《高分子化学》张形欣主编,第六章开环聚合

《高分子化学》张形欣主编,第六章开环聚合
《高分子化学》张形欣主编,第六章开环聚合

原子转移自由基聚合及其应用新进展(精)

原子转移自由基聚合及其应用新进展 原子转移自由基聚合(ATRP),是近几年迅速发展并有着重要应用价值的一种活性聚合技术。自从1956 年Szwarc[1]等报道了一种没有链转移和链终止的负离子聚合技术以来,活性聚合的研究性得到了巨大的发展,并一直是高分子学术界高度重视的领域。1983年Webster等[2]成功地实现了适用于丙烯酸酯类单体的基团转移聚合。随后又成功的实现了开环聚合[3]、活性正离子聚合[4,5]、络合负离子聚合[6] 以及无金属离子的活性负离子聚合[7]。1993年Xerox公司在苯乙烯的普通自由基聚合体系中加入有机自由基捕捉剂(Tempo体系)[8],使反应体系在聚合过程中自由基保持较低的浓度,从而抑制了自由基的副反应。第一次实现了" 活性"自由基聚合。与此同时,1995年《美国化学会志》报道了CarnegieMellon大学Matyjaszewski教授和王锦山博士共同开发的原子转移自由基聚合(ATRP)[9],成功地实现了真正意义上的"活性"/可控自由基聚合,取得了活性自由基聚合领域的历史性突破。 1. ATRP基本原理 ATRP的基本原理如Figure 1.1所示: Figure 1.1 Mechanism of atom transfer radical polymerization

式中,R-X是引发剂卤代烃(X-般为Cl或Br),M t n为过渡金属络合物,它由过渡金属离子和配位剂构成。在引发阶段,处于低氧化态的过渡金属络合物(盐)M t n从一有机卤化物-X中夺取卤原子X,生成引发自由基R·及处于高氧化态的金属络合物(盐) M t n + 1 -X。R·引发可给出卤原子X,即M t n + 1-X 与R·/R-M·发生减活反应生成R-X/R-M-X。如果R-Mn-X (n = 1, 2, ...)与R-X-样可与M t n发生促活反应生成相应的R-Mn及M t n + 1-X,同时若R-Mn·与M t n + 1-X又可反过来发生减活反应生成R-Mn-X及M t n,在自由基聚合反应进行的同时,就会始终伴随着一个自由基活性种Mn·与有机大分子卤化物休眠种Mn-X的可逆转换平衡反应。卤原子的可逆转移控制着[Mn·],而一个快速的卤原子转换速率将控制着分子量及分子量分布。图示表明:ATRP的基本原理其实是通过一个交替的“活化—去活”可逆反应使得体系中游离基浓度处于极低,迫使不可逆终止反应被降低到最低程度,而链增长反应仍可进行,从而实现“活性”聚合[10]。由于在这种聚合反应中,只是将自由基活性种的浓度加以控制,链终止和链转移被极大地抑制了,所以这种聚合反应只能是可控聚合或“活性”聚合,而不是真正的活性聚合。同时,在这种可控聚合反应中包含着卤原子从卤化物到金属络合物(盐)、再从金属卤化物转移到自由基这样一个反复循环的原子转移过程,加之反应活性种为自由基,所以称为原子转移自由基聚合。由于已有实验证明某些基团也可发生类似的转移自由基反应,故王锦山等把这样一种反应称为“原子(基团)转移自由基聚合”[11]。 ATRP研究大致可以分成两个体系:一个是美国Carnegie-Mellon

