基于小波变换的边缘检测技术(完整)

基于小波变换的边缘检测技术(完整)
基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义

引言

在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。

由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。

经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。

小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征

人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。

§1.2图像边缘的定义

边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

第二章 传统的边缘检测算子

§2.1传统的边缘检测算子

边缘检测的实质是采用某种算法来提取出图像中对像与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。而灰度变化的情况可以用图像灰度分布的梯度来反映,所以我们可以用局部图像微分技术来获得边缘检测算子。以下对比较经典的边缘检测算子进行了理论分析,并做出了比较和评价。 我们记为(,)f f f x y i j x y

???=

+??图像的梯度,(,)f x y ?中包含局部灰度的变化信息。

记: (,)e x y = (2.1) 为梯度(,)f x y ?的幅度,(,)e x y 可以用做边缘检测算子。

常用的边缘检测方法有:差分边缘检测,Roberts 边缘检测算子,Sobel 边缘检测算子,Prewitt 边缘检测算子,Robinson 边缘检测算子,Lapalce 边缘检测算子等等。

§2.2 差分边缘检测方法

利用像素灰度的一阶导数算子在灰度迅速变化处得到高值来进行奇异点的检测。它在某一点的值就代表该点的“边缘强度”,可以通过对这些值设置阈值来进一步得到边缘图像。但用差分边缘检测必须使差分的方向与边缘方向垂直,这就需要对图像的不同方向都进行差分运算,增加了实际运算的繁琐性。一般为垂直边缘、水平边缘、对角线边缘检测:

图2-1 差分算法检测边缘的方向模板

§2.3 Roberts 边缘检测算子

Roberts 边缘检测算子根据任意一对互相垂直方向上的差分可以用来计算梯度的原理,采用对角线方向相邻两像素之差,即:

他们的卷积算子为:10:01x f ?????-?? 01:10y f ?????-??

有了x f ?,y f ?之后,很容易计算出Roberts 的梯度幅值(,)R i j ,适当的取门限TH ,作如下判断:(,)R i j TH >,(,)i j 为阶跃边缘点。{}(,)R i j 为边缘图像。

Roberts 算子采用对角线方向相邻两像素之差近似梯度幅值边缘检测。检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。

图2-2:用Roberts算子进行边缘检测的Lena图与原图像

§2.4 Sobel边缘检测算子

对数字图像{}

f i j的每一个像素,考察它上,下,左,右邻点灰度的

(,)

加权差,与之接近的邻点的权大。据此,定义Sobel算子如下:

卷积算子为:

图2-3:Sobel边缘检测算子方向模板

适当的取门限TH,作如下判断:(,),(,)

>为阶跃边缘点,为

s i j TH i j

{}

s i j边缘图像。

(,)

Sobel算子很容易在空间上实现,Sobel边缘检测器不但产生较好的边缘检测效果,而且受噪声的影响也比较小。当使用大的领域时,抗噪声特性会更好,但这样做会增加计算量,并得出的边缘也比较粗。

Sobel算子利用像素点上下,左右邻点的灰度加权算法,根据在边缘点出达到极值这一现象进行边缘的检测。Sobel算子对噪声具有平滑作用,提供较为精确的边缘方向信息,但它同时会检测出许多的伪边缘,边缘定位精度不高。当对精度要求不是很高时,是一种较为常用的方法。

图2-4:用Sobel 算子进行边缘检测的Lena 图与原图像 §2.5 Prewitt 边缘检测算子

Prewitt 算子是一种边缘样板算子。这些算子样板由理想的边缘子图像构成。依次用边缘样板去检测图像,与被检测区域为相似的样板给出最大值。用这个最大值作为算子的输出值(,)P i j ,这样就可以将边缘像素检测出来。定义Prewitt 边缘算子模板如下:

图2-5: Prewitt 边缘检测算子模板

8个算子样板对应的边缘方向如下图所示:

图2-6:样板方向

适当取门限TH,作如下判断:(,),(,)

P i j

为阶跃边缘点。(,)

