解三角形-解三角形的应用

解三角形-解三角形的应用
解三角形-解三角形的应用

解三角形的实际应用

知识点

仰角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线____方;俯角:目标视线在水平线____方时叫俯角.(如图所示)

正余弦定理应用类型

已知条件定理选用一般解法三边(,,

a b c)

两边和夹角

(如,,

a b C)

两边和其中一边的对角

正弦定理

(如,,

a b A)

两边和其中一边的对角

余弦定理

(如,,

a b A)

一边和二角

(如,,

a B C)

总结:单角用余弦,两角用正弦

题型一 测量距离的问题

【例1】. 某地出土一块类似三角形刀状的古代玉佩如图,其一角已破损,现测得如下数据:BC=2.57cm ,CE=3.57cm ,BD=4.38cm ,B=45°,C=120°.为了复原,请计算原玉佩两边的长(结果精确到0.01cm).

【例2】. 在某次军事演习中,红方为了准确分析战场形势,在两个相距为

2

3a

的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队的距离.

【巩固练习】

1.一蜘蛛向北爬行xcm 捕捉到一只小虫,然后向右转105?,爬行10cm 捕捉到另一只小虫,这时它向右转135?爬行回它的出发点,那么x = .

2.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15?的方向上,且此时货轮与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔S 在货轮的东北方向,则货轮的速度为 ( ).

A .()2062+海里/小时 B.()2062-海里/小时

C.()2063+海里/小时

D.()2063-海里/小时

3.某海岛周围38海里有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30海里后测得此岛在东北方向,若不改变航向,则此船( )触礁的危险(填“有”或 “无”)。

题型二 测量高度的问题

【例1】. 如图测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面 内的两个测点C 与D .现测得∠BCD=α,∠BDC=β,CD=s ,并在点C 测得塔顶A 的仰角为,求塔高AB .

【例2】. 某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,ο60=∠BAC ,在A 地听到弹射声音的时间比B 地晚

17

2

秒。A 地测得该仪器在C 处时的俯角为15°,A 地测得最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH 。(声音的传播速度为340米/秒)

【过关练习】

1.在 200m 高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为ο

30和ο

60,则塔高为( )。

A . m 3400

B . m 33400

C . m 33200

D . m 3

200

2.有一长为10m 的斜坡,倾斜角为ο

75 ,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为ο

30,则坡地要延长( )。

A . m 5

B . m 10

C . m 210

D . m 310

3.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为106m ,则旗杆的高度为 m.

题型三 测量角度问题

【例1】. 如图,为了解某海域海底构造,在海平面内一条直线上的C B A ,,,三点进行测量,已知AB=50m ,于A 处测得水深AD=80m ,于B 处测得水深BE=200m ,于C 处测得水深C ,求DEF ∠的余弦值。

【例2】. 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,求cos θ的值.

【过关练习】

1:两座灯塔A 和B 与海岸观察站的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站的南偏东60°,则灯塔A 在灯塔B 的( )

A. 北偏东10°

B. 北偏西10°

C. 南偏东10°

D. 南偏西10°

2:如图所示,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°方向,且与它相距28n mile. 此船的航速是 n mile/h.

题型四:解三角形的综合应用

【例1】.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC ,ED ,则sin CED ∠=( ). A. 310 B. 10 C. 5 D. 5

【例2】.江岸边有一炮台高30m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45?和60?,而且两条船与炮台底部连线成30?角,则两条船相距________m .

【过关练习】

1.如图所示,已知在梯形ABCD 中(//AB CD ),2CD =,19AC =,60o BAD ∠=,求梯形的高DE

B

D

E

A

2. 若海上有,,A B C 三个小岛,测得,A B 两岛相距10海里,60,75BAC ABC ∠=?∠=?,则,B C 间的距离是________海里.

3.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( ). A .0.5小时 B .1小时 C .1.5小时

D .2小时

课后练习

【补救练习】

1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( ) A.103海里 B.

