通用加热炉工艺计算程序FRNC-5操作手册

通用加热炉工艺计算程序FRNC-5操作手册
通用加热炉工艺计算程序FRNC-5操作手册

冶金加热炉设计工作手册.1

冶金加热炉设计工作手册. 作:编委会 冶金工业出版社 2011年出版 16开 精装1本 光盘:0 定价:328元 优惠:180元 .. 详细:.......................................... ............

.......................................... ............ 冶金加热炉设计工作手册 第一篇冶金工厂加热炉的设计方法和原则 第一章加热炉的初步设计 第一节设计前的原始资料 第二节加热炉炉型的确定 第三节加热炉燃料的确定 第四节加热炉燃烧装置的确定 第五节预热装置的选择及安装 第六节鼓风系统和排烟系统 第七节炉子水冷系统的确定 第八节加热炉钢结构 第九节加热炉机械和自动调节 第一节绘制加热炉炉型示意简图 第二章加热炉的工艺计算和设计 第一节燃料燃烧计算

第二节加热炉的热制度 第三节钢坯加热温度和时间的计算 第四节炉子数量和基本尺寸的确定 第五节炉体筑炉材料确定 第六节力口热炉炉衬的设计 第七节钢架结构的设计 第八节炉子热平衡和燃料消耗量的计算 第九节燃烧装置的计算 第十节预热装置的计算 第十一节煤气(空气)管道和烟道的设计 第二篇钢铁厂加热炉设计实例 第三章120t/h步邂釉肋口热炉设计实例 第一节步进梁5勒口热炉设计基本情况 第二节步进梁5肋口热炉设计说明 第三节步进梁式加热炉及其附属设备的工艺性能 第四节步进梁式加热炉各结构说明 第六节图例 第四章15t/h推钢式连续加热炉设计实例 第—节加热炉炉型的选择 第二节燃料燃烧计算 第三节卿劾燃时间的计算 第四节炉子卸》Rl寸的决定及有关的J计嘴标 第五节热平衡计算及燃料消耗量的确定 第六节燃烧系统的设计 第七节烟道的设计

加热炉烘炉操作说明书

加热炉烘炉操作说明 全部炉顶、炉墙均采用浇注料整体浇注结构。浇注料在工作中热稳定性好,高温强度高,抵抗机械作用和气体冲刷的能力强,严密性好,优点很多。但是,浇注料低温强度低,特别是新浇注完后与炉顶吊挂砖结构相比,浇注料所含水份大,须经烘烤缓慢排出,所以烘炉升温时要十分当心。众所周知,水在蒸发时体积会增大一千倍,如不能顺利排出,压力积聚,可达到相当高的数值,往往会造成炉体浇注料剥落,开裂甚至大块崩塌。所以对于这种材料的炉衬烘烤要给予高度重视。烘炉过程一定要严格按制定的烘炉曲线进行,常温至350℃的烘炉阶段要特别注意,升温速度不应过快,保温时间要足够,在此温度区间决不允许明火冲到炉体浇注体表面。实践证明,凡能严格按烘炉曲线进行烘炉操作的,烘炉后浇注体光洁完整,能确保长期使用。 1 烘炉前的准备工作 烘炉前必须按有关的规程,规或设计要求对装出料设备,步进机构及其液压系统,炉用附属设备,光电管及各种限位开关等检测与控制元件,金属结构,炉体砌筑及空气管道,煤气系统,供排水系统,水封槽及水封刀,汽化冷却系统(详见院热力专业说明),热工仪表等的安装情况,进行认真的检查验收,确认各项事宜均已合格后,方可开始烘炉。 (1) 对炉外装、出料辊道,装料推钢机,炉缓冲挡板,控制钢坯定位的光电管,炉子的步进机构及其液压系统,润滑油系统,PLC操作控制系统等进行检查合格,并进行单机试车和模拟联动试运转合格,随时准备

使用。 (2) 炉子装料炉门,出料炉门已调整完毕,炉门升降机构操作停位准确,侧开炉门运转灵活,关闭时严密。 (3) 炉子供排水系统已安装并经试压合格,炉子净环水系统已安装检验合格,浊环水采取有效的临时措施,测量仪表调整合格,各水冷构件的冷却水畅通,流量调整均匀。与车间冲渣沟相连的排水系统畅通,烘炉开始时,冷却水系统应立即投入运行,烘炉过程中不得中断。 (4) 确认加热炉汽化冷却系统检查合格,已经充水完毕,进入调试阶段。 (5) 风机已经通过试运转合格,风机进、出口的阀门开关灵活。 (6) 烘炉前应对燃烧控制系统,炉压控制系统等热工仪表和各种调节设备进行安装检查,并确认调整完毕,操作灵活,指示正确,控制灵敏,符合要求并随时准备使用。烘炉过程一开始,炉温,风温,煤气温度,烟气温度测量及记录的仪表应投入运行,随着炉子升温至800℃以上的高温,再进行仪表的热调试,自动控制装置逐步投入运行。 (7) 烟道转动阀门转动灵活,开闭方向与闸门座上的标记相符。烘炉,点火时阀门处于开启状态,烘炉过程中先手动调节阀门到合适的开启度,待炉温升至800℃以上时再接到自动控制的执行机构上,进行炉压调节。 (8) 对炉膛和烟道进行检查,清除施工中的一切遗物,特别要注意清理水封槽,绝不允许有杂物。 (9) 炉子周围及炉底操作坑环境清洁整齐,特别是操作坑四周的排水沟的杂物必须清除,排水沟与车间冲渣沟相连的管道必须畅通。 (10) 各岗位的工人经过技术培训和考核合格,能准确无误地操作和处