活性基团聚合

基团转移聚合 摘要:介绍了基团转移聚合的机理和近几年来基团转移聚合在聚合单体、引发剂、催化剂、 聚合实施方法等方面的新进展。基团转移聚合技术在各种特定结构高分子合成中起到重要作用。 关键词:基团转移聚合,活性,单体,引发剂,催化剂 自1956年提出活性聚合的概念以来,活性聚合技术得到迅速发展。活性聚合技术的发展为合成结构和组成可控的聚合物材料提供了可能,使聚合物材料的应用范围进一步扩大,成为21世纪材料科学发展的基础。目前,活性聚合方法主要有活性阴离子聚合、阳离子聚合、自由基聚合、配位聚合和基团转移聚合等[1-2]。 1983年美国杜邦公司的O.w.webster在美国化学会186次会上宣读了“基团转移聚合反应”(Group Transfer Polymerization简称GTP)“,立即在世界上引起强烈反应[3]。GTP它是以α、β—不饱和酯、酮、酰胺和腈为单体,以带有硅、锗、锡烷基基团的化合物为引发剂,用阴离子型或路易斯酸型化合物作催化剂,选用适当的有机物作溶剂,通过催化剂与引发剂端基的硅、锗、锡原子配位,激发硅、锗、锡原子,使之与单体的羰基氧或氮结合成共价键单体中的双键完成加成反应,硅、锗、锡烷基基团移至末端形成“活性”化合物。以上过程反复进行,得到相应的聚合物。此项反应技术被认为是继本世纪50年代Ziegler 发现用配位催化剂使烯烃定向聚合之后的又一重要的新聚合技术。 GTP在这短短的几年里发展迅速,在控制聚合物分子量、分子量分布、端基官能化和反应条件等方面比通常的聚合方法具有更多的优越性,从而为“高分子的分子设计”又增添了新内容;同时已引用此种技术生产汽车面漆、合成液晶聚合物和一些特殊的聚合物,如嵌段、遥爪型高分子材料等。可以预料,在不久的将来,GTP技术会取得更大的进展[4-5]。 一、GTP反应机理 目前基团转移聚合中研究得最多的单体是甲基丙烯酸甲酯(MMA)和丙烯酸乙酯(EA)。由于MMA的活性最大,因此研究得更为深入。下面就以MMA为单体,乙烯酮的硅烷缩醛类化合物为引发剂来介绍反应机理。 1.链引发 亲核性阴离子催化剂Nu-先与引发剂或活性聚合物中活性端基上的硅原子配位,使硅原子活化,然后活化的硅原子与单体中羧基氧原子相连形成六配位硅的中间过渡态,最后形成中间体的端基上连着活性基团。引发剂与单体进行如下Michael加成反应,在端基上重新生成一个三甲基硅氧基和一个双键[6]。

(完整版)高分子化学潘祖仁答案(第五版)..

第一章绪论 思考题 1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以 X表示。 n 2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule 的术语。从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。低聚物的含义更广泛一些。 3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。选择其常用 分子量,计算聚合度。 聚合物结构式(重复单元) 聚氯乙烯-[-CH2CHCl-]- n 聚苯乙烯-[-CH2CH(C6H5)-]n

第六章离子聚合

第六章离子聚合 一、名称解释 1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。 2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主 引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。 6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。 7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚 合等同于立构规整聚合。 二、选择题 1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B ) A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO2 2. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B ) A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸 3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C ) A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合 4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C ) A 阴离子本身比较稳定 B 阴离子无双基终止而是单基终止 C 从活性链上脱出负氢离子困难 D 活化能低,在低温下聚合 5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A ) A 阴离子聚合 B 阳离子聚合 C 自由基聚合D自由基共聚合 6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D) A. BuLi B. AIBN C. AlCl3+H2O D. 萘+钠 7. 制备分子量分别较窄的聚苯乙烯,应该选择(B) A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应