3

6

10海里

C. 52海里

D.56海里

2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( ) A.103海里 B.

3

6

10海里 C. 52海里 D.56海里 3.如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40米的C 、D 两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,则AB 的距离是( ). (A )202

(B )203

(C )402

(D )206

4、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( ) A . 7

150

分钟 B .

7

15

分钟 C .21.5分钟 D .2.15分钟

5.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为300,600,则塔高为( )

A

400

3米B

4003

3

C

2003

3

米D200

3

6.如图所示,为了测河的宽度,在一岸边选定A、B两点,望对岸标记物C,测得∠CAB=30°,∠CBA=75°,AB=120m,则河的宽度为:.

A.40m B.50m C.60m D.70m

【巩固练习】

1.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为( ) A.锐角三角形 B.直角三角形

C.钝角三角形 D.不确定

2、如图,某货轮在A出看灯塔B在货轮的北偏东75°方向,距离为6

12海里;在A处看灯塔C在货轮的北偏西30°方向,距离为3

8海里,货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°方向,求:

①A与D间的距离

②灯塔C与D间的距离。

3、平地上有A、B两点,A在山(高为CD)的正东方向,,B在山的东南方向,B在A的南偏西15°距A 地300m的地方,在A处测山顶C的仰角是30°,求山高。

A

C

D B

4、在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c 已知()

A A m sin 3,cos 2=,()A A n cos 2,cos -=,

1-=?n m

①求A 的大小;

②若32=a ,2=c ,求△ABC 的面积。

【拔高练习】

1.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如右图所示)的东偏南θ?

?

???cos θ=210方向300 km 的海面P 处,并以20 km/h 的速度向西偏北45°方向移动,台风侵袭的范围为

圆形区域,当前半径为60 km ,并以10 km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?

2.在ABC ?中,角C B A ,,所对的边分别是c b a ,,,若3

,6)(2

=

+-=C b a c ,则ABC ?的面积是( )

A. 3

B.

239 C. 2

3

3 D. 33

【学霸优课】高考数学(理)一轮复习对点训练:4-4-2 解三角形及其综合应用(含答案解析)

1.钝角三角形ABC 的面积是1 2,AB =1,BC =2,则AC =( ) A .5 B. 5 C .2 D .1 答案 B 解析 由题意知S △ABC =1 2AB·BC·sinB , 即12=12×1×2sinB ,解得sinB =22. ∴B =45°或B =135°. 当B =45°时,AC 2=AB 2+BC 2-2AB·BC·cosB =12+(2)2-2×1×2×22=1. 此时AC 2+AB 2=BC 2,△ABC 为直角三角形,不符合题意; 当B =135°时,AC 2=AB 2+BC 2-2AB·BC·cosB =12+(2)2-2×1×2× ? ?? ? -22=5,解得AC = 5.符合题意.故选B. 2.已知△ABC 的内角A ,B ,C 满足sin2A +sin(A -B +C)=sin(C -A -B)+1 2,面积S 满足1≤S≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( ) A .bc(b +c)>8 B .ab(a +b)>16 2 C .6≤abc≤12 D .12≤abc≤24 答案 A 解析 由sin2A +sin(A -B +C)=sin(C -A -B)+1 2得,sin2A +sin[A -(B -C)]+sin[A +(B -C)]=12,所以sin2A +2sinAcos(B -C)=12.所以2sinA[cosA +cos(B -C)]=1 2,所以 2sinA[cos(π-(B +C))+cos(B -C)]=12,所以2sinA[-cos(B +C)+cos(B -C)]=1 2 , 即得sinAsinBsinC =1 8.根据三角形面积公式 S =1 2absinC ,① S =1 2acsinB ,② S =1 2 bcsinA ,③

完整版三角形中的几何计算解三角形的实际应用举例

三角形中的几何计算、解三角形的实际应用举例 C知负整介 1. 仰角和俯角 在视线和水平线所成的角中,视线在水平线____________ 的角叫仰角,在水平线____________ 的角叫俯角(如图①). ① ② 2. 方位角 3. 方向角 相对于某一正方向的水平角(如图③) (1) 北偏东a °即由指北方向顺时针旋转a (2) 北偏西a°即由指北方向逆时针旋转 况°到达目标方向. (3) 南偏西等其他方向角类似. 【思考探究】1仰角、俯角、方位角有什么区别? 从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 到达目标方向.