(完整版)加热炉计算

4.加热炉的计算 管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰和烟气作为热源,加热在管道中高速流动的介质,使其达到工艺规定的温度,保证生产的进行。在预加氢中需要对原料进行加热,以达到反应温度。预加氢的量较小,因此采用圆筒炉。主要的参数如下: 原料:高辛烷值石脑油; 相对密度: 20 40.7351 d = 进料量:62500/kg h 入炉温度:I τ=350C o ; 出炉温度:o τ=490C o ; 出炉压强:2 15/kg cm 气化率: e=100%; 过剩空气系:α:辐射:1.35 对流段:1.40 燃料油组成: 87%,11.5%,0.5%,1%C H O W ==== 加热炉基本参数的确定 4.1加热炉的总热负荷 查《石油炼制工程(上)》图Ⅰ-2-34可知,在入炉温度t1=350℃,进炉压力约15.0㎏/㎝2条件下,油料已完全汽化,混合油气完全汽化温度是167℃。 原料在入炉温度350C o ,查热焓图得232/i I kJ kcal = 原料的出炉温度为490C o ,查热焓图得377/v I kcal kg =。 将上述的数值代入得到加热炉的总热负荷 Q = m[eIV+(1-e)IL-Ii]

=[1377232]62500 4.184?-?? 37917500/kJ h = 4.2燃料燃烧的计算 燃料完全燃烧所生成的水为气态时计算出的热值称为低热值,以Ql 表示。在加热炉正常操作中,水都是以气相存在,所以多用低热值计算。 (1) 燃料的低发热值 1Q =[81C+246H+26(S-O)-6W] 4.184? =[8187+24611.5+26(0-0.5)-61] 4.184????? 41241.7/(kJ kg =燃料) (2) 燃烧所需的理论空气量 0 2.67823.2C H S O L ++-= 2.6787811.500.52 3.2?+?+-= 13.96kg =空气/kg 燃料 (3) 热效率η 设离开对流室的烟气温度 s T 比原料的入炉温度高100C o ,则 350100450s T C =+=o 由下面的式子可以得到 , 100L I q q η=--, 取炉墙散热损失 , 1 0.05L L q q Q = =并根据α和s T 查相关表,得烟气出对流室时 带走的热量123% L q Q =, 所以 1(523)%72%η=-+= (4) 燃料的用量 1379175001277/0.7241241.7 Q B kg h Q η= ==?;

列管式换热器的设计计算

列管式换热器的设计计算 晨怡热管2008-9-49:49:33 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 (4)饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2.流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3.流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4.管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有 φ25×2.5mm及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第

加热炉热工检测方案

井口加热炉热工检测方案 一、项目来源 根据胜利油田采油工程处部署,对胜利油田在用的各厂家的各种类型井口加热炉进行热效率测试。本次测试工作由胜利油田技术检测中心能源监测站承担。 二、检测目的: 检测加热炉在实际运行工况下的加热炉的热效率。 三、依据标准: SY/T6381-1998 加热炉热工测定 SY/T6275-1997 石油企业节能检测综合评价方法 四、测试基本检测方法及测试数量 4.1 测试方法 测试方法采用正平衡法与反平衡法相结合的测试方法。当现场不满足正平衡测试条件时,则以反平衡测试方法进行测试。 正平衡法:通过直接测量加热炉输入热量和输出热量而计算出效率的方法。 反平衡法:通过测定加热炉各项热损失而计算出效率的方法。 4.2测试数量 因本次需测试的加热炉数量众多,故采取抽样测试的方式进行,抽测比例不低于30%。具体按各厂家加热炉(包括各种型号的加热炉)数量的30%进行。 五、测试工况要求: 1 、时间要求: (1)、测试应在加热炉热工况稳定和燃烧调整到测试工况1h后开始进行。 (2)、测试的持续时间不少于1h,烟气成分和排烟温度每隔15min读数记录数据一次。 2 、燃料要求:测试时加热炉所用燃料应符合加热炉设计要求。 3 、加热炉液位要求:测试结束时,加热炉液位应与测试开始时保持一致。 4 、加热炉负荷应在符合工艺要求(被加热介质出口温度达到外输要求)的工况。 七、测试项目 主要测试项目如下: 1)液体燃料元素分析、低位发热量、密度、含水量; 2)燃料消耗量; 3)燃烧器前燃油(气)压力; 4)燃烧器前燃油(气)温度; 5)被加热介质流量; 6)被加热介质密度; 7)被加热介质含水量; 8)加热炉进口、出口介质温度; 9)加热炉进口、出口介质压力; 10)排烟温度; 11)排烟处烟气成分分析; 12)入炉空气温度; 13)炉体外表面温度; 14)当地大气压力; 15)环境温度;