开环易位聚合

开环易位聚合的研究进展 摘要:本文综述了开环易位聚合(Ring-opening metathesis polymerization,ROMP)的研究进展,详述了研究者们合成新的开环易位聚合催化剂的研究工作和利用开环易位聚合制得具有优异性能的聚合物的研究工作。 关键词:开环易位聚合;催化剂;降冰片烯及其衍生物 引言 开环易位聚合( Ring-opening metathesis polymerization, 简写为ROMP) 反应由于具有活性聚合的特点, 已经得到越来越多的关注[1]。ROMP的起源可以追溯到20世纪50年代中期。近年来,研究者们证明了很多烯烃易位反应的中间体,使得ROMP技术得到了广泛的普及和应用。新型的活性ROMP催化剂的研究及发展,使得这种活性聚合反应可以在常温、常压等温和条件下进行,这给该方法增添了新的活力。目前, 该领域的研究主要集中在合成高效的ROMP反应催化剂[2]和基于ROMP反应制备多功能的新材料[3]等方面。 1.烯烃易位反应简介 2005年,法国石油学院的伊夫·肖万(Y. Chauvin)、美国麻省理工学院的罗伯特·格拉布(Robert H. Grubbs)和加利福尼亚州加州理工学院的理查德·施罗克(Richard R. Schrock)三位科学家获得了诺贝尔化学奖。现在,越来越多的结构明确、稳定高效的催化剂被合成,使得烯烃易位反应能够和传统的碳-碳键的形成的合成方法相媲美。因此,与烯烃易位反应相关的研究已成为化学界极为重要的课题。 1.1烯烃易位反应基本概念 易位反应是指两种物质互相交换成分生成两种新的物质的反应。例如:AB+CD →AC+BD。同样的,两种烯烃互相交换双键两端的基团,从而生成两种新的烯烃的反应便是烯烃易位反应。更直观的表示如图1.1:

开环聚合

第八章 开环聚合 8.1 概述 高分子化学中,以环状单体通过开环聚合来合成聚合物,同样具有重要的地位。在这种聚合过程中,增长链通过不断地打开环状结构,形成高聚物: 以环醚为例,环氧乙烷经开环聚合反应,得到一种聚醚,即聚氧化乙烯。这在工业上已得到应用。 能够进行开环聚合的单体很多,如环状烯烃,以及内酯、内酰胺、环醚、环硅氧烷等环内含有一个或多个杂原子的杂环化合物。开环聚合既具有某些加成聚合的特征,也具有缩合聚合的特征。由开环聚合得到的聚合物,重复单元与环状单体开裂时的结构相同,这与加成聚合相似;而聚合物主链中往往含有醚键、酯键、酰胺键等,与缩聚反应得到的聚合物常具有相同的结构,只是无小分子放出。开环聚合与缩聚反应相比,还具有聚合条件温和、能够自动保持官能团等物质的量等特点,因此开环聚合所得聚合物的平均分子质量,通常要比缩聚物高得多。有些单体如乳酸,采用缩聚反应无法得到高分子质量的聚合物;而采用乳交酯的开环聚合,就能够获得高分子质量的聚乳酸。但是,与缩聚反应相比,开环聚合可供选择的单体较少,例如二元酸与二元醇能够通过缩聚获得聚酯;而开环聚合,只有相当于α,ω-羟基酸的环内酯可供选择。聚酰胺的情况也是如此。另外,有些环状单体合成困难,因此由开环聚合所得到的聚合物品种受到限制。开环聚合就机理而言,有些属于逐步聚合,有些属于连锁聚合。 8.1.1 聚合范围及单体可聚性 如前所述,环醚、环酯、环酰胺、环硅氧烷等能够进行开环聚合。此外,环胺、环硫化物、环烯烃、以及N-羧基-α-氨基酸酐等同样也能进行开环聚合。 环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。Dainton 以环烷烃作为环状单体的母体,研究了环大小与聚合能力的关系。表6-1列出了环烷烃在假想开环聚合时的自由能变化ΔG lc 0、焓变ΔH lc 0、及熵变ΔS lc 0。 R X [ R X ]n n [ CH 2 CH 2 O ]n n H 2C CH 2O

潘祖仁《高分子化学》课后习题及详解(开环聚合)【圣才出品】

第8章开环聚合 (一)思考题 1.举出不能开环聚合的3种六元环。为什么三氧六环却能开环聚合? 答:(1)三、四元环容易开环聚合,五、六元环能否开环与环中的杂原子有关,不能开环聚合的六元环如 (2)三氧六环能够开环聚合是由于六元环的键角与上述六元环不同,容易开环聚合。 2.环烷烃开环倾向大致为:三、四元环>八元环>七、五元环,分析其主要原因。 答:环烷烃的开环倾向可以用聚合自由焓来衡量,自由焓越大,开环聚合倾向越大,不同环烷烃的聚合自由焓如表8-1所示,因此环烷烃开环倾向大致为三、四元环>八元环>七、五元环。 表8-1 3.下列单体选用哪一引发体系进行聚合?写出综合聚合反应式。 表8-2