何图形为背景,求解有关长度角度、面积、最值和 转化至u三角形中,利用正軽舷理加以解决n在解决 _ 常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通 常是转化到三角形中,利用正、余弦定理加以解决?在解决某些具体问题时,常先引 入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来, 再利用正、余弦定理列出方程,解之. 如右图,D是直角△ ABC斜边BC上一点,AB = AD, 记/ CAD = ,/ ABC= B . (1)证明:sin + cos 2B= 0; ⑵若AC= 3 DC,求B的值. =10,AB= 14,/ BDA = 60°,/ BCD= 135° 贝S BC 的长为 、最值和优化等问题,通常 亠一某些具体问题时, 【变式训练】 1.如图,在四边形ABCD中,已知AD丄CD,AD A R

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

解三角形常见题型

绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.在ABC ?中,若00120306===B A a ,,,则△ABC 的面积是= ( ). A .93 B.9 C.183 D.18 【答案】A 【解析】 试题分析:在ABC ?中,0 30180,120,30=--=∴==B A C B A Θ,ABC ?∴是等腰三角形, 6==a c ,由三角形的面积公式得 392 36621sin 21=???== ?B ac S ABC . 考点:解三角形. 2.[2014·广西模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3bsinA ,则△ABC 的面积等于( ) A. 12 B.32 C.1 D.34 【答案】A 【解析】∵a =3bsinA ,∴由正弦定理得sinA =3sinBsinA.∴sinB = 1 3 .∵ac =3,∴△ABC 的面积S =12acsinB =12×3×13=1 2 ,故选A.

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 3.在ABC ?中,已知tan AB AC A ?=u u u r u u u r ,当6 A π =时,ABC ?的面积为________. 【答案】1 6 【解析】由tan AB AC A ?=u u u r u u u r 得,tan tan 26||||cos tan ,||||cos 3 cos 6 A AB AC A A AB AC A π π?=?== =u u u r u u u r u u u r u u u r , 所以,11221 ||||sin sin 223636 ABC S AB AC A π?=?=??==u u u r u u u r . 考点:平面向量的数量积、模,三角形的面积. 4.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知a 、b 、c 成等比数列,且a 2 -c 2 =ac -bc ,则A =________,△ABC 的形状为________. 【答案】60° 正三角形 【解析】∵a 、b 、c 成等比数列,∴b 2 =ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2 =bc . 在△ABC 中,由余弦定理得cos A =2222b c a bc +-=2bc bc =1 2 ,∴A =60°. 由b 2 =ac ,即a =2b c ,代入a 2-c 2 =ac -bc , 整理得(b -c )(b 3+c 3+cb 2 )=0, ∴b =c ,∴△ABC 为正三角形. 三、解答题(题型注释) 5.在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,设S 为△ABC 的面积,且 22 2)S b c a = +-。 (Ⅰ)求角A 的大小; (Ⅱ)若6a =,求△ABC 周长的取值范围. 【答案】(1)3 π = A ;(2)周长的取值范围是(12,18]. 【解析】 试题分析:(1)在解决三角形的问题中,面积公式