加热炉烘炉方案

首钢伊犁钢铁有限公司棒线材车间改建850带钢生产线推钢式加热炉项目 烘 炉 方 案 编制: 审核: 批准: xxxxxxxx有限公司 2014年11月10日

目录 一、前言 二、编制依据 三、点火前确认项目 四、烘炉操作 五、安全注意事项及应急预案 六、烘炉方案附图

一、前言 本说明书是为首钢伊犁钢铁有限公司棒线材车间改建850带钢生产线推钢式加热炉首次烘炉所编制的,在加热炉温度低于200℃的情况下,冷却水、汽化系统可以不投入使用。 烘炉是第一次对新建或大建后炉子进行点火作业。本说明书内容仅供参考。业主可结合实际经验和具体情况予以修整。 二、编制依据 1、工业炉运行规程jb/t10354-2002 2、加热炉汽化冷却装置设计参考资料 3、最新锅炉、压力容器、压力管道设计、运行与检测常用数据及标准规范速查手册 4、工业炉设计手册 5、加热炉原理与设计 6、工业炉设计基础 7、我公司100多座推钢式加热炉烘炉经验 三、点火前确认项目 1.加热炉炉内压满钢坯。 2.加热炉烘炉操作的生产人员培训完毕,具备上岗条件,做好事前教育和组织分工等工作。 3.加热炉机械设备(装料炉门、出炉门)安装及调试完毕,工作正常。 4.汽化冷却系统冲洗、试压完毕,系统投入运行正常。 5.水冷系统冲洗、试压完毕,系统通水运转正常。 6.燃烧系统管道吹扫试压完毕,煤气管道30kPa压力试压,每小时内压降小于或等于1%

7.燃烧系统控制阀门调试完毕,各阀门动作自如;风机试运转超过8小时合格,可以随时投入使用。 8.炉坑排污系统可以投入使用(炉底污水可以排至旋流池),排水系统运转正常。 9.燃烧系统、汽化冷却系统、水冷系统的生产操作阀门挂牌完毕,标识正确清楚。 10.加热炉电源(含备用电)、高炉煤气/转炉煤气、净环水(含事故水)、浊环水、软水(含事故水)、压缩空气、氮气等生产介质供应正常,符合设计要求。 11.加热炉煤气总管上的电动蝶阀、截止阀、气动调节阀、快速切断阀完全关闭,并将外网混合煤气送至加热炉煤气总管阀门前(生产厂负责),混合煤气的压力、热值保持稳定,符合设计要求。 12.烧嘴前及烘炉管线空、煤气手动蝶阀、所有手动放散阀、所有取样阀全部处于关闭状态。 13.加热炉装出料炉门、检修炉门全部打开。 14.加热炉操作室与外界通讯正常投入,烘炉联络通讯录准备齐全。 15.加热炉UPS机正常投入使用。 16.加热炉各系统的流量、温度、压力检测仪表安装调试完毕,操作画面投入正常使用。 17.加热炉区清理完毕,道路畅通。 18.加热炉周围40m内警戒区施工人员停止作业,断开临时电源,不得随意动火。 19.煤气防护、消防、医务、安全保卫等人员,车辆设备已到现场(建设单位负责)。 20.备好作业车辆、工器具、对讲机、CO报警仪、点火棉纱、火把、柴油等各种生产准备工作。

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3 2.4估算传热面积 2.4.1热流量

电加热炉安全操作规程(新编版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电加热炉安全操作规程(新编 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

电加热炉安全操作规程(新编版) 用电加热金属材料,由于加热温度控制准确,劳动条件好而受到人们的欢迎。常用的电加热方式有感应加热,接触电加热和电阻式加热。 感应电加热和接触电加热其实都是使用一种加热器,感应器式样由被加热坯料的形状和尺寸确定,接触电加热对被加热坯料的表面糙度和形状尺寸更有严格的要求,相比之下,由于电阻式加热炉具有较强的通用性而获得了更广泛的应用。 电阻式加热炉也有多种型式,锻压车间常用的是箱式电阻炉。坯料从炉口装入炉膛,关闭炉门后即可送电加热。电热体(电阻丝)以辐射方式把热量传给坯料,使其加热到所需要的温度。炉门的升降是用脚踏传动装置来操纵的。 操作电加热炉应注意以下事项:

1、使用前必须对炉子的安全接地线、炉壁、炉底和加热元件(指电阻丝或硅碳棒、硅钼体)等进行全面检查,并注意炉膛内有无异物、脏物,是否清洁。及时解决发现的问题。 2、操作时穿戴好劳动保护用品。在勾料铲火时,应使用套有绝缘胶管手柄的工具,站立在胶皮垫子上,以免发生触电事故。 3、操作时注意防止工具、坯料碰坏耐火砖和电热体,装料和取料(锻造操作中钩料除外)时必须关闭电门,坯料与发热元件应保持一定距离。 4、控温仪表及控制盘应经常检查,以免因“跑温”而烧坏电热体,不允许超过炉子所规定的极限温度。当电炉的控制仪表和电偶发生故障或炉温、功率不符合要求时,应与有关人员联系,不得擅自进行调整和修理。 5、装料或捞料时必须关闭电门,切断电源(锻造操作中勾料时不关电门)。要小心不使锻件和工具碰到电偶、加热元件和炉膛。 6、装料时要注意放到炉膛的温度合格区,保温(均热)时间不足,不允许开锻。

步进式加热炉说明书

钛棒步进式加热炉使用说明书

目录 1 产品概况 2 结构与工作原理 3 安装 4 调试 5 维护与修理 6 随机文件 一.产品概述 1.1用途 主要用于钛棒锻前的补充加热。

1.2主要技术参数 a.额定功率:100KW b.额定温度:1050℃ c.炉温均匀性:±10℃(炉子进出口250㎜除外) d.控温精度:±1℃ e.控温区数:2区 f.炉膛有效尺寸:1500×1400×400㎜ g.装炉量:12根 h.规格:ф60—ф115—1000/600mm i.装料间距:130mm j.提升高度:60㎜ k.送料行程:70--100㎜ l.外型尺寸:~2500×2000×2000㎜ m.重量:~4.5t 1.3工作环境条件 1.3.1海拔不超过1000m; 1.3.2环境温度在5~40℃范围内; 1.3.3使用地区最湿月每日最大相对湿度的月平均值不大于90%,同时该月 每日最低温度的月平均值不高于25℃; 1.3.4周围没有导电尘埃,爆炸性气体及能严重损坏金属和绝缘的腐蚀性气 体; 1.3.5没有明显的振动和颠簸。 二.结构与工作原理 步进加热炉主要由炉体、电热元件、步进梁机构及电控系统组成。 2.1炉体 炉体由炉壳、炉衬等组成。 ·炉壳由型钢与钢板焊接而成,外侧板为普碳钢,厚5㎜,筋为角钢63×63×5。炉壳支撑为可调节支撑座,便于炉体水平和高度的调整。 ·炉衬为复合结构,侧墙为轻质粘土砖+硅酸铝纤维结构,厚度均为300㎜。

炉底采用保温砖和轻质粘土砖砌筑,厚度为320㎜。 ·炉顶为轻质硅酸铝纤维模块吊挂结构,厚度均为300㎜,炉盖为可拆式。 ·炉头进料口应安装有装料板,与感应加热炉衔接,棒料出来后自行滚落到出口轧机槽中。 ·炉前后装有炉门,气缸驱动(气源由甲方提供)。 2.2电热元件 采用性能良好的铁铬铝电阻丝制造,长寿命设计,表面负菏~1.2W/㎝2,电热元件布置炉膛两侧墙,充分考虑炉温均匀性,对电热元件进行合理布置,全部功率分2区布置,每区功率约50KW,电阻丝绕成螺旋状,安放在炉墙搁丝砖上。 2.3步进机构 步进梁机构由步进梁、固定梁、提升机构、步进机构组成。 ·步进梁和固定梁为耐热钢铸造加工而成,梁上有锯齿形料槽,用于棒料的定位,锯齿间距为130㎜。 步进梁(2根)和固定梁(2根)材质为Cr25Ni20Si2。厚度20mm。 ·步进梁通过梁上焊制的立柱穿过炉底固定在移动小车上,炉底上开有4个长孔,以便立柱能够自由移动。 ·固定梁支座砌筑在炉底衬内,固定梁固定在支座上,固定梁与步进梁之间留有20㎜宽间隙,每个梁间留有膨胀缝,可减少梁变形。 ·斜块式提升机构与移动机构配合运动使小车实现上升、前移、下降、后移矩形运动,完成棒料的输出。 ·小车的移动均由炉体下部的气缸驱动。 2.4控制系统 2.4.1主要控制任务 (1)炉内温度的精密控制 (2)各动作部分工作状态手动控制 (3)温度参数的显示 (4)故障报警 2.4.2技术特点 (1)温度控制:主要由高精度日本进口控温仪表SR3与大功率风冷可控硅模块