单体 答:(1)环氧乙烷用CH3ONa作为引发剂,阴离子聚合反应式如下 (2)丁氧环用BF3+H2O为引发剂,阳离子聚合反应式如下 (3)乙烯亚胺用H2SO4、BF3+H2O作为引发剂,阳离子聚合反应如下 (4)二甲基二氯硅烷可以水解,预聚成六元环三聚体或八元环四聚体,阳离子聚合反应式如下 (5)三聚甲醛用H2SO4、BF3+H2O作为引发剂,阳离子聚合反应如下 4.以辛基酚为起始剂,甲醇钾为引发剂,环氧乙烷进行开环聚合,简述其聚合机理。辛基酚用量对聚合速率、聚合度、聚合度分布有何影响? 答:(1)开环聚合机理

引发:烷氧阴离子进攻环氧乙烷中的碳原子,形成单加成物。 交换:环氧乙烷单加成物ROCH2CH2O-与C8H17C6H4-交换。 增长:C8H17C6H4O-进攻环氧乙烷中的碳原子,开环聚合成线形聚合物。 (2)当起始剂RXH全部换成RX以后,才同步增长,产物分子量分布窄,反映出快引发、慢增长的活性阴离子聚合特征。辛基酚用量越大,聚合速率、聚合度越大,聚合度分布越宽。 5.以甲醇钾为引发剂聚合得到的聚环氧乙烷分子量可以高达3万~4万,但在同样条件下,聚环氧丙烷的分子量却只有3000~4000,为什么?说明两者聚合机理有何不同。 答:(1)聚环氧丙烷分子量低是由于环氧丙烷分子中甲基上的氢原子容易被夺取而转移,转移后形成的单体活性种很快转变成活性较低的烯丙醇-钠离子对,致使分子量降低。 (2)两者都是阴离子聚合,但是在环氧丙烷的聚合过程中向单体的链转移反应比聚环氧乙烷显著得多,使分子量降低,分子量分布变宽。 6.丁氧环、四氢呋喃开环聚合时需选用阳离子引发剂,环氧乙烷、环氧丙烷聚合时却多用阴离子引发剂,而丁硫环则既可阳离子聚合,也可阴离子聚合,为什么? 答:上述引发剂的选用原因如下:

开环易位聚合(ROMP)论文:开环易位聚合(ROMP) 原子转移自由基聚合(ATRP) 闭环易位反应(RCM) 聚合诱导自组装

开环易位聚合(ROMP)论文:开环易位聚合物纳米粒子的制备及表征 【中文摘要】聚合物纳米粒子因其独特的结构而呈现出诸多新奇的物理、化学特性,在光学、食品工业、高性能涂料、高分子催化剂、生物医用材料等方面有广泛的应用前景,因此引起了普遍的关注。本论文采用简便易行的方法—聚合诱导自组装,得到了粒径均一的“核-壳”结构的聚合物纳米粒子。在选择性溶剂甲苯中,采用开环易位聚合(ROMP)的方法,用第一代钉卡宾催化剂(Ru-I)引发,首先加入单体—2,3-二异丁酰溴甲氧基-5-降冰片烯(BNBE)反应一段时间得到均聚物(PBNBE),然后加入单体—7-氧代降冰片烯二甲酯(ONBDM)再反应一段时间。由于第一个单体的均聚物在甲苯中溶解性很好,而第二个单体的均聚物在甲苯中溶解性很差,利用两个嵌段的溶解性差异,直接 得到分散性好,粒径均一的以PBNBE为壳,以PONBDM为核的壳官能化的胶束。考察了不同投料比,浓度对胶束结构形态的影响。用核磁(NMR),元素分析(EA),凝胶渗透色谱法(GPC),动态光散射(DLS),原子力显微镜(AFM),透射电镜(TEM)对其组成与形态进行表征。结果表明:聚合物胶束的直径随着PBNBE嵌段的增长而增大,随着PONBDM嵌段的增长反而减小;通过此方法可简便的得到了分散性... 【英文摘要】Polymeric core-shell nanoparticles with special structure and some novel physical and chemical properties have attracted considerable research interest

