高一数学指数幂及运算练习题

高一数学指数幂及运算练习题
高一数学指数幂及运算练习题

1.若(a -3)14

有意义,则a 的取值范围是( ) A .a ≥3 B .a ≤3

C .a =3

D .a ∈R 且a ≠3

【解析】 要使(a -3)14有意义,∴a -3≥0,∴a ≥3.故选A.

【答案】 A

2.下列各式运算错误的是( )

A .(-a 2b)2·(-ab 2)3=-a 7b 8

B .(-a 2b 3)3÷(-ab 2)3=a 3b 3

C .(-a 3)2·(-b 2)3=a 6b 6

D .[(a 3)2·(-b 2)3]3=-a 18b 18

【解析】 对于C ,∵原式左边=(-1)2·(a 3)2·(-1)3·(b 2)3=a 6·(-

1)·b 6=-a 6b 6,∴C 不正确.

【答案】 C

3.计算[(-2)2]-12的结果是________.

【解析】 [(-2)2

]-12=2-12=1212=22.

【答案】 22

4.已知x 12+x -12=3,求x +x -1-3x 2+x -2-2

. 【解析】 ∵x 12+x -12=3,

∴(x 12+x -12)2=9,即x +x -1+2=9.

∴x +x -1=7.

∴(x +x -1)2=49

∴x 2+x -2=47.

∴原式=7-347-2=445.

一、选择题(每小题5分,共20分)

1.? ????1120-(1-0.5-2)÷? ????27823

的值为( ) A .-13 B.13

C.43

D.73

【解析】 原式=1-(1-22

)÷? ????322=1-(-3)×49=73.故选D. 【答案】 D 2.a a a(a>0)计算正确的是( ) A .a·a 12a 12=a 2 B .(a·a 12·a 14)12=a 78

C .a 12a 12a 12=a 32

D .a 14a 14a 18=a 58

【答案】 B

3.化简-a 3

a 的结果是( ) A.-a B. a

C .--a

D .- a

【解析】 由题意知a<0

∴-a 3

a =-

-a 3a 2=--a.故选C.

【答案】 C 4.若4|x|-2有意义,则x 的取值范围是( )

A .x ≥2或x ≤-2

B .x ≥2

C .x ≤-2

D .x ∈R 【解析】 要4

|x|-2有意义,只须使|x|-2≥0,即x ≥2或x ≤-2.故选A.

【答案】 A

二、填空题(每小题5分,共10分) 5.计算(0.064)-13-? ??

??-780+[(-2)3]-43+16-0.75+|-0.01|12=________.

【解析】 原式=0.4-1-1+(-2)-4+2-3+0.1

=104-1+116+18+110=14380. 【答案】 14380

6.若x>0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.

【解析】 根据题目特点发现(2x 14+332)(2x 14-332)是一个平方差

的形式,依据公式化简,然后进行分数指数幂的运算.

因为x>0,所以原式=? ????2x 142-? ????3322-4x -12·x +4x -12·x 12=4x 14×2-332×2-4x -12+1+4x -12+12=4x 12-33-4x 12+4x 0=4x 12-33-

4x 12+4=4-27=-23.

三、解答题(每小题10分,共20分)

7.化简:a -b a 12+b 12-a +b -2a 12·b 12a 12-b 12

.

【解析】 原式=(a 12+b 12)(a 12-b 12)a 12+b 12-(a 12-b 12)2

a 12-

b 12

=a 12-b 12-(a 12-b 12)=0.

8.若a>1,b>0,且a b +a -b =22,求a b -a -b 的值.

【解析】 方法一:因为a b +a -b

=(a b 2+a -b 2)2-2, 所以?

????a b 2+a -b 22=a b +a -b +2=2(2+1), 又a b 2+a -b 2>0,所以a b 2+a -b 2=2(2+1) ①;

由于a>1,b>0,则a b 2>a -b 2,即a b 2-a -b 2>0,

同理可得a b 2-a -b 2=2(2-1) ②,①×②得a b -a -b =2.