管式加热炉温度控制与分析

管式加热炉温度-温度串级控制系统 1设计意义及要求 1.1设计意义 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 1.2设计要求 1)本课程设计题目为加热炉温度-温度串级控制系统设计,课程设计时间为2周;学生对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。 2)课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括: ① 目录; ② 摘要; ③ 生产工艺和控制原理介绍; ④ 控制参数和被控参数选择; ⑤ 控制仪表及技术参数; ⑥ 控制流程图及控制系统方框图; ⑦ 总结与展望;(设计过程的总结,还有没有改进和完善的地方); ⑧ 课程设计的心得体会(至少500字); ⑨ 参考文献(不少于5篇); ⑩ 其它必要内容等。 2方案论证 2.1方案选择 管式加热炉加热炉的工作原理如图1所示。要加热的冷物料从左端的管口流入管式加热炉,而燃料从右端的管口流入管式加热炉的燃烧部分,以供热。经加热的物料从右上端的管口流出,物料出口温度1()t θ为被控参数。 图1 管式加热炉工作原理图 分析管式加热炉的工作过程可知,物料出口温度1()t θ受进入管式加热炉的物料初始温度,物料进入的流量(即物料入口的压强),进入管式加热炉的燃料的流量(也即燃料入口压强),燃料的燃烧值等因素的影响。其中物料进入的流量(即物料入口的压强)和进入管式加热炉的燃料的流量(也即燃料入口压强)是影响物料出口温度1()t θ的主要因素。如果采用单回路控制系统,根据操作量的选取原则,我们可以在物料入口处装上一个调节阀,以控制物料进入的流量;对于进入管式加热炉的燃料的流量,可以使它保持某一恒定值。或在燃料的入口处安装一个调节阀,以控制进入管式加热炉的燃料的流量;对于进入管式加热炉的物料的流量,则可以使它保持某一恒定值。而调节阀的开度大小由安装在物料出口处的温度传感器输出的大小间接控制。它虽然结构简单,实现方便;但不符合生产工艺的要求。因为如果将物料的进入流量进行限定后,则日生产总量也被限定。这显然不符合实际的工业生产情况。在此基础上进行一点改进——不对另一个量进行限制。基于对燃料进入量进行控制的管式加热炉单回路温度控制系统原理图如图2 所示。 图2 管式加热炉单回路温度控制系统原理图 如图2所示的单回路温度控制系统初看起来是可行的。而且它的结构简单,所需的器材少,投入小。也符合工业设 物料出口温度1 ()t θ 1T C 物料入口 燃料 物料出口温度1()t θ

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

电加热炉安全操作规程模板

工作行为规范系列 电加热炉安全操作规程(标准、完整、实用、可修改)

编号:FS-QG-81578电加热炉安全操作规程 Electric heating furnace safety operation regulations 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 用电加热金属材料,由于加热温度控制准确,劳动条件好而受到人们的欢迎。常用的电加热方式有感应加热,接触电加热和电阻式加热。 感应电加热和接触电加热其实都是使用一种加热器,感应器式样由被加热坯料的形状和尺寸确定,接触电加热对被加热坯料的表面糙度和形状尺寸更有严格的要求,相比之下,由于电阻式加热炉具有较强的通用性而获得了更广泛的应用。 电阻式加热炉也有多种型式,锻压车间常用的是箱式电阻炉。坯料从炉口装入炉膛,关闭炉门后即可送电加热。电热体(电阻丝)以辐射方式把热量传给坯料,使其加热到所需要的温度。炉门的升降是用脚踏传动装置来操纵的。 操作电加热炉应注意以下事项:

1、使用前必须对炉子的安全接地线、炉壁、炉底和加热元件(指电阻丝或硅碳棒、硅钼体)等进行全面检查,并注意炉膛内有无异物、脏物,是否清洁。及时解决发现的问题。 2、操作时穿戴好劳动保护用品。在勾料铲火时,应使用套有绝缘胶管手柄的工具,站立在胶皮垫子上,以免发生触电事故。 3、操作时注意防止工具、坯料碰坏耐火砖和电热体,装料和取料(锻造操作中钩料除外)时必须关闭电门,坯料与发热元件应保持一定距离。 4、控温仪表及控制盘应经常检查,以免因“跑温”而烧坏电热体,不允许超过炉子所规定的极限温度。当电炉的控制仪表和电偶发生故障或炉温、功率不符合要求时,应与有关人员联系,不得擅自进行调整和修理。 5、装料或捞料时必须关闭电门,切断电源(锻造操作中勾料时不关电门)。要小心不使锻件和工具碰到电偶、加热元件和炉膛。 6、装料时要注意放到炉膛的温度合格区,保温(均热)时间不足,不允许开锻。