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

高考数学异构异模复习第四章三角函数4.4.2解三角形及其综合应用撬题文

2018高考数学异构异模复习考案 第四章 三角函数 4.4.2 解三角形 及其综合应用撬题 文 1.钝角三角形ABC 的面积是1 2,AB =1,BC =2,则AC =( ) A .5 B. 5 C .2 D .1 答案 B 解析 由题意知S △ABC =1 2AB ·BC ·sin B , 即12=12×1×2sin B ,解得sin B =22. ∴B =45°或B =135°. 当B =45°时,AC 2 =AB 2 +BC 2 -2AB ·BC ·cos B =12 +(2)2 -2×1×2×2 2 =1. 此时AC 2 +AB 2 =BC 2,△ABC 为直角三角形,不符合题意; 当B =135°时,AC 2 =AB 2 +BC 2 -2AB ·BC ·cos B =12 +(2)2 -2×1×2×? ?? ?? -22=5,解得AC = 5.符合题意.故选B. 2.已知△ABC 的内角A ,B ,C 满足sin2A +sin(A -B +C )=sin(C -A -B )+1 2,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( ) A .bc (b +c )>8 B .ab (a +b )>16 2 C .6≤abc ≤12 D.12≤abc ≤24 答案 A 解析 由sin2A +sin(A -B +C )=sin(C -A -B )+1 2得,sin2A +sin[A -(B -C )]+sin[A +(B -C )]=12,所以sin2A +2sin A cos(B -C )=12.所以2sin A [cos A +cos(B -C )]=1 2,所以 2sin A [cos(π-(B +C ))+cos(B -C )]=12,所以2sin A [-cos(B +C )+cos(B -C )]=1 2 , 即得sin A sin B sin C =18.根据三角形面积公式S =1 2 ab sin C ,① S =12ac sin B ,② S =12 bc sin A ,③ 因为1≤S ≤2,所以1≤S 3≤8.将①②③式相乘得1≤S 3 =18a 2b 2c 2sin A sin B sin C ≤8,即 64≤a 2b 2c 2 ≤512,所以8≤abc ≤162,故排除C ,D 选项,而根据三角形两边之和大于第三

三角函数-解三角形的综合应用

学思堂教育个性化教程教案 数学科教学设计 学生姓名教师姓名刘梦凯班主任日期时间段年级课时教学内容 教学目标 重点 难点 教学过程 命题点二解三角形 难度:高、中、低命题指数:☆☆☆☆☆ 1.(2015·安徽高考)在△ABC中,AB=6,∠A=75°,∠B=45°,则 AC=________. 2.(2015·广东高考改编)设△ABC的内角A,B,C的对边分别为a,b, c.若a=2,c=2 3,c os A= 3 2 且b<c,则b=________. 3.(2015·北京高考)在△ABC中,a=3,b=6,∠A= 2π 3 ,则∠B= ________. 4.(2015·福建高考)若△ABC中,A C=3,A=45°,C=75°,则 BC=________. 5.(2015·全国卷Ⅰ)已知a,b,c分别为△ABC内角A,B,C的对边, sin2B=2sin A sin C. (1)若a=b,求cos B;[来源:学科网ZXXK] (2)设B=90°,且a=2,求△ABC的面积. 教 学 效 果 分 析

教学过程 6.(2015·山东高考)△ABC中,角A,B,C所对的边分别为a,b,c. 已知cos B= 3 3 ,sin(A+B)= 6 9 ,ac=23,求sin A和c的值. 7.(2015·全国卷Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD= 2DC. (1)求 sin B sin C ; (2)若∠BAC=60°,求∠B. 8.(2015·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b, c,已知tan ? ? ?? ? π 4 +A=2. (1)求 sin 2A sin 2A+cos2A 的值; (2)若B= π 4 ,a=3,求△ABC的面积.[来源:学科 教 学 效 果 分 析

北师版数学高二-必修5学案 2.3 解三角形的实际应用举例

§3 解三角形的实际应用举例 [学习目标] 1.能够从实际问题中抽象出数学模型,然后运用正弦、余弦定理及三角函数的有关知识加以解决.2.巩固深化解三角形实际问题的思维方法,养成良好的研究、探索习惯.3.进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力. [知识链接] 在下列各小题的空白处填上正确答案: (1)如图所示,坡角是指坡面与水平面的夹角.(如图所示) (2)如上图,坡比是指坡面的铅直高度与水平宽度之比,即i =tan α=h l (i 为坡比,α为坡角). (3)东南方向:指经过目标的射线是正东和正南的夹角平分线. (4)方位角:从某点的北方向线起,顺时针方向到目标方向线之间的水平夹角,如方位角45°,是指北偏东45°,即东北方向. [预习导引] 1.仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图所示). 2.方向角:相对于某一正方向的水平角.(如图所示) ①北偏东α即由指北方向顺时针旋转α到达目标方向. ②北偏西α即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.