方法二:由a>1,b>0,知a b >a -b ,即a b -a -b >0,因为(a b -a -b )2=(a b +a -b )2-4=(22)2-4=4,所以a b -a -b =2.

说明:

两种方法都体现了活用乘法公式和整体处理的方法,这两种方法是求解这类问题的常用方法.

9.(10分)已知x>0,y>0,且x(x +y)=3y(x +5y),求

2x +xy +3y x +xy -y

的值. 【解析】 由x(x +y)=3y(x +5y),得x -2xy -15y =0,

即(x +3y)(x -5y)=0,因为x +3y>0,

所以x -5y =0,于是有x =25y.

所以原式=50y +5y +3y 25y +5y -y =58y 29y

=2.

指数幂运算练习题

第七课:指数幂运算 例1 求下列各式的值 ⑴ 33)2(-= ⑵ 44)2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 例2 ⑴ 把下列各式中的a 写成分数指数幂的形式(a >0); ① a 5 =256 ② a 4 -=28 ③ a 7 -=56 ④ a n 3-=3 m 5(m ,n ∈N * ) ⑵ 计算:① 92 3 ② 162 3- 例3 化简 3 2 13 2b a b a ?- ÷3 211- --??? ? ? ?a b b a 例 4 化简(式中字母都是正数) ⑴ (x 2 y 3 ) 6 ⑵ (2x 2 + 3y 3 -)(2x 2 - 3y 3 -) ⑶ 4x 2 1 ·3x 2 1- (- y 3 )·y 3 3 - 例5 化简下列各式 ⑴ 3 23 222----++y x y x - 3 23 222-- ----y x y x ⑵ 3 23 3 23 134428b ab a b a a ++-÷(1 – 23 a b )×3a 典型例题 题型一、根式的性质 例1 求值3 2 2a a a ?(a >0). 例2 计算:⑴ 625625++- ⑵ 3 35252-++

题型二、分数指数幂及运算性质 1. 计算问题: 计算:3133 73 32 9a a a a --÷ 2. 化简问题:化简下列各式: ⑴ 3 1 3 3 15 3 83 3 2 7----÷ ÷ a a a a a a ⑵ (x 0 1x x ++-)(x 2 12 1x -- ) 3. 带附加条件的求值问题 例5 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 12 32 3-- --a a a a 数学思想方法 一、化归与转化思想 例6 化简: 3 32 b a a b b a (a >0, b >0). 二、整体代换思想 例7 ⑴ 已知2a x x =+-2(常数),求8x x -+8的值。 ⑵ 已知x + y = 12, xy = 9,且x <y ,求 2 12 12121y x y x +-的值。

最新指数和指数幂的运算教案和课后习题汇编

指数与指数幂的运算 【知能点】 知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=??? ?∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)()()0,0,m m m ab a b a b m Q =>>∈ ① 引例:a >0 102 5 a a === → ?=; 3 23 3 3 23 2 )(a a a == → ?=. ① 定义分数指数幂: 规定* 0,,,1)m n a a m n N n =>∈> ;*1 0,,,1)m n m n a a m n N n a -= = >∈> ③ 练习:A.将下列根式写成分数指数幂形式: (0,,1)a m n N n *>∈>; ; 例 1:把下列各式中的a 写成分数指数幂的形式 (1)5 256a =;(2)4 28a -=;(3)765a -=;(4)()353,n m a m n N -+=∈ 解:(1)1 5 256a =;(2)1428a - =;(3)6 7 5a - =;(4)533 m n a - = 例 2:计算 (1)32 9; (2)32 16- 解:(1)() 3 3322 3 2 2 2 933 327? ====;(2)() 332312 2 116 4 464 - ---====

指数幂与负整数指数幂练习题及答案

零指数幂与负整数指数幂练习题及答案 一.解答题(共30小题) 1.计算:. 2.计算: 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:. 5.计算:6.计算:22﹣(﹣1)0+.7.计算:. 8.计算:.

9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011 (2)化简. 10.计算: 11.(1)计算:. (2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣; (2)解方程组:. 13.计算:.14.(2009重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.