P i j TH i j

为边缘图像。

图2-7:用Prewitt算子进行边缘检测的Lena图与原图

§2.6 Robinson 边缘检测算子

Robinson 边缘检测算子也是一种边缘样板算子,其算法和Prewitt边缘检测算子相似,只是8个边缘样板不同。如下所示:

图2-8:Robinson 边缘检测算子模板

§2.7 Laplace 边缘检测算子

Laplace 算子是二阶微分算子,是一个标量,属于各向同性的运算,对灰度突变敏感。在数字图像中,可以用差分来近似微分运算,(,)f i j 的Laplace 算子为

Laplace 算子的二种估算模板:

图2-9:Laplace 的两种估算模板

对阶跃边缘,二阶导数在边缘点出现零交叉,即边缘点两边二阶导函数取异号。Laplace 算子就是据此对{}(,)f i j 的每个像素取它关于x 方向和y 方向的二阶差分之和,这是一个与边缘方向无关的边缘检测算子。而对屋顶状边缘,在边缘点的二阶导数取极小值,这时对{}(,)f i j 的每个像素取它关于x 方向和y 方向的二阶差分之和的相反数。

Laplace 算子有两个缺点:其一是边缘的方向信息丢失,其二是Laplace 算子为二阶差分,双倍加强了图像中的噪声影响:优点是各向同性,即具有旋转不变性。因为在微分学中有:一个只包含偶次阶导数和取偶次幂的奇次阶导数的线形组合算子,一定是各向同性的。

Laplace 算子实际二阶微分算子,利用边缘点处二阶导函数出现零交叉

原理检测边缘。不具有方向性,对灰度突变敏感,定位精度高,不但检测出了绝大部分的边缘,同时基本上没有出现伪边缘。但他的检测也存在一些缺点,如丢失一些边缘,有一些边缘不够连续,对噪声敏感且不能获得边缘方向的功能信息。

图2-10:用Laplace算子进行边缘检测的Lena图与原图

§2.8 检测结果与结论

通过对以上介绍的几种边缘检测算子的算法公式和检测的结果可以看出,Roberts算子简单直观,但边缘检测图里存在有伪边缘;Sobel算子、Prewitt算子和Robinson的检测结果图能检测出更多的边缘,但也存在有伪边缘且检测出来的边缘线比较粗,并放大了噪声;Lapalce算子和改进的Laplace算子利用二阶差分运算来进行检测,但不可以检测出较多的边缘,而且还在很大程度上消除了伪边缘的存在,定位精度高。但受噪声的影响比较大。

第三章小波变换在图像边缘检测中的应用

§3.1 小波思想的引入

虽然边缘提取已有梯度算子、Laplace算子、Sobel算子等方法,但这些算法都没有自动变焦的思想。而事实上,由于物理和光照等原因,每幅图像中的边缘通常产生在不同的尺度范围内,形成不同类型的边缘,这些信息是未知的。另外图像中还存在有噪声,因此,根据图像特性自适应地正确检测出图像的边缘是非常困难的。可以肯定,用单一尺度的边缘算子不可能检测出所有的边缘,同时,为避免在滤除噪声是影响边缘检测的正确性,用多尺度的方法检测边缘越来越引起人们的重视。由于小波变换具有良好的时频局部化特性及多尺度分析能力,在不同尺度上具有“变焦”的功能,适合于检测突变信号。是检测突变信号强有力的工具,得到了广泛的应用。

§3.1.1小波变换在图像边缘检测中的优势

用小波变换对信号做多分辨率分析非常适合提取信号的局部特征。这是因为小波变换的尺度因子和平移因子构成了一个滑动的时间-频率窗,小尺度下的变换系数对应信号的高频分量,大尺度下的变换系数对应信号的低频分量。于是信号被分解成各个频率下的分量,这样就可以检测对应不同频率的信号局部特征。而图像中的突变信息和噪声都属于高频信号,可以利用小波变换后的高频分量进行去噪和得到边缘图像。

由于各种原因,图像常常受到随机噪声的干扰。经典的边缘检测方法由于引入了各种形式的微分运算,从而必然引起对噪声的极度敏感,在其上执行边缘检测的结果常常是把噪声当作边缘点检测出来,而真正的边缘