1.加热炉工艺计算软件FRNC5使用入门剖析

1.F RNC-5软件的引进与使用概况 中石化集团公司下属的若干设计院(石化工程公司)从1997年开始引进了多套美国PFR公司的通用加热炉工艺计算软件FRNC-5。此软件在加热炉工艺计算中得到很好的应用,发挥了重大作用。 美国PFR公司全称为PFR工程系统公司(PFR Engineering System,Inc )。公司设在美国洛杉矶,创建于1972年1月,从事热力学系统设计分析和人员培训。该公司的软件产品拥有六十多个用户,遍布六大洲的十五个以上的国家。其中FRNC-5PC软件有二十年以上的使用经验。 本软件可以优化加热炉设计,并可对现有加热炉进行操作分析、加强管理,是一个较为优秀的软件。 2.F RNC-5软件功能与特点 2.1 软件应用范围 本程序可用于炼油、石油化工及热电联合等装置中大多数火焰加热炉及水管锅炉的性能模拟及效率预测。程序采用经过证明了的技术,通过综合迭代,将工艺物流模拟、传热和压力降计算等过程组合在一起。 程序沿物流及烟气流程,逐个管组逐个炉段严格迭代求解,能精确确定加热炉的工艺参数。计算中还指明不利操作状态,如发出炉膛正压、管壁和扩面元件超温、超临界流动以及酸露点腐蚀等警告信息。 程序会算出与显示加热炉的以下工艺参数或不利操作状态: (1)加热炉总热负荷、总热效率,辐射室热负荷 (2)辐射室出口温度(桥墙温度)与烟囱入口处温度 (3)辐射和对流热强度的均值和峰值 (4)辐射段遮蔽段和对流段中所有管组的管壁金属温度和翅片尖端温度的峰值和均值(5)两相流流型及沸腾状态的确定 (6)管内两相流的传热和压降 (7)管外传热和阻力 (8)“阻塞”、“干锅”或“冷端”腐蚀的可能性 2.2 适用的加热炉类型 (1)常减压装置加热炉 (2)铂重整、铂铼重整和强化重整等装置加热炉 (3)重沸炉和过热炉 (4)一氧化碳加热炉和锅炉 (5)脱硫装置原料预热炉 (6)焦化炉和减粘加热炉 (7)润滑油蒸馏和蜡油加热炉

电加热有机热载体炉说明书汇总

结构简介: 有机热载体炉是一种新型的特种加热炉又称导热油炉,具有低压、高温工作特性,其供热温度可达到液相340℃或汽相400℃度。凡是需要均匀稳定地加热,且不允许火焰直接加热的工艺加热温度在150℃-380℃之间的各种生产场合中都可以采用有机热载体供热。 电加热有机热载体炉以电为加热源,以导热油为介质,利用热油循环油泵强制介质进行液相循环,将热能输送给用热设备后再返回加热炉重新加热,具有在低的压力下获得高的工作温度,并且能对介质运行进行高精密控制工作。系统热利用率高,由于模块整体安装,运行维修方便,是一种安全、高效、节能的理想首选供热设备。 二.性能特点: (1)、获得低压高温热介质,调节方便,供热均匀,可以满足精确的工艺温度。 (2)、液相循环供热,无冷凝排放热损失,供热系统热效率高。 (3)、工作介质受热及放热和温度升降对体积的变化,在系统内有补偿技术措施。(4)、循环供热前有严格控制工作介质内空气、水分及其他低挥发物含量的技术措施。三.出厂简况: 1.加热炉出厂时将本体、储油槽、油汽分离器、过滤器。、循环泵、注油泵、阀门、仪表、电器控制柜及其另件为整体运输, 2.高位膨胀槽、平台扶梯分件包装 3.随炉供应用户出厂技术文件,及产品出厂清单,安装说明。 四.设备功能: ⑴.加热炉: 主体是加热炉系统的主机部分,有机热载体由此获得热能。 ⑵.热油循环泵:热油循环泵是导热油闭路强制循环的动力,要求每台加热炉配置两台泵,其中一台为备用。 ⑶.膨胀槽(高位槽) 膨胀槽用作导热油因温度变化而产生体积变化的补偿,从而稳定系统载热体的压力,同时还可以帮助系统脱水排汽,因此膨胀槽应设置在比系统其它设备或管道高出 1.5-2M标高处,正常工作时应保持高液位状态,当突然停电或热油循环泵发生故障而需紧急停炉时,可以将冷油置换阀打开,此时高位槽的冷油利用其位能流经炉管而入贮油槽,从而防止炉管内导热油超温过热。 ⑷.贮油槽(低位槽) 贮油槽主要用来贮存高位槽、炉管及系统排出的导热油,工作时应处于低液位状态,随时准备接受外来导热油。排气口应接至安全区且不得设置阀门。 ⑸.注油泵(齿轮泵) 用来向系统补充或抽出导热油。泵体上箭头方向是主轴转方向,也是介质的流动方向。⑹.滤油器(Y型滤油器) 滤油器用来过滤并清除供热系统中的异物。 ⑺.油汽分离器: 油汽分离器用来分离并排除供热系统中的空气、水蒸汽及其它气体,从而确保导热油在液相无气水的状态下稳定运行。 ⑻.电加热管总成:用来将电能转化为热能。 五、控制系统说明: 该有机热载体炉,由较先进的程序控制器控制,能实现正常加热所必需的各种功能,能在正常状态、事故状态及非常情况下,自动实施保护性报警,配以相应的液位控制器、压力控制器、温度控制器,实现进出口压力指示、进出口温度指示,保证热载体温度在正常范围内波