15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0 16.计算:(﹣2)2+2×(﹣3)+()﹣1 17.(1)计算:()﹣1﹣++(﹣1)2009 (2)解方程组: 18.计算:|﹣|+(﹣π)0+(﹣)2×()﹣2 19.计算﹣22+|4﹣7|+(﹣π)0 20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2. 21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣. 22.计算:+(﹣)0+(﹣1)3﹣|﹣1|.

23.计算:.24.计算:22+(4﹣7)÷+()0 25.计算: 26.计算:|﹣2|+﹣()﹣1+(3﹣π)0 27.计算:﹣1+(﹣2)3+|﹣3|﹣ 28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:

零指数幂与负整数指数幂练习题及答案 参考答案与试题解析 一.解答题(共30小题) 1.计算:. 解答:解:原式=3﹣1+4=6.故答案为6. 2.计算: 解答: 解:, =2+1+4﹣2, =5. 故答案为:5. 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 解答:解:(1)原式=3﹣4+1 =0; (2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m, 当m=时,原式=2﹣4×=1. 4.计算:. 解答:解:原式=(﹣2)+1+2=1,故答案为1. 5.计算:. 解答:解:原式=2+3+1﹣1 =5. 6.计算:22﹣(﹣1)0+. 解答:解:原式=4﹣1+2=5. 7.计算:. 解答: 解: =1+3﹣1﹣(﹣2) =5. 故答案为5. 8.计算:. 解答: 解:原式= =.

高一数学指数幂及运算练习题

1.若(a -3)14 有意义,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a =3 D .a ∈R 且a ≠3 【解析】 要使(a -3)14有意义,∴a -3≥0,∴a ≥3.故选A. 【答案】 A 2.下列各式运算错误的是( ) A .(-a 2b)2·(-ab 2)3=-a 7b 8 B .(-a 2b 3)3÷(-ab 2)3=a 3b 3 C .(-a 3)2·(-b 2)3=a 6b 6 D .[(a 3)2·(-b 2)3]3=-a 18b 18 【解析】 对于C ,∵原式左边=(-1)2·(a 3)2·(-1)3·(b 2)3=a 6·(- 1)·b 6=-a 6b 6,∴C 不正确. 【答案】 C 3.计算[(-2)2]-12的结果是________. 【解析】 [(-2)2 ]-12=2-12=1212=22. 【答案】 22 4.已知x 12+x -12=3,求x +x -1-3x 2+x -2-2 . 【解析】 ∵x 12+x -12=3, ∴(x 12+x -12)2=9,即x +x -1+2=9.

∴x +x -1=7. ∴(x +x -1)2=49 ∴x 2+x -2=47. ∴原式=7-347-2=445. 一、选择题(每小题5分,共20分) 1.? ????1120-(1-0.5-2)÷? ????27823 的值为( ) A .-13 B.13 C.43 D.73 【解析】 原式=1-(1-22 )÷? ????322=1-(-3)×49=73.故选D. 【答案】 D 2.a a a(a>0)计算正确的是( ) A .a·a 12a 12=a 2 B .(a·a 12·a 14)12=a 78 C .a 12a 12a 12=a 32 D .a 14a 14a 18=a 58 【答案】 B 3.化简-a 3 a 的结果是( ) A.-a B. a C .--a D .- a 【解析】 由题意知a<0

指数与指数幂的运算教案

指数与指数幂的运算 课题:指数与指数幂的运算 课型:新授课 教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析: 1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础. 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入. 学习任务分析: 1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值. 2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化. 3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算. 教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化. 2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力. 3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n 次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面. 教学流程图: 教学过程设计: 一.新课引入:

(一)本章知识结构介绍 (二)问题引入 1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系: (1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为 (3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为 122 12?? ???6000 5730 12?? ???100005730 12?? ? ??