要点一 测量距离问题 例1 某观测站C 在目标A 的南偏西25°方向,从A 出发有一条南偏东35°走向的公路,在C 处测得与C 相距31千米的公路上的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 为21千米,求此人在D 处距A 还有多少千米? 解 如图所示,易知∠CAD =25°+35°=60°,在△BCD 中,cos B =312+202-2122×31×20=23 31, 所以sin B =123 31 . 在△ABC 中,AC =BC sin B sin ∠CAB =31× 12331sin 60°=24(千米). 由BC 2=AC 2+AB 2-2AC ·AB ·cos ∠CAB 得AB 2-24AB -385=0, 解得AB =35或AB =-11(舍去). ∴AD =AB -BD =15(千米), 故此人在D 处距A 还有15千米. 规律方法 测量距离问题分为两种类型:两点间不可通又不可视,两点间可视但不可达.解决此问题的方法是,选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正弦、余弦定理求解. 跟踪演练1 如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522 m 答案 A 解析 ∵∠ACB =45°,∠CAB =105°,

解三角形的实际应用举例

解三角形的实际应用举例 【学习目标】 1.了解斜三角形在测量、工程、航海等实际问题中的应用;能选择正弦定理、 余弦定理解决与三角形有关的实际问题. 2.在解三角形的实际问题中,进一步体会数学建模的思想,掌握数学建模的 方法. 3.体会数学知识来源于实际生活,体会正弦定理、余弦定理在实际生活中的 广泛应用. 【学习重点】 熟练掌握正弦定理、余弦定理和面积公式,结合几何性质建模解决生活中的应用问题. 【学习难点】 数学建模的过程及解三角形的运算. 【课前预习案】 1.有关概念: 仰角与俯角:在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图 ). 方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②) 2.方向角:相对于某一正方向的水平角(如图③) (1)北偏东α°即由指北方向顺时针旋转α°到达目标方向. a (2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似. 思考:方位角与方向角的区别

3. 坡度与坡角:坡面与水平面的夹角叫坡角,坡面与垂直高度 h 和水平宽度l 的比叫坡度. 1. 解三角形的一般思路 (1)读懂题意,理解问题的实际背景,理解题中的有关名词的含义,如坡度、仰角、俯角、方位角等. (2)根据题意画出示意图,将实际问题抽象成解三角形模型, (3)选择正弦定理、余弦定理等有关知识求解. (4)将三角形的解还原为实际意义,检验解出的答案是否具有实际意义,对解进行取舍. 【课堂探究案】 解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 探究一:测量地面上两个不能到达的地方之间的距离 例1.如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是42m ,∠BAC=45?,∠ACB=?75。求A 、B 两点的距离. 变式1.为了开凿隧道,要测量隧道上D 、E 间的距离,为此在山的一侧选取适当点C ,如图,测得CA=400m ,CB=600m , ∠ACB=60°,又测得A 、B 两点到隧道口的距离AD=80m ,BE=40m(A 、D 、E 、B 在一条直线上),计算隧道DE 的长. 探究二:测量高度问题 例2、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,H 、G 、B 三点在同一条水平直线上。在H 、G 两点用测角仪器测得A 的仰角分别是030ADE ∠=、045ACE ∠=、20CD m =,测角仪器的高是1h m =,求建筑物高度