也由于受到噪声干扰而没有被检测出来。因而对于有噪声图像来说,一种好的边缘检测方法应具有良好的各种噪声抑制能力,同时又有完备的边缘检测保持特性。

小波变换可以提供一种很好的去噪方法。当取小波函数为平滑函数的一阶导数时,信号的小波变换的模的信号突变点出取局部极大值,边缘与噪声的区别在于,随着尺度的增加,噪声引起的小波变换的模的极大值迅速减小;而边缘的滤波模值不随尺度的变化,故小波变换可以在低信噪比的

2j 上每一个在位置上信号中检测噪声和边缘。通过计算在尺度2j和尺度1

最接近,且具有相同符号的系数最大值,我们可以找出不同尺度下小波幅度的变化,消除那些系数极值孤独随尺度减小而小波系数Mf在平均值上增加的序列。这些极值对应图像噪声奇异点,从而就得到了图像边缘的真正奇异点。

同时,边缘点具有较强的方向性。即在边缘点上,其滤波值表现为较强的模值,而在垂直边缘方向上,滤波模值较小;而噪声点在各个方向的滤波模值相似。因而,在对信号进行不同方向的滤波时,边缘点滤波模值会有较强与较弱的差异,而噪声点滤波模值不会产生过大的差异,因此可以通过构造任意方向的小波滤波器来检测出奇异信号和噪声点。对于很大一类图像来说,急剧变化点所对应的边缘在图像平面内是一些规则的曲线,沿着这些曲线,图像在一个方向是奇异的,而和该方向相垂直的方向却是平滑的。由于实际得到的值是一些离散点,为了检测出边缘,可以利用沿曲线方向梯度矢量的模变化平缓特点以及不同尺度下梯度矢量幅角的信息,将位置及幅角十分接近的模极大值点连接起来形成模极大值链,这些链构成了图像的边缘。

§3.1.2小波变换定义及特点

小波(wavelet),即小区域的波,是一种特殊的长度有限、平均值为0的波形。它有两个特点:一是“小”,即在时域都具有紧支集或近似紧支集;尺度二是正负交替的“波动性”,也即直流分量为零。我们可以用小波和构成傅立叶分析基础的正弦波做一个比较,傅立叶分析所用的正弦波杂时间上没有限制,从负无穷到正无穷,但小波倾向于不规则也不对称。傅立叶分析是将信号分解成一系列不同频率的正弦波的叠加,同样小波分析是将信号分解成一系列小波函数的叠加,而这些小波函数都是有一个母小波函数经过平移与尺度伸缩得来的。我们知道,用不同规则的小波函数来逼近尖锐变化的信号显然要比光滑的正弦曲线要好,同样,信号局部的特性用小波函数来逼近显然要比光滑的正弦函数来逼近要好。

小波变换的定义是把某一被称为基本小波(也叫母小波)的函数()t ψ做位移τ后,再在不同尺度α下与待分析的信号()x t 做内积:

*(,)()()t WTx a x t dt

a ττψ-=?, 0a > (3.1

等效的频域表示是:

*(,)()()ja x WT a X a e d ωτωωω∞

-∞=ψ (3.2

可以这样理解上面表达式的意义:打个比喻我们用镜头观察目标()x t (即待分析信号),()t ψ代表镜头所起的作用(例如滤波或卷积)。τ相当于使镜头对于目标平行移动,a 的作用相当于镜头向目标推进或远离。由此可见小波变换有以下特点:

● 有多分辨率,也叫多尺度的特点,可以有粗及细地逐步观察信号。

● 可以看成用基本频率特性为()ψω的带通滤波器在不同尺度a 下对信号滤波。由于傅立叶变换的尺度特性可知这组滤波器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。注意,a 越大相当频率越低。

● 适当的选择基小波,使()ψω在频域上也比较集中,就可以使在WT 在时、频域都具有表征信号局部特征的能力,因此有利于检测信号的瞬态或奇异点。

正是由于上述特性,有人把小波变换称为分析信号的数学显微镜。

如上所述,小波分析的一个重要优点就是能够分析信号的局部特征。利用小波分析可以检测出许多其他分析方法忽略的信号特性,例如,信号的趋势,信号的高阶不连续点、自相似特性。