(完整版)指数与指数幂的运算练习题

2.1.1指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂; (2)零指数幂; (3)负整数指数幂 (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1) (2) (3) 知能点2:无理数指数幂 若>0,是一个无理数,则表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果,那么叫做的次方根,其中,叫做根式,叫做根指数,叫被开方数。 2、对于根式记号,要注意以下几点: (1),且; (2)当是奇数,则;当是偶数,则; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1); (2) 一、填空 1、用根式的形式表示下列各式 (1)= (2)= (3)= (4)= 2、用分数指数幂的形式表示下列各式: (1)= (2) (3)= ;(4)= ; (5)(6)(7) (8) 3、求下列各式的值 (1)= ;(2)= ;(3)= ; (4)= ;(5)= ;(6)= ; (7)= ;(8)= ;(9)= ; (10) 4.化简 (1)(2)

(3)(4)= (5)= (6)= (7)= (8)= 5.计算 (1)(2) (3)(4) 6.已知,求下列各式的值(1)= ;(2)= 7.若,则和用根式形式表示分别为和,和用分数指数幂形式表示分别为和。 8.使式子有意义的x的取值范围是_. 9.若,,则的值= . 10.已知,则的值为. 二.选择题. ,下列各式一定有意义的是() A. B. C. D. ,下列各式一定有意义的是() A. B. C. D. 下列各式计算正确的是() A. B. C. D. 4、若,且为整数,则下列各式中正确的是() A、B、C、D、 5、下列运算结果中,正确的是() A.B.C.D. 6.下列各式中成立的是() A.B.C.D. 7.下列各式成立的是() A. B. C. D.

指数与指数幂的运算备课教案

2.1.1 指数与指数幂的运算(2课时) 第一课时根式 教学目标:1.理解n次方根、根式、分数指数幂的概念; 2.正确运用根式运算性质和有理指数幂的运算性质; 3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、分数指数幂的概念和运算性质 教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式 教学过程: (I)复习回顾 引例:填空 m n =(m,n∈Z); a+

(II )讲授新课 1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -?,所以m n m n a a a -÷=可以归入性质m n m n a a a +?=;又因为n b a )(可看作 m n a a -?,所以n n n b a b a =)(可以归入性质()n n n ab a b =?(n ∈Z)),这是为下面学习分 数指数幂的概念和性质做准备。为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。 (2)填空(3),(4)复习了平方根、立方根这两个概念。如: 分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。由此,可有:

2.n 次方根的定义:(板书) 问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程: 解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根; 因为632a )a (=,所以a 2是a 6的3次方根。 结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。此时,a 的n 次方根可表示为n a x =。 从而有:3273=,2325-=-,236a a = 解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;

17.4零指数幂与负整数指数幂练习题及答案

零指数幂与负整数指数幂练习题一.解答题(共30小题) 1.计算:. 2.计算: 3.(1)计算:|﹣3|﹣+(π﹣3.14)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:. 5.计算: 6.计算:22﹣(﹣1)0+. 7.计算:.

8.计算:. 9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011 (2)化简. 10.计算: 11.(1)计算:. (2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣; (2)解方程组:.

13.计算:.14.(2009?重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2. 15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0 16.计算:(﹣2)2+2×(﹣3)+()﹣1 17.(1)计算:()﹣1﹣++(﹣1)2009 (2)解方程组: 18.计算:|﹣|+(3.14﹣π)0+(﹣)2×()﹣2 19.计算﹣22+|4﹣7|+(﹣π)0 20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2.21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣.

23.计算:.24.计算:22+(4﹣7)÷+()0 25.计算: 26.计算:|﹣2|+﹣()﹣1+(3﹣π)0 27.计算:﹣1+(﹣2)3+|﹣3|﹣ 28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:

零指数幂与负整数指数幂练习题及答案 参考答案与试题解析 一.解答题(共30小题) 1.计算:. 解答:解:原式=3﹣1+4=6.故答案为6. 2.计算: 解答: 解:, =2+1+4﹣2, =5. 故答案为:5. 3.(1)计算:|﹣3|﹣+(π﹣3.14)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m=解答:解:(1)原式=3﹣4+1 =0; (2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m, 当m=时,原式=2﹣4×=1. 4.计算:. 解答:解:原式=(﹣2)+1+2=1,故答案为1. 5.计算:. 解答:解:原式=2+3+1﹣1 =5. 6.计算:22﹣(﹣1)0+. 解答:解:原式=4﹣1+2=5. 7.计算:. 解答:解: =1+3﹣1﹣(﹣2) =5. 故答案为5. 8.计算:. 解答:解:原式= =. 9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011

