应有很多种类型,同样我们可以将聚合反应分类。

高分子化学(Beta)

1.概念 名词解释 高分子化合物:由多种原子以相同的、多次重复的结构单元通过共价键连接起来的,分子量是104~106的大分子的化合物。 单体:通过化学反应制备出高分子化合物的原料统称为单体。 齐聚物:低相对分子质量的聚合产物,如二聚体、三聚体……无论是环状或链状的统称齐聚物。 聚合物:高相对分子质量的聚合物,又称高聚物、高分子、大分子。 结构单元:构成高分子链并决定高分子结构以一定方式连接起来的原子组合。 重复单元:聚合物中化学组成相同的最小单位,又可称为链节。 单体单元:元素组成和排列与单体相同,仅电子结构发生变化的结构单元。 聚合度(D P):结构单元的数目。 线型高分子:线型高分子是由长的骨架原子组成的,也可以有取代侧基。通常可以溶解在溶剂中,固态时可以是玻璃态的热塑性塑料,有的聚合物在常温下呈柔顺性材料,也有的是弹性体。 支化高分子:由线型高分子链中派生出的一些支链,其组成的结构单元和主链是相同的高分子化合物。其结晶倾向要降低,溶液的粘度不同。 交联高分子:高分子链间由化学键结合所生成交联或网状的高分子,又称体型高分子。 均聚物:由一种结构单元通过共价键连接起来构成的聚合物。 共聚物:由两种或两种以上单体聚合而成的聚合物。(无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物。) 高分子共混物:两种或两种以上聚合物通过机械或溶液混合在一起的混合物。 官能团:在单体分子中,把能参加反应并能表征出反应类型的原子团。 官能度(f):一个分子中能参加反应的官能团数称为官能度。缩聚反应的首要条件是反应单体的官能度必须≥2。 反应程度(P):参加反应官能团数占起始官能团数的百分率。其值大于0.99时才有高聚物生成。也表示聚反应达到一定时刻时,参加反应的a官能团的百分数,即x聚体有生成的概率P x。 体型缩聚:能形成体型结构缩聚物的缩聚反应。习惯上把可溶可熔的线型聚合物称为热塑性聚合物,把不溶不熔尺寸稳定的体型聚合物称为热固性聚合物。 凝胶化:当体型缩聚进行到一定程度时,体系的粘度突然增大,出现凝胶的现象。此时既有凝胶(不溶不熔)又有溶胶(可溶可熔)。

高分子化学课程设计

材料合成工艺学课程设计

材料合成工艺学课程设计任务书 一、本课程设计的性质、任务与目的 本课程是材料科学与工程专业的一门实用性和技术性很强的专业课程。学习本课程的目的是使学生在学完材料科学与工程专业的有关课程后,尤其是在学完《材料合成工艺学》这门课程后,综合运用3年所学的全部知识,进行工厂的初步设计。通过专业课程设计使学生掌握应具备的基本设计技能。待学生走上工作岗位后既能担负起工厂技术改造的任务,又能进行车间或全厂的工艺设计。 本课程任务是: 1.撰写简要设计说明书。 2.绘制物料流程示意图一张。 二、课程设计的主要内容 (一)设计方案选择,对给定或选定的设计方案进行简要论述。 (二)工艺计算,应完成工艺流程各过程的物料衡算,能量衡算。绘制物料流程示意图,编写物料平衡表及热量平衡表。 (三)主要设备设计,在满足工艺条件的前提下,进行主要设备的选型及结构设计。 (四)典型辅助设备设计选型,包括典型设备主要结构尺寸计算和设备型号规格的选定。 (五) 车间布置。 三、设计说明书的基本要求 要求包括以下几个内容: 1)封面 2)任务书 3)目录 4)流程和方案的说明及论证

5)设计计算与说明 6)设备选型及设计 7)车间布置 8)对设计的评述及结论 9)参考文献目录 四、课程设计题目 题目30 组分 单体稳定剂乳化剂增塑剂引发剂pH调节剂介质醋酸乙 烯酯 聚乙 烯醇 OP-10 邻苯二甲 酸二丁酯 过硫 酸钾 碳酸氢钠蒸馏水 用量,重量(份)150 5.4 1.1 10.9 0.3 0.3 100 生产规模:2000t/a 生产时间:300d/a 间歇操作,聚合釜每天2批,其他原料配制每天1批。 相关技术指标 项目内容技术指标项目内容技术指标 过滤器过滤损失率2%(质量)过硫酸钾溶液浓度20%(质量) 碳酸氢钠溶液浓度10%(质量)聚乙烯醇溶液浓度30% 引发剂效率f 0.8 质量标准,原料均视为纯物质。