总之,小波变换作为一种数学理论和方法在科学技术和工程界引起了越来越多的关注和重视。

§3.2连续小波变换

§3.2.1连续小波的定义及其变换

定义3 . 1 设2()()t L R ψ∈,其傅立叶变换为()ωψ满足允许条件

(Admissible Condition ,完全重构条件或恒等分辨条件)

2

()R C d ωωωψψ=<∞

? (3.3)

我们称为一个基本小波或母小波(Mother Wavelet )。将母函数按此方式经平移和伸缩后得到函数族:

,()a b t b t a -??ψ=ψ ??? ,,0a b R a ∈≠ (3.4) 称其为一个小波序列或连续小波。其中a 为伸缩因子,b 为平移因子。 我们首先来看看连续小波在相空间中的局部化格式。假定ψ是双窗函数,记,1a b a

?ψ=?ψ 200()d ωωωωω±≤±≤∞=ψ? (3.5

由于正频和负频讨论类似,只对正频进行讨论。注意到

,()()

ib a b a ωωω-ψ=

ψ (3.6

因此,a b ψ的正频窗口中心为0,(0)b a a ω+??> ??

?其时窗宽,a b a ?ψ=?ψ,频窗宽,1a b a

?ψ=?ψ。由此可以看出,b 仅仅影响窗口在相平面时间轴上的位置,而a 不仅仅影响窗口在频率轴上的位置,也影响窗口的形状。当a 越小时,时宽越小,而频宽越大,且,a b ψ窗口中心向ω增大方向移动,这表明高频时连续小波的时间分辨率较高,频率分辨率较低;反之,当a 越大时,时宽越大,而频宽越小,,a b ψ窗口中心向ω减小方向移动,这表明低频时连续小波的时间分辨率较差,频率分辨率较高。这一特性正好符合

低频信号变化缓慢而高频信号变化迅速的特点,决定了小波变换在突变信号处理上的特殊地位及功能。在这个意义上,小波变换被誉为数学显微镜。对于任意函数2

()()

f t L R

∈的连续小波变换为

1/2

,

(,),()

f a b R

t b

W a b f a f t dt

a

--

??

=ψ=ψ ?

??

?

(3.7

其重构公式(逆变换)为

2

11

()(,)

t

t b

f t W a b dadb

C a a

∞∞

-∞-∞

ψ

-

??

=ψ ?

??

??

(3.8

有时为了方便起见,小波变换也常用如下定义

1

(,)*()()

f R

x t

W s x f x f t dt

s s

-

??

=ψ=ψ ?

??

?

(3.9

其中

1

()

s

x

x

s s

??

ψ=ψ ?

??

式(3.7)和式(3.9)定义形式有所不同,主要在于

1 )伸缩系数不同。

2 )由卷积代替了相关。

但事实上,它们之间是可以相互转换的。

由基本小波()

ω

ψ生成的小波

,

()

a b

t

ψ

2

(,)

j

A f x y在小波变换中对被分析

的信号起着信号观测窗的作用,所以()

ω

ψ还应满足一般函数的约束条件

()t dt ∞-∞ψ<∞? (3.10

故()t ψ是一个连续函数。这意味着,为了满足允许条件,()ωψ在原点必须等于零,即

(0)()0t dt ∞-∞ψ=ψ=? (3.11 小波()t ψ只有在实轴t 上取值有正有负才能保证上式的积分为零,所以应具有振荡性,也就是说是一个“波”。同时,()t ψ的定义域是具有紧支撑的,即在一个很小的区间之外,函数值为零,应是一个迅速衰减的“小”波。小波因此得名。

如果()t ψ使下式

()0k t t dt ∞-∞ψ=? 0,1k N =???- (3.12

成立,则说()t ψ为k 阶消失距小波(Vanishing th k moments )这时()ωψ在

ω=0 处是k 次可微的,即()(0)0k ψ=。而时就是容许条件,随着k 的增加,小波()t ψ的振荡性就越来越强烈。

连续小波变换具有以下重要性质:

1、线形性:一个信号的小波变换等于各个分量的小波变换之和。

2、平移不变性:若()f t 的小波变换为(,)f W a b ,则()f t τ-的小波变换为(,)f W a b τ-

3、伸缩共变性:若()f t 的小波变换为(,)f W a b ,则()f ct 的小波变换

(,)

f ca cb 0c > (3.13

4、自相似性:对应不同尺度参数a 和不同平移参数b 的连续小波变换之间是自相似的。

5、冗余性:连续小波变换中存在信息表述的冗余度。

§3.2.2 离散小波变换

在实际运用中,特别是在计算机实现上,往往需要把上面提到的连续小波及其变换离散化。需要注意的是,这一离散化是针对连续的尺度参数a 和连续的平移参数b 的,而不是针对时间变量t 的。这一点和我们在离散傅里叶变换中熟悉的时间离散化是不同的。

在连续小波中,考虑函数:

1/2

,()a b t b t a a --??ψ=ψ ??? (3.14 这里,b R ∈。为方便起见,在离散化中,总限制a 只取正值,即a R +∈且0a ≠,ψ是容许的,这样相容性条件就变成

()

C d ωωω∞ψ-∞ψ=<∞

? (3.15

通常,把连续小波变换中尺度参数a 和平移参数b 的离散公式分别取作000,j j a a b ka b ==,这里j Z ∈,扩展步长01a ≠是固定值。为了方便起见,总假定01a >。所以对应的离散小波函数,()j k t ψ即可写作

/2

/200,00000()()j j j j j k j t ka b t a a a t kb a ---??-ψ=ψ=ψ- ??? (3.16

而离散化的小波变换系数则可表示为

*,,,()(),j k j k j k C f t t dt f ∞

-∞=ψ=ψ? (3.17

其重构公式为

,,()()

j k j k f t C C t ∞∞-∞-∞=ψ∑∑ (3.18

C 是一个与信号无关的常数。

显然,0a 和0b 决定了信号重构的精度,即网格点应尽可能地密(0a 和0b 尽可能小),才能保证一定的重构精度。如果网格点越稀疏,使用的小波函数,()j k t ψ和离散小波系数,j k C 就越少,信号重构的精确度也就会降低。

§3.3常用小波函数介绍

§3.3.1 Haar 小波

Haar 小波是在小波分析中最早用到的一个具有紧支撑的正交小波函数,同时也是最简单的一个函数。Haar 函数的定义为

101/211/21

0H x x ψ≤≤??=-≤

§3.3.2 Daubechies 小波系

Daubechies 函数是由世界著名的小波分析学者Inrid Daubechies 构造的小波函数,提供了比Haar 小波更有效的分析和综合。除了dbl(即Haar 小波)外,其它小波没有明确的表达式。但转换函数h 的平方模是很明确的。 假设1

10()N N k k k k P y C y --+==∑ 其中,1N k k C -+为二项式的系数,则有

22

20()(cos )(sin )22N m P ωωω= (3.20)

其中:

2100()N ik k k m h e ωω--==∑ 小波函数ψ和尺度函数φ的有效支撑长度为21N -,小波函数ψ的消失矩阶数为 N,且具有正交性。常用的Daubechies 小波函数有db4和db8两种小波。

§3.3.3 Morlet 小波

Morlet 函数定义为

2/2()cos5x x Ce x ψ-= (3.21) 它的尺度函数不存在,且不具有正交性。

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

图像处理文献综述

文献综述 理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显着的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