指数与指数幂的运算(教学设计)

2.1.1(2)指数与指数幂的运算(教学设计) 内容:分数指数幂 一、教学目标 (一)知识目标 (1)理解根式的概念及其性质,能根据性质进行简单的根式计算。 (2)理解掌握分数指数幂的意义并能进行基本的运算。 (二)能力目标 (1)学生能进一步认清各种运算间的联系,提高归纳,概括的能力. (2)让学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想. (3)训练学生思维的灵活性 (三)德育目标 (1)激发学生自主学习的兴趣 (2)养成良好的学习习惯 教学重点: 次方根的概念及其取值规律。 教学难点:分数指数幂的意义及其运算根据的研究。 教学过程: 一、复习回顾,新课引入: 指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展。引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义。 .然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出 及 ,同时追问这里 的由来。 二、师生互动,新课讲解: 1.分数指数幂 看下面的例子: 当0>a 时, (1)2552510)(a a a ==,又5102=,所以510 510a a =; (2)3443412)(a a a ==,又4123=,所以412 412a a =. 从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式. 那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢? 根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m n m a a =(0>a ,1*,,>∈n N n m ). 0的正分数指数幂等于0, 0的负分数指数幂无意义. 由于分数有既约分数和非既约分数之分,因此当0

指数与指数幂的运算练习题

1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748L 个; (2)零指数幂)0(10 ≠=a a ; (3)负整数指数幂()10,n n a a n N a -*=≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)()()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中()* ∈>N n n ,1,n a 叫做根式,n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且 1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则 ?? ?<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1)) 0,,,1m n a a m n N n *=>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 一、填空

1、用根式的形式表示下列各式)0(>a (1)51 a = (2)34a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2 >= m m m (3 = ; (4)a a a = ; (5) =?a a 2 (6)=?3 2 3a a (7)=a a (8) =3 5 6q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ; (4)3416()81- = ;(5)3227= ; (6)23 )49 36(= ; (7)23)4 25(-= ;(8)2325= ;(9 )1 2 2[(]-= ; (10)=3 264 4.化简 (1)=??12 74 33 1a a a (2)=÷?6 54 32 3a a a (3)=÷-?a a a 9)(34 32 3 (4) 3 2 2 a a a ?= (5)3 163)278(--b a = (6)??? ? ??---32 31312212x x x = (7)()0,053542 15 65 8 ≠≠÷???? ? ? ? - -b a b a b a = (8))3()6)(2(6 56 13 12 12 13 2b a b a b a -÷-= 5.计算 (1)43 512525÷- (2) (3)2 1031 9 )4 1 ()2(4)2 1(----+-?- (4)() 5 .02 1 2001.04122432-?? ? ???+? ?? ??- - 6.已知112 2 3a a -+=,求下列各式的值(1)1 a a -+= ;(2)2 2 a a -+=

指数与指数幂的运算(一)

§2.1.1 指数与指数幂的运算(一) 学习目标:⒈理解n 次方根、根式概念,能正确应用根式的运算性质; ⒉提高认识、接受新事物的能力. 教学重点:根式的概念. 教学难点:根式的概念的理解. 教学方法:讲授式. 教具准备:投影. 教学过程: (I )复习引入: 师:请同学们思考下面的问题: 根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国国内生产总值(GDP )年平均增长率可望达到7.3%.那么,在2001~2020年,各年的国内生产总值可望为2000年的多少倍? 生:2001年我国的国内生产总值可望为2000年的(1+7.3%)倍; 2002年我国的国内生产总值可望为2000年的2(17.3%)+倍; 2003年我国的国内生产总值可望为2000年的3(17.3%)+倍; …… …… 设x 年后我国的国内生产总值为2000年的y 倍,那么 (17.3%)x y =+*(x N ∈,20)x ≤ 即从2000年起,x 年后我国的国内生产总值为2000年的(17.3%)x +倍. 师:整数指数幂n a 的含义是什么?它具有哪些运算性质? 生:n n a a a a a =??? 个 *()n N ∈,01a =,1n n a a -= *()n N ∈; 整数指数幂有如下运算性质: ⑴m n m n a a a +?=; ⑵()m n mn a a =; ⑶()n n n ab a b =,以上m n Z ∈、. 师:由于m n m n m n a a a a a --÷=?=,1()n n n n n n a a a b a b b b --??=?=?= ???,所以m n m n a a a -÷=归入性质⑴,n n n a a b b ??= ??? 归入性质⑶. 下面同学们再来看一个生物数学问题: 生物学家通过研究发现,当生物死亡以后,其体内含有的放射性同位素14C