第六章 开环聚合(完整资料).doc

【最新整理,下载后即可编辑】 第六章 开环聚合 习题参考答案 1. 试讨论环状单体环的大小与开环聚合反应倾向的关系。 解答: 环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。以环烷烃为例,由液态的环烷烃(I )转变为无定型的聚合物(c ): 聚合过程中的自由能变化: ΔG lc 0 =ΔH lc 0 — T ΔS lc 0≤ 0 由表6-1可以看出,除六元环外,其他环烷烃的ΔG lc 0均小于0,开环聚合在热力学上是有利的。除六元环烷烃外,其他环烷烃的聚合可行性为:三元环,四元环>八元环>五元环,七元环。对于三元环、四元环来讲,ΔH lc 0是决定ΔG lc 0的主要因素,是开环聚合的主要推动力;而对于五元环、六元环和七元环来说,ΔH lc 0和ΔS lc 0对ΔG lc 0的贡献都重要。随着环节数的增加,熵变对自由能变化的贡献增大,十二元环以上的环状单体,熵变是开环聚合的主要推动力。 以上仅是通过热力学分析的结果,事实上环烷烃的开环聚合通常难于进行,主要是因为环烷烃的结构中不存在容易被引发物种进攻的键,这是动力学原因。其他的环状单体如内酰胺、内酯、环醚等杂环单体与环烷烃不同,由于杂原子的存在提供了可接受引发物种亲核或亲电进攻的部位,从而能够进行开环聚合。 2. 氧化丙烯的负离子聚合通常仅能得到低分子量的聚合物,试讨论原因。 解答: 在氧化丙烯的负离子开环聚合过程中,由于存在副反应如交换反应、向单体的转移反应等,使得聚合物的相对分子质量降低,仅能得到低聚物。具体原因如下: (CH 2)n x x n (CH 2)[](l) (c)

第六章 离子聚合.doc

第六章离子聚合 思考题 6.1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么? 答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。 异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。 丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。 思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。 答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。 偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。 异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。 思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。 (1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa 答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合。如引发苯乙烯进行聚合 (2) A1C13活性高,用微量水作共引发剂即可。A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。 (3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合 (4) CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。高活性单体如硝基乙烯、偏二氰乙烯。较高活性单体如丙烯腈、甲基丙烯腈等,以及环氧烷烃(如环氧乙烷、环氧丙烷等)的开环聚合。 思考题6.4在离子聚合中,活性种离子和反离子之间的结合可能有几种形式?其存在形式受哪些因素影响?不同形式对单体的聚合机理、活性和定向能力有何影响? 答离子聚合中,活性种离子近旁总伴有反离子。它们之间的结合,可以是共价键、离子对,乃至自由离子,彼此处于平衡之中。如下所示,结合形式和活性种的数量受溶剂性质、温度及反离子等因素的影响。 Bδ-Aδ+,?B-A+ ?B-║A+ ?B- + A+ 极化共价键紧密接触溶剂隔离自由离子

高分子化学余木火第五章配位聚合习地的题目

返回 第五章配位聚合_习题 1.画出下列单体可能得到的立构规整聚合物的结构式并命名: (1)CH2=CH-CH3 (2)CH2=C(CH3)2 (3)CH2=CH-CH=CH2 (4)CH3-CH=CH-CH=CH2 (5)CH2=C(CH3)-CH=CH2 (6)CH3CHO (7)CH3-CO-CCl3 2.解释下列概念或名词: (1)配位聚合与定向聚合(2)全同立构、间同立构和无规立构 (3)光学异构、几何异构和构象异构(4)有规立构聚合和选择聚合(5)引发剂(6)Kaminsky聚合 (7)IIP (8)单金属机理与双金属机理 (9)淤浆聚合 3.说明负离子聚合与配位负离子聚合中链增长反应的不同? 4.工业上生产高密度聚乙烯(HDPE)全同聚丙烯常用的Ziegler-Natta引发剂各是什么?说明其原因。说明这两种聚合物的产业用途和生活用途。 5.举出两个用Ziegler-Natta引发剂引发聚合的弹性体的工业例子,说明选用的引发剂体系,产物的用途。 6.解释下列问题: (1)在配位负离子聚合中氢降低聚乙烯或聚丙烯的分子量; (2)由配位聚合而得的聚合物中有时含有聚合物-金属键。 7.从配位聚合的机理说明得到全同立构聚合物的成因。