图像边缘检测方法研究综述_段瑞玲

第31卷第3期2005年5月 光学技术 OP T ICA L T ECHN IQ U E V ol.31No.3 M ay 2005 文章编号:1002-1582(2005)03-0415-05 图像边缘检测方法研究综述 段瑞玲,李庆祥,李玉和 (清华大学精密仪器及机械学系,北京 100084) 摘 要:图像的边缘是图像最基本也是最重要的特征之一。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。图像分析和理解的第一步常常是边缘检测。边缘检测的目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一。其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。对一些传统的边缘检测方法和近年来广泛收到关注的边缘检测算法进行了简单介绍。综述中只涉及到检测方面,而没有讨论滤波、边缘定位、算法的复杂程度和边缘检测器性能的评价。 关键词:图像处理;边缘检测;梯度算法;差分边缘检测 中图分类号:T P751 文献标识码:A Summary of image edge detection DU AN Rui_ling,LI Qin g_xiang,LI Yu_he (Department of P recisio n I nstrument and M echanology,Tsing hua University,Beijing 100084,China) Abstract:Edg e is one of the most fundamental and sig nificant features.Edge detection is alw ay s one of the most classical studying projects o f computer vision and image processing field.T he fist step of image analy sis and understanding is edg e de tec-tion.T he g oal of edge detection is to recover information about shapes and reflectance o r transmittance in an image.I t is one of the fundamental steps in image processing,mage analy sis,image patter recognition,and computer vision,as well as in human vision.T he correctness and reliability of its results affect directly the comprehension machine system made fo r objective w orld. T he summary for basic edge de tection metho ds was made.It involv ed the detection methods only but no t filtering,edge loca-tion,analy sis of algorithm complexity and functional evaluation about a detecto r. Key words:image processing;imag e detection;gradient arithmetic; 1 引 言 早在本世纪初,人类为了用图片及时传输世界各地发生的新闻事件,便开始了对图像处理技术的研究。用计算机进行图像处理,改善图像质量的有效应用开始于1964年美国喷气推进实验室对太空传回的大批月球照片进行处理,并收到了明显的效果。然而,图像处理技术的真正发展还是在上世纪60年代末,其原因一方面是由于受到航天技术发展的刺激,另一方面是作为图像处理工具的数字计算机和各种不同类型的数字化仪器及显示器的突飞猛进发展。迄今为止,数字图像作为一门崭新的学科,日益受到人们的重视,并且在科学研究、工农业生产、军事技术和医疗卫生等领域发挥着越来越重要的作用。 机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。 2 图像边缘定义 图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常将边缘划分为阶跃状和屋顶状两种类型[1]。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰 415 收稿日期:2004-06-01;收到修改稿日期:2004-10-20 E-mail:duanrl03@mails.ts https://www.360docs.net/doc/2417779797.html, 作者简介:段瑞玲(1979_),女,山西人,清华大学博士研究生,从事装配系统及微观图像处理研究。

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

图像边缘检测技术综述

第 42 卷增刊 1 中南大学学报(自然科学版) V ol.42 Suppl. 1 2011 年 9 月 Journal of Central South University (Science and Technology) Sep. 2011 图像边缘检测技术综述 王敏杰 1 ,杨唐文 1, 3 ,韩建达 2 ,秦勇 3 (1. 北京交通大学 信息科学研究所,北京,100044; 2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳,110016; 3. 北京交通大学 轨道交通控制与安全国家重点实验室,北京,100044) 摘要:边缘检测是图像处理与分析中最基础的内容之一。首先介绍了几种经典的边缘检测方法,并对其性能进行 比较分析;然后,综述了近几年来出现的一些新的边缘检测方法;最后,对边缘检测技术的发展趋势进行了展望。 关键词:数字图像;边缘检测;综述 中图分类号:TP391.4 文献标志码:A 文章编号:1672?7207(2011)S1?0811?06 Review on image edge detection technologies W ANG Min-jie 1 , Y ANG Tang-wen 1,3 , HAN Jian-da 2 ,QIN Y ong 3 (1.Institute of Information Science,Beijing Jiaotong University, Beijing 100044, China? 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academic of Science,Shenyang 110016, China? 3.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China) Abstract: Edge detection is one of the most fundamental topics in the research area of image processing and analysis. First, several classical edge detection methods were introduced, and the performance of these methods was compared? then, several edge detection methods developed in the latest years were reviewed? finally, the trend of the research of the image edge detection in the future was discussed. Key words:digital image?edge detection?review 图像是人们从客观世界获取信息的重要来源 [1?2] 。 图像信息最主要来自其边缘和轮廓。所谓边缘是指其 周围像素灰度急剧变化的那些象素的集合,它是图像 最基本的特征。边缘存在于目标、背景和区域之 间 [3?4] ,它是图像分割所依赖的最重要的依据。边缘检 测 [5?8] 是图像处理和计算机视觉中的基本问题, 图像边 缘检测是图像处理中的一个重要内容和步骤,是图像 分割、目标识别等众多图像处理的必要基础 [9?10] 。因 此,研究图像边缘检测算法具有极其重要的意义。 边缘检测是计算机视觉和图像处理领域的一项基 本内容。准确、高效地提取出边缘信息一直是该领域 研究的重点内容 [11] 。最初的经典算法可分为边缘算子 法、曲面拟合法、模板匹配法、门限化法等。近年来, 随着数学理论和人工智能的发展,又出现了一些新的 边缘检测的算法 [12?13] ,如基于数学形态学的边缘检 测 [14] 、小波变换和小波包变换的边缘检测法 [15] 、基于 模糊理论的边缘检测法 [16?17] 、基于神经网络的边缘检 测法 [18] 、基于分形几何的边缘检测算法 [19] 、基于遗传 算法的边缘检测法 [20?21] 、漫射边缘的检测方法 [22] 、多 尺度边缘检测技术 [23] 、亚像素边缘的定位技术 [24] 、 收稿日期:2011?04?15;修回日期:2011?06?15 基金项目:轨道交通控制与安全国家重点实验室开放基金资助项目(RCS2010K02);机器人学国家重点实验室开放基金资助项目(RLO200801);北 京交通大学基本科研业务费资助项目(2011JBM019) 通信作者:王敏杰(1988-), 女, 黑龙江五常人, 硕士研究生, 从事图像处理和计算机视觉研究; 电话: 010-51468132; E-mail: wangminjie1118@https://www.360docs.net/doc/2417779797.html,