指数与指数幂的运算

指数与指数幂的运算 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748 L 个; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* =≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(] - = (10)(1 2 2 1?????? = (11)=3 264

高中数学指数与指数幂的运算(一)

课题:指数与指数幂的运算(一) 课 型:新授课 教学目标: 了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法. 理解根式的概念 教学重点:掌握n 次方根的求解. 教学难点:理解根式的概念,了解指数函数模型的应用背景 教学过程: 一、复习准备: 1、提问:正方形面积公式?正方体的体积公式?(2a 、3a ) 2、回顾初中根式的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一 个数的立方等于a ,那么这个数叫做a 的立方根. → 二. 讲授新课: 1. 教学指数函数模型应用背景: ① 探究下面实例,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1.某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万? 实例2. 给一张报纸,先实验最多可折多少次(8次) 计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,问对折后的面积与厚度? ② 书P52 问题1. 国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍? 书P52 问题2. 生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后 体内碳14的含量P 与死亡时碳14的关系为57301()2 t P =. 探究该式意义? ③小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 2. 教学根式的概念及运算: ① 复习实例蕴含的概念:2(2)4±=,2±就叫4的平方根;3327=,3就叫27的立方根. 探究:4(3)81±=,3±就叫做81的?次方根, 依此类推,若n x a =,那么x 叫做a 的n 次方根. ② 定义n 次方根:一般地,若n x a =,那么x 叫做a 的n 次方根.( n th root ),其中1n >,n *∈N 例如:328=2= ③ 讨论:当n 为奇数时, n 次方根情况如何?, 例如: 33-, 记:x 当n 为偶数时,正数的n 次方根情况? 例如: 4(3)81±=,81的4次方根就是3±, 记: 强调:负数没有偶次方根,0的任何次方根都是0, 即. 0= ④ 练习:4b a =,则a 的4次方根为 ; 3b a =, 则a 的3次方根为 . ⑤ radical ), 这里n 叫做根指数(radical exponent ), a 叫做被开方数(radicand ). ⑥ 计算2→ 探究: n 、n n a 的意义及结果? (特殊到一般) n a =. 当n 是奇数时,a a n n =;当n (0)||(0)a a a a a ≥?==?-

指数与指数幂的运算习题.doc

《指数与指数幂的运算》习题 1.下列各式正确的是 ( ) =- 3 = a = 2 D . a 0= 1 2.若 (x - 5)0 有意义,则 x 的取值范围是 ( ) A . x>5 B . x = 5 C . x<5 D . x ≠5 3.若 xy ≠0,那么等式 4x 2y 3 =- 2xy y 成立的条件是 () A . x>0,y>0 B . x>0, y<0 C . x<0, y>0 D . x<0, y<0 n + 12 1 2n + 1 2 · 4.计算 2 (n ∈ N * )的结果为 ( ) n - 2 4 ·8 B .2 2n + 5 C . 2n 2 -2n + 6 D . 1 - ( ) 2n 7 2 5.化简 23- 6 10-4 3+2 2得 ( ) A .3+ 2 B .2+ 3 C .1+2 2 D . 1+2 3 1 - 1 a 2+ 1 ) 6.设 a - a 2 =m ,则 = ( 2 a A . m 2 - 2 B .2- m 2 C . m 2+ 2 D . m 2 7.根式 a - a 化成分数指数幂是 ________. 8.化简 11+ 6 2+ 11- 6 2 =________. 9.化简 ( 3+ 2)2010·( 3- 2)2011= ________. 10.化简求值: (1) - 1 1 3 +; 3 - (- )0 +16 4 8 - 1 - 1 a + b (2) ab - 1 (a , b ≠ 0).