8.在丙烯的本体气相聚合中,得聚丙烯98g,产物用沸腾正庚烷萃取后得不溶物90g,试求该聚丙烯的全同聚合指数。这种鉴定方法可否用于其它立构规整聚合物的鉴定中? 9.在Ziegler-Natta催化剂引发а-烯烃聚合的理论研究中曾提出过自由基、阳离子、络合阳离子和阴离子机理,但均未获得公认。试对其依据和不足之处加以讨论。 10.聚乙烯有几种分类方法?这几种聚乙烯在结构和性能上有何不同?它们分别是由何种聚合方法生产的? 11.乙烯、丙烯以TiCl4/Al(C6H13)3在己烷中进行共聚合。已知r E=3.36,r P=0.032,若预制得等摩尔比的乙丙橡胶,初始配料比应是多少? 12.为改善а-TiCl3/AlEtCl2体系催化丙烯聚合的引发活性和提高聚丙烯的立构规整度,常添加哪些第三组份?如何确定这种第三组份的用量和加料顺序? 返回

chapter7-高分子化学-配位聚合

阴离子聚合产品-合成天然橡胶(IR) D 我国为世界上最大天然橡胶消费国 D 我国NR产量不足75万吨,年进口近200万 吨,占世界天然橡胶资源约20% D 世界NR短缺,推动IR发展 D IR目前两种生产工艺 D 其一:锂或烷基锂(RLi)为 催化剂,以环己 烷(或己烷)作溶剂的间歇溶液聚合流程——
美国壳牌公司于1962年首先实现工业化
D 异戊橡胶的顺-1,4含量92%~94% D 中国1966年开始研究IR,并建有中试装置 D IR是我国唯一没有生产的通用橡胶品种
1

D IR生产另一工艺:用Ziegler-Natta催化 剂(四氯化钛-三烷基铝或四氯化 钛-聚 亚胺基铝烷) ,以己烷(或丁烷)作溶剂的连续溶液聚合流程——美国固 特异轮胎和橡胶公司于1963年实现工 业化。 D 反应机理不同于Li或RLi工艺 D 顺丁橡胶是我国自行开发的唯一大规模高分子材料工业生产技术。 (顺丁橡胶工业生产新技术获1985年国家科技奖特等奖)。 D Ni(naph)2-Al(iBu)3-BF3OEt2催化体系;稀土催化(钕-Nd)
2

聚乙烯和聚丙烯 D 合成树脂:合成橡胶:合成纤维=65:30:5 D 2004年世界合成树脂超过2亿吨;五大通用树脂占合成树脂 总量70% ; D PE占五大通用树脂总产量40%,PP占25.5%,PVC占 20.1%,PS占10.2%,ABS占4.2%; D 1920年Staudinger提出了链状大分子的概念 D PMMA 、PVC 1927年,PS 1934年实现工业化 D 1938~1939年,英国ICI公司利用氧作引发剂,高压法得到 LDPE
3

第六章 离子聚合

第六章离子聚合 思考题试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么 答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。 异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。 丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。 思考题下列单体选用哪一引发剂才能聚合指出聚合机理类型。 答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。 偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。 异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。阴离子聚合,选用Na+萘或n-C4H9Li引发;自由基聚合选用(C6H5CO)2O2作引发剂。 思考题下列引发剂可以引发哪些单体聚合选择一种单体作代表,写出引发反应式。 (1)KNH2 (2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa 答 (1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚

烯烃易位反应

烯烃易位反应 1.易位反应 烯烃易位反应基本概念:易位反应是指两种物质互相交换成分生成两种新的物质的反应。同样的,两种烯烃互相交换双键两端的基团,从而生成两种新的烯烃的反应便是烯烃易位反应。 烯烃易位反应的催化剂:一般是过渡金属化合物,活性中心是过渡金属碳烯。碳碳双键可在链烯上也可在环烯上,如果是环烯,则易位反应的结果是聚合。这种易位反应是可逆平衡反应。 目前研究最多的烯烃易位反应主要有三个类型: (1)开环易位聚合反应(ROMP:ring-opening metathesis polymerization) 以及开环交叉易位反应(ROCM:ring-opening cross metathesis); (2)闭环易位反应(RCM:ring-closing metathesis); (3)交叉易位反应(CM:cross metathesis)。 具体的反应表达式见下图: 2.开环易位聚合 开环易位聚合反应不是简单的链烯烃双键断裂的加成聚合,也不是内酰胺或者环醚等杂环的开环聚合,而是双键不断易位,链不断增长,而单体分子上的双键仍保留在生成的聚合物大分子中的反应。 环烯烃是否可以进行ROMP反应可以通过热力学来判断。在ROMP中,聚合热焓主要来自环张力能的释出,所以环的张力能是决定能否进行开环易位聚合的主要因素。环的张力越大,单体越活泼。单体可以是单环烯,如环丁烯、环辛烯、环戊烯和环庚烯等。单体也可以是双环烯,如降冰片烯及其衍生物,这也是目前研究最多的单体。单体还可以是三环烯。单环烯与双环烯共聚可以制得高度交联的体形聚合物。 一般将ROMP反应的催化剂分为如下三类:(1)传统催化剂如:WCl6/Bu4Sn,WOCl4/EtAlCl2,MoO3/SiO2和Re2O7/Al2O3等。因为这些催化体系的

潘祖仁《高分子化学》课后习题及详解(配位聚合)【圣才出品】

第7章 配位聚合 (一)思考题 1.如何判断乙烯、丙烯在热力学上能够聚合?采用哪一类引发剂和工艺条件,才能聚合成功? 答:(1)根据聚合自由能差0<S T H G ?-?=?,作出判断。大部分烯类单体的熵变近于定值,约为-100~120J ?mol -1,在一般聚合温度下(50~100℃),1mol kJ 42~30-?=?-S T ,因此当1mol kJ 30-?≥?-H 时,聚合就有可能。乙烯和丙烯的H ?-分别为950kJ ?mol -1、85.8kJ ?mol -1,所以在热力学上很有聚合倾向。 (2)在100~350MP 的高压和160~270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE );若采用TiC14-Al (C 2H 5) 3为催化剂,在汽油溶剂中进行配位聚合,则得高密度的聚乙烯(HDPE ) 。 采用α-TiCl-Al (C 2H 5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合,可制得等规聚丙烯。 2.解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 答:(1)配位聚合:单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然后插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之

称。 (2)络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 (3)插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。 (4)定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 (5)有规立构聚合:是指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。 3.区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 答:(1)构型:指分子中原子由化学键固定在空间排布的结构,固定不变。要改变构型,必须经过化学键的断裂和重组。 构象:由于σ单键的内旋转而产生的分子在空间的不同形态,处于不稳定状态,随分子的热运动而随机改变。 (2)光学异构:即分子中含有手性原子,使物体与其镜像不能叠合,从而具有不同的旋光性,这种空间排布不同的对映体称为光学异构体。 几何异构:又称顺、反异构,是指分子中存在双键或环,使某些原子在空间的位置不同而产生的立体结构。 (3)聚丙烯可聚合成等规聚丙烯、间规聚丙烯和无规聚丙烯三种立体异构体。 聚丁二烯有顺式-1,4-结构、反式-1,4-结构和全同-1,2-结构、间同-1,2-结构四

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(开环聚合)【圣才出品】

第8章开环聚合 8.1 复习笔记 一、概述 1.开环聚合 环状单体σ-键断裂而后开环、形成线形聚合物的反应,称为开环聚合。 2.开环聚合单体的种类 绝大多数的开环聚合单体都是杂环化合物,包括环醚、环缩醛、环酯、环酰胺(内酰胺)、环硅氧烷、环硫醚等。许多半无机和无机高分子也由开环聚合来合成。 3.开环聚合的特点 (1)链式聚合反应:包括链引发、链增长、链终止等基元反应; (2)可在高分子主链结构中引入多种功能基:酯、醚、酰胺等; (3)聚合反应前后的体积收缩比乙烯基单体聚合小。 4.环状单体开环聚合的热力学和动力学因素 (1)热力学因素 ①环大小对环张力的影响 键的变形程度愈大,环的张力能和聚合热也愈大,环的稳定性愈低,愈易开环聚合。 不同大小环烷烃的热力学稳定性次序大致如下 3、4<<5、7~11<12以上、6 环烷烃在热力学上容易开环的程度可简化为3、4>8>7、5。