解三角形-解三角形的应用

解三角形的实际应用 知识点 仰角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线____方;俯角:目标视线在水平线____方时叫俯角.(如图所示) 正余弦定理应用类型 已知条件定理选用一般解法三边(,, a b c) 两边和夹角 (如,, a b C) 两边和其中一边的对角 正弦定理 (如,, a b A) 两边和其中一边的对角 余弦定理 (如,, a b A) 一边和二角 (如,, a B C) 总结:单角用余弦,两角用正弦

题型一 测量距离的问题 【例1】. 某地出土一块类似三角形刀状的古代玉佩如图,其一角已破损,现测得如下数据:BC=2.57cm ,CE=3.57cm ,BD=4.38cm ,B=45°,C=120°.为了复原,请计算原玉佩两边的长(结果精确到0.01cm). 【例2】. 在某次军事演习中,红方为了准确分析战场形势,在两个相距为 2 3a 的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队的距离. 【巩固练习】 1.一蜘蛛向北爬行xcm 捕捉到一只小虫,然后向右转105?,爬行10cm 捕捉到另一只小虫,这时它向右转135?爬行回它的出发点,那么x = . 2.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15?的方向上,且此时货轮与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔S 在货轮的东北方向,则货轮的速度为 ( ). A .()2062+海里/小时 B.()2062-海里/小时 C.()2063+海里/小时 D.()2063-海里/小时

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

解三角形常见题型

解三角形知识点、常见题型及解题方法 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3π= A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ?? +πB B .36sin 34+??? ? ?+πB C .33sin 6+??? ?? +πB D .36sin 6+??? ? ?+πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知66cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 22?-+=, x x 6 636223852??++=,解得1=x ,37-=x (舍去)

解三角形在实际生活中的应用

解三角形在实际生活中的应用 高一数学教研组冯一波 一、背景说明: 在我国古代就有嫦娥奔月的神话故事。明月高悬,我们仰望星空,会有无限遐想。不禁会问,遥不可及的月球离地球到底有多远?1671年,两个法国天文学家测出大约距离为385400千米。他们是怎样测出的呢?在数学发展史上,受到天文测量、航海测量和地理测量等方面实践活动的推动。解三角形的理论不断发展,并被用于解决许多测量问题方面。 二、课题目的和意义: 三角形是基本的几何图形,三角形中的数量关系是基本的数量关系,有着极其广泛的应用。我们将在以前学习的有关三角形、三角函数和解直角三角形的知识基础上,通过对于任意三角形边角关系的研究,发现并掌握三角形中的变长与角度之间的数量关系,并解决一些实际问题。学而不思则罔,只有通过自己的独立思考才能真正学会数学,同时应当掌握科学的思维方法,特别是学习类比、推广等数学思考方法,提高我们的数学思维能力。三、设计思想 本节重点利用解斜三角形解决相关实际问题.解斜三角形知识在生产实践中有着广泛的应用,解斜三角形有关的实际问题过程,贯穿了数学建模的思想.这种思想就是从实际出发,经过抽象概括,把它转化为具体问题中的数学建模,然后通过推理演算,得出数学模型的解,再还原成实际问题的解.强化上述思维过程,既是本节的重点,

又是本节难点. 解三角形应用题的另一个难点是运算问题,由于将正弦定理、余弦定理看成几个“方程“,那么解三角形的应用题实质上就是把已知信息按方程的思想进行处理,解题时应根据已知和未知合理选择一个“容易解”的方程,从而是解题过程简洁.同时,由于具体问题中给出的数据通常是近似值,故运算过程一般较为复杂,必须借助于计算器计算,因此要加强训练,达到“算法简炼,算式工整,计算准确”的要求. 知识结构: 四、实际应用 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123cos 22312031 BD BC CD B BC BD +-+-===???, sin 31B =. 在ABC ?中,sin 24sin BC B AC A ?==. 由余弦定理,得2222cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2 243850AB AB --=,解得35AB =或11AB =-(舍). A C D 31 21 20 35? 25? 东 北