高中数学实数指数幂及其运算测试题(有答案)-word文档

高中数学实数指数幂及其运算测试题(有答案)第三章基本初等函数(Ⅰ) 3.1指数与指数函数 3.1.1有理指数幂及其运算 【目标要求】 1.理解根式的概念。 2.理解分数指数的概念,掌握根式与分数指数幂的关系。3.掌握有理数幂的运算性质并注意灵活运用。 4.掌握用计算器计算有理指数幂的值。 【巩固教材稳扎马步】 1.下列说法中正确的是() A.-2是16的四次方根 B.正数的次方根有两个 C. 的次方根就是 D. 2.下列等式一定成立的是() A. =a B. =0C.(a3)2=a9D. 3. 的值是() A. B. C. D. 4.将化为分数指数幂的形式为( )[ A. B. C. D. 【重难突破重拳出击】 5.下列各式中,正确的是() A. B. C . D.

6.设b 0,化简式子的结果是() A.a B. C. D. 7.化简[3 ]的结果为 () A.5 B. C.- D.-5 8.若,则等于 ( ) A.2 -1 B.2-2 C.2 +1 D. +1 9. 成立的充要条件是() A. 1C.x<1 D.x2 10.式子经过计算可得到() A. B. C. D. 11.化简 (a>0,c<0 的结果为() A. B.- C.- D. 12.设x0, 等于() A. B.2或-2C.2D.-2 【巩固提高登峰揽月】 13.计算0.027 -(-)-2+256 -3-1+(-1)0=__________. 14.化简 =__________. 【课外拓展超越自我】 15.已知求的值. 第三章基本初等函数(Ⅰ) 3.1指数与指数函数

3.1.1有理指数幂及其运算 题号 1 2 3 4 5 6 7 8 9 10[ 11 12 答案 D D A A D A B A D D B C 13.1914. 15.解:由可得x+x-1=7 =27 =18, 故原式=2

高中数学指数与指数幂的运算

课题 指数与指数幂的运算(三) 课 型:练习课 教学目标: n 次方根的求解,会用分数指数幂表示根式, 掌握根式与分数指数幂的运算. 教学重点:掌握根式与指数幂的运算. 教学难点:准确运用性质进行计算. 教学过程: 一、复习提问: (学生回答,老师板演) 1. 提问:什么叫做根式? 运算性质? 2. 提问:分数指数幂如何定义?运算性质? 3. 基础习题练习: (口答下列基础题) ① n 为 时,(0) ||...........(0)x x x ≥?=?

1. 化简:)()(41412121y x y x -÷-. 2. 已知12(),0x f x x x π=?>,试求 )()(21x f x f ?的值 3. 用根式表示2134()m n -, 其中,0m n >. 4. 已知x +x -1=3,求下列各式的值:.)2(,)1(23232121--++x x x x 5. 求值:2325; 2327; 3236()49; 3225()4- 6. 已知32x a b --=+, . 7.从盛满1升纯酒精的容器中倒出31升,然后用水填满,再倒出3 1升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少? 四、小结: 1. 熟练掌握有理指数幂的运算法则,化简的基础. 2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 五,作业 化简:(1)2932)- (2 (3)

指数与指数幂的运算--计算题训练

2.1.1指数与指数幂的运算--计算题训练一.填空题(共3小题) 1.()﹣×(﹣)0+8×﹣= . 2.+lg4﹣lg= . 3.(0.027)﹣(﹣)﹣2+(2)﹣()0= . 二.解答题(共20小题) 4.计算: (1)(2)已知a+a=3,求值:a+a﹣1. 5.计算(字母为正数) (1)(4a2b)(﹣2a b)÷(﹣b); (2)﹣﹣(﹣1)0+(﹣1)2016+2﹣1.(1)(1)0﹣(1﹣0.5﹣2)÷()