石油化工管式工艺加热炉简介

本文由ahutony贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 石油化工管式工艺加热炉简介 郑战利 管式加热炉 在一个有衬里的密闭体内设置有大量的相互连接的优质或合金无缝钢管,被加热介质在一连串的无缝钢管内以很高流速通过,燃料在密闭体内燃烧产生高温烟气,高温烟气通过辐射、对流和传导把热量传给被加热介质,把被加热介质加热到生产工艺规定的温度或完成一定的化学反应深度;这类设备统称为管式加热炉。管式加热炉的范畴包含热水和蒸汽锅炉、热载体加热炉、油田水套炉、输油管道加热炉、炼油和石化生产装置的工艺加热炉等。今天我们所讲的管式加热炉是炼油和石油化工生产装置的工艺加热炉,简称为石化工艺加热炉。 石化工艺加热炉的主要特点是 1.被加热介质为易燃、易爆的液体或气体,且温度和压力较高。操作条件苛刻。安全运行要求高。 2. 加热方式为明火加热。 3. 长周期连续生产。 4. 所用燃料为液体或气体燃料。 管式加热炉应满足的要求 1. 完成一定的传热任务,燃料耗量少、需要的传热面积小。 2. 被加热介质不受局部过热。 3. 在纯加热型管式加热炉中,被加热介质无分解或仅有极少量分解。 4. 在加热—反应型管式加热炉中,保证被加热介质的反应深度达到生产工艺要求,且炉管中结焦量最少。 5. 安全、稳定、连续运行周期在3~5年。 6. 排烟中的有害物含量和噪声必须符合国家标准规定。 管式加热炉的主要操作参数 1、有效热负荷:为各种被加热介质从体系入口状态到出口状态所吸收的能量之和,它等于供给能量与损失能量之差, Kw 2、排烟损失热量:排出体系的烟气带走的热量。Kw 3、燃料不完全燃烧损失热量:由于燃烧设备及燃烧工况等原因造成燃料没有完全燃烧而未能释放出的反应热。 Kw 4、散热损失热量:体系内所有设备及管线表面向周围环境中散失的热量。Kw 5、附属设备能耗:鼓风机、引风机、吹灰器、热载体循环泵等辅助设备所耗掉的能量,按供给这些设备的能量计算。 Kw 6、燃料效率:有效吸能量占供给燃料燃烧放出热量的百分数,其数值可能大于l00%。% 7、全炉热效率:有效吸能量占供给炉子总热量(不含附属设备损失)的百分数。% 8、综合效率:是体系供给能量利用的有效程度在数量上的表示,它等于有效能量对供给能量的百分数。 % 9、炉膛热强度:指单位时间内单位炉膛体积所传递的热量,单位为kw/m3。 10、炉管平均表面热强度:指单位时间内单位炉管表面积所传递的热量,单位为kw/m2。 11、排烟温度:烟气离开被加热介质加热段的最终温度。℃ 12、排烟氧含量:烟气最终离开被加热介质加热段时中的氧含量。V% 13、炉膛Tp温度:烟气出辐射室时的温度。℃ 14、燃烧过剩空气系数:燃料燃烧理论空气量与供风量的比值。 15、燃料耗量:单位时间内,加热炉消耗燃料总和(Kg/h或Nm3/h)。 16、质量流量:单位时间内,流过单位炉管内截面积的加热介质的质量(Kg/m2.h)。 17、全炉压力降:被加热介质流过炉管系统的压力损失。MPa 管式加热炉的结构简介 石油化工工艺管式加热炉由辐射室、对流室、余热回收装置、燃烧器、供风系统和排烟系统等部分所组成(由炉管系统、钢结构、衬里、余热回收装置、燃烧器、供风系统和排烟系统等部分所组成)。 辐射室 辐射室是加热炉辐射传热起支配作用的部分。由于是火焰直接所在的场所,所以它是加

电加热炉安全操作规程通用版

操作规程编号:YTO-FS-PD615 电加热炉安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电加热炉安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 用电加热金属材料,由于加热温度控制准确,劳动条件好而受到人们的欢迎。常用的电加热方式有感应加热,接触电加热和电阻式加热。 感应电加热和接触电加热其实都是使用一种加热器,感应器式样由被加热坯料的形状和尺寸确定,接触电加热对被加热坯料的表面糙度和形状尺寸更有严格的要求,相比之下,由于电阻式加热炉具有较强的通用性而获得了更广泛的应用。 电阻式加热炉也有多种型式,锻压车间常用的是箱式电阻炉。坯料从炉口装入炉膛,关闭炉门后即可送电加热。电热体(电阻丝)以辐射方式把热量传给坯料,使其加热到所需要的温度。炉门的升降是用脚踏传动装置来操纵的。 操作电加热炉应注意以下事项: 1、使用前必须对炉子的安全接地线、炉壁、炉底和加

步进式加热炉设计计算模板

2 10 步进式加热炉设计计算 2.1 热工计算原始数据 (1) 炉子生产率:p=245t/h (2) 被加热金属: 1) 种类:优质碳素结构钢(20#钢) 2) 尺寸:250 >2200 >3600 (mm )(板坯) 3) 金属开始加热(入炉)温度:t 始=20r 4) 金属加热终了(出炉)表面温度:t 终=1200C 5) 金属加热终了(出炉)断面温差:t < 15C (3) 燃料 1) 种类:焦炉煤气 2) 焦炉煤气低发热值:Q 低温=17000kJ/标m 3 3) 煤气不预热:t 煤气=20 °C 表1-1焦炉煤气干成分(%) ⑷ 出炉膛烟气温度:t 废膛=800C ⑸空气预热温度(烧嘴前):t 空 =350 C 2.2燃烧计算 2.2.3 计算理论空气需要量L c 1 1 m L o 4.76 —CO -H 2 (n —)C n H m 2 2 4 把表2-1中焦炉煤气湿成分代入 1 1 3 3 3 -H 2S O 2 2 2 3 3) 10 (m /m )