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1.锐角中,已知,,则的取值范围是 A. , B. , C. , D. , 2.在中,角,,的对边分别为,,,且满足,则 的形状为 A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3.在中,,,,则的值等于 A. B. C. D. 4.在中,有正弦定理:定值,这个定值就是的外接圆 的直径如图2所示,中,已知,点M在直线EF上从左到右运动点M不与E、F重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么 A. 先变小再变大 B. 仅当M为线段EF的中点时,取得最大值 C. 先变大再变小 D. 是一个定值 5.已知三角形ABC中,,边上的中线长为3,当三角形ABC的面积最大 时,AB的长为 A. B. C. D. 6.在中,,,分别为内角,,所对的边,,且满足若 点O是外一点,,,平面四边形OACB 面积的最大值是 A. B. C. 3 D. 7.在中,,, ,则使有两解的x的范围是 A. , B. , C. , D. , 8.的外接圆的圆心为O,半径为1,若,且,则 的面积为 A. B. C. D. 1 9.在中,若,则是

A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形 10.在中,已知,,分别为, , 的对边,则为 A. B. 1 C. 或1 D. 11.设锐角的三内角A、B、C所对边的边长分别为a、b、c,且,,则b 的取值范围为 A. , B. , C. , D. , 12.在中,内角,,所对边的长分别为,,,且满足 ,若,则的最大值为 A. B. 3 C. D. 9 二、填空题(本大题共7小题,共35.0分) 13.设的内角,,所对的边分别为,,且,则角A的大 小为______ ;若,则的周长l的取值范围为______ . 14.在中,, , 所对边的长分别为,,已知 ,,则______ . 15.已知中,角A、B、C的对边分别是a、b、c,若,则 的形状是______ . 16.在中,若,则的形状为______ . 17.在中,角,,的对边分别为,,,若, 且,则______ .18.如果满足,,的三角形恰有一个,那么k的取值范围 是______ . 19.已知的三个内角,,的对边依次为,,,外接圆半径为1,且满足 ,则面积的最大值为______ . 三、解答题(本大题共11小题,共132.0分) 20.在锐角中,,,是角,,的对边,且. 求角C的大小; 若,且的面积为,求c的值. 21.在中,角,,的对边分别为,,已知. 求角A的大小; 若,,求的面积.

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

解三角形题型汇总.docx

《解三角形》知识点归纳及题型汇总 1、①三角形三角关系: A+B+C=180°; C=180°— (A+B); ② . 角平分线性质 : 角平分线分对边所得两段线段的比等于角两边之比. ③ . 锐角三角形性质:若A>B>C则60 A 90 ,0 C 60 . 2、三角形三边关系: a+b>c; a-b

的外接圆的半径,则有 a b c 2R .sin sin sin C 5、正弦定理的变形公式: ①化角为边: a2Rsin, b2Rsin, c2Rsin C ; ②化边为角: sin a, sin b, sin C c ; 2R2R2R ③ a : b : c sin:sin:sin C ; ④a b c a b c=2R sin sin sin C sin sin sin C 6、两类正弦定理解三角形的问题: ①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角. 7、三角形面积公式: S C1 bc sin1 ab sin C1 ac sin.=2RsinAsinBsinC=abc 2 2224R = r (a b c) =p( p a)( p b)( p c) ( 海伦公式 ) 2 8、余弦定理:在 C 中, a2b2c22bc cos,b2a2c22ac cos , c2a2b22ab cosC .9、余弦定理的推论: cos b2c2 a 2, cos a2c2b2, cosC a2b2c2. 2bc2ac2ab 10、余弦定理主要解决的问题: ①已知两边和夹角,求其余的量. ②已知三边求角

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形应用

解三角形应用举例(1)教学目标 (a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 (b)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 (c)情感与价值:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 (2)教学重点、难点 教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 (3)学法与教学用具 让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型

的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。 直角板、投影仪(多媒体教室) (4)教学设想 1、复习旧知 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实

相关文档
最新文档