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真 目录 第1章绪论 1 1.1 序言 1 1.2 数字图像边缘检测算法的意义 1 第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 3 2.3 数字图像边缘检测关于边缘的定义 4 2.4 基于一阶微分的边缘检测算子 4 2.5 基于二阶微分的边缘检测算子 7 第3章编程和调试 10 3.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结 13 第5章图像边缘检测应用领域 13 附录参考文献 15

第1章绪论 §1.1 序言 理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。 图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。 Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。 §1.2 数字图像边缘检测算法的意义 数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以用于图像理解和分析,并且通过边缘检测可以极降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。 图像的边缘检测技术是数字图像处理技术的基础研究容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点, 本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。 2 传统的图像分割方法 2.1 基于阀值的图像分割方法 阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。 灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处

理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。

早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测则与之相反。1983年Witkin首次提出尺度空间的思想,为边缘检测开辟了更为宽广的空间,繁衍出了很多可贵的成果。随着小波理论的发展,它在边缘检测技术中也开始得到重要的应用。MALLAT造性地将多尺度思想与小波理论相结合,并与LoG, Canny算子相统一,有效地应用在图像分解与重构等许多领域中。 这些算子现在依然应用于计算几何各个现实领域中,如遥感技术、生物医学工程、机器人与生产自动化中的视觉检验、零部件选取及过程控制等流程、军事及通信等。在图像边缘检测的过程中老算法也出现了许多的问题。经过多年的发展,现在已经出现了一批新的图像边缘检测算法。如小波变换和小波包的边缘检测、基于形态学、模糊理论和神经网络的边缘检测等,这些算法扩展了图像边缘检测技术在原有领域中的运用空间,同时也使它能够适应更多的运用需要。

边缘检测原理(内含三种算法)

边缘检测原理的论述

摘要 数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch 算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。 【关键字】图像边缘数字图像边缘检测小波变换 背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年

代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。(2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来 的.边缘具有方向和幅度两个特征.沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈.而这种剧烈可能呈

数字图像边缘检测技术的研究

数字图像边缘检测技术的研究 Research on the Techniques of Digital Image Edge Detection 作者姓名张洁 学位类型学历硕士 学科、专业 (工程领域)计算机应用技术 研究方向计算机辅助设计与图形学 导师姓名檀结庆教授 2009年4月

合肥工业大学 本论文经答辩委员会全体委员审查,确认符合合肥工业大学硕士学位论文质量要求。 答辩委员会签名(工作单位、职称) 主席: 委员: 导师:

独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得合肥工业大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名:签字日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解合肥工业大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权合肥工业大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:导师签名: 签字日期:年月日签字日期:年月日 学位论文作者毕业后去向: 工作单位:电话: 通讯地址:邮编

数字图像边缘检测技术的研究 摘要 随着计算机技术的飞速发展,图像边缘检测已成为图像处理的重要内容,它是图像分析的基本问题,是图像分割、特征提取和图像识别的前提。本文的主要内容如下。 首先,介绍了数字图像处理的概念及其应用领域、边缘检测研究的背景意义,历史现状,以及边缘检测的一些基本概念。 然后,分别介绍了经典的图像边缘检测算子,如Robert算子、Sobel算子、Prewitt算子等,并通过理论分析和仿真计算比较了他们各自的优缺点及适用性。接着概述了几种新的边缘检测方法,如小波理论、数学形态学、模糊理论等。在本文的第四章里,讨论了基于线性滤波技术的边缘检测算法:Marr-Hildreth方法和Canny算法。 最后,提出了一种基于各向异性扩散方程的Canny边缘检测算法。Canny 边缘检测算法由于使用高斯滤波对图像进行平滑,往往使得算法的信噪比和定位精度下降,从而产生一些虚假边缘,使角点变圆。针对Canny算法所出现的问题,运用各向异性扩散方程代替高斯滤波,并对扩散后的图像做图像增强。实验结果表明,改进后的算法有效地提高了边缘检测的准确性,得到了比较理想的边缘检测效果。 关键词: 边缘检测;Canny算法;高斯滤波;各向异性扩散方程;非线性滤波

基于数学形态学的图像边缘检测方法研究文献综述

文献综述 课题:基于数学形态学的图像边缘检测方法研究 边缘检测是图像分割的核心容,而图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置,对图象的特征测量有重要的影响。图像分割及基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。从而边缘检测在图像工程中占有重要的地位和作用。因此对边缘检测的研究一直是图像技术研究中热点,人们对其的关注和研究也是日益深入。 首先,边缘在边界检测、图像分割、模式识别、机器视觉等中有很重要的作用。边缘是边界检测的重要基础,也是外形检测的基础。同时,边缘也广泛存在于物体与背景之间、物体与物体之间,基元与基元之间,是图像分割所依赖的重要特征。其次,边缘检测对于物体的识别也是很重要的。第一,人眼通过追踪未知物体的轮廓而扫视一个未知的物体。第二,如果我们能成功地得到图像的边缘,那么图像分析就会大大简化,图像识别就会容易得多。第三,很多图像并没有具体的物体,对这些图像的理解取决于它们的纹理性质,而提取这些纹理性质与边缘检测有极其密切的关系。 理想的边缘检测是能够正确解决边缘的有无、真假、和定向定位。长期以来,人们一直关心这一问题的研究,除了常用的局

部算子及以后在此基础上发展起来的种种改进方法外,又提出了许多新的技术,其中,比较经典的边缘检测算子有 Roberts cross算子、Sobel算子、Laplacian算子、Canny算子等,近年来又有学者提出了广义模糊算子,形态学边缘算子等。这些边缘检测的方法各有其特点,但同时也都存在着各自的局限性和不足之处。 本次研究正是在已有的算法基础上初步进行改进特别是形 态学边缘算子,以期找到一个更加简单而又实用的算子,相信能对图像处理中的边缘检测方法研究以及应用有一定的参考价值。 一、课题背景和研究意义: 伴随着计算机技术的高速发展,数字图像处理成为了一门新兴学科,并且在生活中的各个领域得以广泛应用。图像边缘检测技术则是数字图像处理和计算机视觉等领域最重要的技术之一。在实际图像处理中,图像边缘作为图像的一种基本特征,经常被用到较高层次的图像处理中去。边缘检测技术是图像测量、图像分割、图像压缩以及模式识别等图像处理技术的基础,是数字图像处理重要的研究课题之一。 边缘检测是图像理解、分析和识别领域中的一个基础又重要的课题, 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地

相关文档
最新文档