L0 4.76 8.7939 険5741 2 24?8184 3 2?8336。碍 2 10 =4.3045m3/m3

V n V CO 2 V H 2O V N 2 V O 2 224计算实际空气需要量Ln 查《燃料及燃烧》,取n=1.1代入 L n nL o 1.1 4.3045 4.7317 标 m 3/标 m 3 实际湿空气消耗量 L n 湿(1 0.00124g) nL o =(1 0.00124 18.9) 4.7317 =6.0999 标 m 3/标 m 3 2.2.5计算燃烧产物成分及生成量 V c°2 (CO nC n H m CO 2) 100 1 79 1.2702 丄 79 4.7317 100 100 =3.7507 标m 3/标m 3 V 02 (L n L 0)标 m /标 m 100 21 4.7317 4.3045 100 =0.0897 标 m 3/标 m 3 燃烧产物生成总量 (56.5741 2 1 24.8184 2 2.8336 2.2899) 100 0.00124 18.9 4.7317 标m 3/标m 3 标m 3/标m 3 (24.8184 8.7939 2 2.8336 3.0290) 1 100 =0.4231 标 m 3/标 m 3 V H 2O (H 2 m C H n m 2 H 2S H 2O) 1 100 0.00124gL n 标 m 3/标 m 3 V N 2 N 2 100 100 Ln 标说标 m =1.2526

加热炉操作说明书

第一章加热炉煤气操作说明 1 .高炉煤气送气说明 1.1 送气前的检查 ●送高炉煤气前检查10只点火烧嘴的燃烧状况或炉内温度(应高于800℃)。 ●检查鼓风机(开)、引风机(开)的运转状况。 ●高炉煤气总管盲板阀关,金属硬密封蝶阀关,快速切断阀开。 ●各煤气两位四通换向阀的工作状态是否正常。 ●各煤气蓄热式烧嘴前的手动蝶阀是否关死。 1.2 高炉煤气管道的分段吹扫 ●将三段煤气调节阀关至最小,然后将煤气侧的三段烟气调节阀关至最小。 ●检查换向阀,将3段煤气调节阀重新开至最大。 ●打开高炉煤气管各段末端放散阀,并检测其下面的取样口是否关闭。 ●手工打开高炉煤气吹扫阀,接入氮气进行吹扫约30分钟。(在此之前应进 行煤气总管金属硬密封蝶阀之前的管路吹扫和放散,同时高炉煤气应送达该处。) ●密切注意接点处煤气总管道内的压力,绝对不允许超过10kPa,若超过此压 力就有可能损坏煤气管道上安装的压力变送器。 ●吹扫气源切断。 1.3 送高炉煤气 ●将三段煤气侧烟气调节阀开大,将炉膛压力降为负压(约-10~0Pa),但应 注意尽量不要影响炉温。 ●将三段煤气调节阀和二段空气调节阀关至最小(均热段除外,因为均热段 风机供给的风同时也供给点火烧嘴,点火烧嘴的煤气单独有一路供给)。 ●确认换向2~3次后,将换向方式设为定时方式。 ●打开均热段最靠近烘炉烧嘴的上部及下部各一对煤气蓄热式烧嘴及空气蓄 热式烧嘴的手动阀,即MD和K1以及MD和K2,共4个,送气入炉,注意炉两侧对称操作。 ●逐渐开大均热段煤气调节阀,观察燃着后即逐渐开大均热段空气调节阀。

●照以上方法点燃其后的烧嘴及第二加热段、第一加热段烧嘴。 ●确认高炉煤气点燃后打开均热段的空气调节阀,调整空煤气比例为0.75﹕1。 ●在炉温升至840℃以上时,将换向方式设为自动定时换向。同时炉内有明火、 高炉煤气稳定燃烧,可以关闭烘炉烧嘴。 3 . 烘炉用高炉煤气切断说明 ●关闭所有烘炉烧嘴,空气蝶阀微微打开保护烧嘴直至炉温降至常温。 ●关闭烘炉用高炉煤气总管金属硬密封蝶阀。 ●关闭烘炉用高炉煤气总管盲板阀。 ●若决定不再使用烘炉用高炉煤气,则打开放散阀,接入氮气吹扫约20分钟。 4 . 高炉煤气切断说明 4.1正常停高炉煤气 ●关闭所有烧嘴前手动煤气阀门。 ●关闭高炉煤气总管金属硬密封蝶阀。 ●若长时间不用高炉煤气,则应关闭高炉煤气总管盲板阀,打开各段放散阀, 接入氮气吹扫约20分钟。 ●其余操作参见第三章加热炉正常停炉说明。 4.2 非正常停高炉煤气 ●参见第四章加热炉紧急停炉说明。

相关文档
最新文档