(完整版)(含答案)高分子化学练习题

高分子化学练习题 一、名词解释 1、重复单元在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 2、结构单元高分子中多次重复的且可以表明合成所用单体种类的化学结构。 3、线型缩聚2官能度单体或2-2体系的单体进行缩聚反应,聚合过程中,分子链线形增长,最终获得线型聚合物的缩聚反应。 4、体型缩聚有官能度大于2的单体参与的缩聚反应,聚合过程中,先产生支链,再交联成体型结构,这类聚合过程称为体型缩聚。 5、半衰期物质分解至起始浓度(计时起点浓度)一半时所需的时间。 6、自动加速现象聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。 7、竞聚率是均聚和共聚链增长速率常数之比,r 1=k11/k12,r 2 = k22/k21,竞聚 率用来直观地表征两种单体的共聚倾向。 8、悬浮聚合悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体,水、油溶性引发剂、分散剂四部分组成。 9、乳液聚合是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 10、接枝共聚物聚合物主链只由某一种结构单元组成,而支链则由其它单元组成。 二、选择题 1、聚酰胺反应的平衡常数为400,在密闭体系中最终能够达到的反应程度为(B ) A. 0 .94 B. 0.95 C. 0.96 D. 0.97 2、在线型缩聚反应中,成环反应是副反应,其中最易形成的环状化合物是(B ) A. 3,4元环 B. 5,6元环 C. 7元环 D. 8-11元环 3、所有缩聚反应所共的是( A ) A. 逐步特性 B. 通过活性中心实现链增长 C. 引发率很快 C. 快终止 4、关于线型缩聚,下列哪个说法不正确?( B )

高分子材料化学重点知识点总结

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

(完整版)高分子化学公式

第一章绪论(Introduction)(1)分子量的计算公式: M0:重复单元数的分子量 M1:结构单元数的分子量 (2)数均分子量: N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。x i表示相应的分子所占的数量分数。 (3)重均分子量: m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量 W i表示相应的分子所占的重量分数

(4)Z均分子量: (5)粘均分子量: α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在0.5~0.9之间 (6)分布指数 :分布指数 第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学 :引发剂的分解速率 :引发剂的浓度 引发剂分解一般属于一级反应,因而分解速率为的一次方。 将上式积分得:

进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有: 半衰期 (2)自由基聚合微观动力学 链引发速率: 链增长速率: 链终止速率:

式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。 推导如下: 链引发反应由以下两个基元反应组成: 式中:为初级自由基;为单体自由基。 若第二步的反应速率远大于第一步反应(一般均满足此假设),有: 引入引发剂效率后,得引发速率的计算式如下: 一般用单体的消失速率来表示链增长速率,即: 链增长反应如下式:

引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp 推得: 自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下: 偶合终止: 歧化终止: 终止总速率: 式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常

高分子化学_余木火_电子教案

材料科学与工程学院 高分子化学 教案 任课教师:复合材料系余木火 2006年8月

课程基本信息 课程名称高分子化学课程编号110821学分数 3 学时数48授课班级高分子材料与工程专业2004级 课程性质()通识教育(√)学科基础()专业方向(√)必修()选修考核方式(√)闭卷考()开卷考()小论文()其它____________ 总评成绩平时成绩(20)%+考核成绩(80)% 教材名称《高分子化学》 使用教材 主编余木火出版社及出版日期中国纺织出版社,2001 《高分子化学》,潘祖仁编,化学工业出版社 参考资料 《聚合反应原理》奥迪安编,北京科学出版社 《高分子化学》复旦大学高分子系高分子教研室,复旦大学出版社 《高分子化学教程》王槐三,寇晓康编北京科学出版社

《高分子化学》教学大纲 Polymer Chemistry 一、基本信息 课程名称:高分子化学 课程代码:【110821】 课程学分:【3】 总学时数:【48】 面向专业:【高分子材料与工程专业】 课程性质:【学科基础必修】 开课院系:【材料科学与工程学院高分子材料与工程系】 使用教材:《高分子化学》,余木火主编,中国纺织出版社,1999年 先修课程:【有机化学(1)100921(2)、有机化学(2)1009212(2)、物理化学(1)100901(2)、物理化学(2)100902(2)】 并修课程:【高分子物理110812(3.5)】 二、课程简介 高分子化学是研究高分子化合物合成和反应的一门科学,是高分子材料与工程专业学生必修的一门学科基础课。它以无机化学、有机化学、物理化学和分析化学等四大化学为基础,同时也为后继的专业课程打下必要的理论基础。课程主要学习有关高分子化合物的基本概念,高分子化合物合成的基本原理、反应动力学、聚合方法,以及合成高分子和天然高分子的化学反应等内容。 三、选课建议 该课程要求学生已熟练掌握有机化学、物理化学知识,建议本科二年级以上选修。 四、课程任务和教学目标 高分子化学是研究高分子化合物合成和反应的一门科学,是高分子科学与工程专业学生必修的一门学科基础课程。它以无机化学、有机化学、物理化学和分析化学等四大化学为基础,同时也为后继的专业课程打下必要的理论基础。 教学时将在课堂教学、课外活动及高分子化学教学网页上对高分子科学的研究前沿及其研究热点进行深入浅出的介绍,使同学们能通过本课程的学习了解高分子科学的研究动态。 作为工科学生的专业基础课,在课程教学中将对高分子工业及其产业经济进行深入浅出的介绍,使同学们建立以经济的角度考虑材料工业生产技术的基本思考方式。 教学中将通过多种多样的教学方式,在专业上培养同学们牢固地掌握高分子化学的基础知识,学会提出问题、分析问题和解决问题的思路和方法,提高解决问题的能力。

相关文档
最新文档