7.计算:(1)?(﹣3)÷()(2)﹣(﹣)0++.8.计算 (1)(2a b)(﹣6a b)÷(2). 9.求下列各式的值 (1)(2)0.5+0.1﹣2+(2)﹣3π0+; (2)(﹣3)+(0.002)﹣10(﹣2)﹣1+(﹣)0. 11.(1)化简9×64÷30 (2)化简()×36÷3﹣3 (2)化简(a>0)

(1);(2).13.(1)计算 (2)化简. 14.(1)(2a b)(﹣6a b)÷(﹣3a b); (2)(×)6+()﹣×80.25﹣(﹣2005)0.

(1);(2). 16.计算下列各式: (1)(2)0.5+0.1﹣2+(2)+(2)(a﹣2b﹣3)(﹣4a﹣1b)÷(12a﹣4b﹣2c) 17.计算:化简:.18.化简下列各式: (1).(2). 19.计算: (1)+(0.008)﹣(0.25)×()﹣4

(2)(×)6+()﹣4()﹣×80.25﹣(﹣2009)0.20.化简: (1)()﹣2+(1﹣)0﹣(3)+; (2)a b﹣2?(﹣3a b﹣1)÷(4a b﹣3). 21.(1)计算4x(﹣3x y)÷[﹣6(x y)]; (2). 22.(1)[125+()+49];

高一数学指数与指数幂的运算

所有的成就在开始时都不过只是一个想法,坚持到底才是成为一个卓越的成功者的途径。 1 第十一节 指数与指数幂的运算 学习目标 1、理解根式、分数指数幂、无理数指数幂的含义 2、会进行根式、分数指数幂、无理数指数幂的简单化简和计算 知识框架 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根(n th root ),其中n >1,且n ∈N * . 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示. 式子n a 叫做根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ). 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0). 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n . 思考:n n a =a 一定成立吗? 结论:当n 是奇数时,a a n n = 当n 是偶数时,?? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义 规定:

所有的成就在开始时都不过只是一个想法,坚持到底才是成为一个卓越的成功者的途径。 2 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(11 *>∈>==-n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. 4.无理指数幂 指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 随堂练习 1、化简:778888)()(b a b a b -+++ 2、若,310,210==n m 则._____2 310=-n m 3、.______)3()3(22=? 4、.________39623223=?+?-- 5、设,30,5,363===c b a 则c b a ,,的大小关系为._____________ 6、设,21=+-x x 则._________22=+-x x 7、._______2222824=???

北京四中数学必修一【知识讲解】指数与指数幂的运算(基础)

指数与指数幂的运算 编稿:丁会敏 审稿:王静伟 【学习目标】 1.理解分数指数的概念,掌握有理指数幂的运算性质 (1)理解n 次方根,n 次根式的概念及其性质,能根据性质进行相应的根式计算; (2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化; (3)能利用有理指数运算性质简化根式运算. 2.掌握无理指数幂的概念,将指数的取值范围推广到实数集; 3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力; 4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质. 【要点梳理】 要点一、整数指数幂的概念及运算性质 1.整数指数幂的概念 () ()),0(1 010* Z*n a a a a a Z n a a a a n n a n n ∈≠= ≠=∈???=- 个 2.运算法则 (1)n m n m a a a +=?; (2)() mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根.

n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根 0=. 2.两个等式 (1)当1n >且* n N ∈时, n a =; (2)? ??=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①要注意上述等式在形式上的联系与区别; ②计算根式的结果关键取决于根指数的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. 要点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N * ,且 m n 为既约分数,分数指数幂可如下定义: 1 n a = m m n a == - 1m n m n a a = 要点四、有理数指数幂的运算 1.有理数指数幂的运算性质 ()Q b a ∈>>βα,00,, (1);a a a α β αβ +?= (2)();a a αβαβ = (3)();ab a b ααα = 当a>0,p 为无理数时,a p 是一个确定的实数,上述有理数指数幂的运算性质仍适用.

相关文档
最新文档