②取代基对开环聚合能力的影响 环上取代基的存在不利于开环聚合。原因是环上侧基间距大,而线形大分子的侧基间距小,斥力或内能较大。 (2)动力学因素 环烷烃的键极性小,不易受引发活性种进攻而开环。杂环化合物环中的杂原子容易被亲核或亲电活性种进攻,只要热力学上有利于开环,动力学上就比环烷烃更易开环聚合。 5.聚合机理 多数开环聚合属于连锁离子聚合机理,但阴离子活性种往往是氧阴离子、硫阴离子、胺阴离子,阳离子活性种是三级氧鎓离子或锍离子。 二、阴离子开环聚合 1.三元环醚 (1)三元环醚易开环的原因 三元环醚张力大,热力学上很有开环倾向。加上C-O键是极性键,富电子的氧原子易受阳离子进攻,缺电子的碳原子易受阴离子进攻,因此,酸(阳离子)、碱(阴离子)甚至中性(水)条件均可使C-O键断裂开环。在动力学上,三元环醚也极易聚合。 (2)引发剂 环氧烷烃开环聚合常用的阴离子引发剂有碱金属的烷氧化物(如醇钠)、氢氧化物、氨基化物、有机金属化合物、碱土金属氧化物等。 (3)开环聚合分子量差异性原因 环氧乙烷阴离子开环聚合产物的分子量可达(3~4)×106,而环氧丙烷开环聚合物的分子量仅3000~4000,原因是环氧丙烷分子中甲基上的氢原子容易被夺取而转移,转移后

高分子化学复习资料(整合全集)

一、填空题(20X1=20分) 1.聚合物的平均分子量的可以用 数均分子量 、 重均分子量 、 粘均分子量 和Z 均分子量等表示,而分子量分布可以则可以用 分子量分布指数 表示。 2 聚合物按主链元素的组成可以分为 碳链聚合物 、 杂链聚合物 和 元素有机聚合物 三类。 3. 按聚合物的在反应前后聚合度的变化情况,聚合物的化学反应可以分聚合度相似的转变、聚合度增加的转变 和 聚合度减少的转变 三类。 4. 连锁聚合反应包括 自由基聚合 、 阴离子聚合 、 阳离子聚合 和 配位聚合 等。 5. 按聚合物的分子链结构,逐步聚合反应可分为 线型逐步聚合 和 非线型逐步聚合 反应。 6.由聚合物制成的三大合成材料是指: 合成塑料、合成纤维和 合成橡胶 。 7.多分散系数是表征聚合物的多分散程度,也叫分子量分布(molecular weight distribution, MWD ),其计算公式为: 重均分子量/数均分子量 n w M M d 8.聚合物分类多种多样,根据单体与其生成的聚合物之间在分子组成与结构上的变化把聚合反应分为加聚反应和 缩聚反应 根据反应机理和动力学性质的同,分为连锁聚合反应和 逐步聚合 9. 自由基聚合反应的实施方法主要有:溶液聚合、 本体聚合 、悬浮聚合和 乳液聚合 。而逐步聚合实施方法主要有 熔融聚合 、溶液聚合、界面缩聚。 10.自由基聚合的机理的特征为慢引发、 快增长 、有终止。阳离子聚合机理的特点可以总结为:快引发、快增长、 易转移 、难终止。阴离子聚合机理的特点是快引发、 慢增长 、无终止。 11.聚合物的平均分子量的可以用 数均 、 重均 、 粘均 和Z 均分子量等表示,而分子量分布可以则可以用 重均分子量/数均分子量 表示。 12.对于线性逐步聚合反应,如果r=1,且忽略端基的质量,则聚合度 分布系数:d= 1+P 。 13.加热能使之塑化、成型交联固化后不能再塑化,工业上称这种聚合物为热固性树脂。 14.在均聚反应中,聚合速率、平均分子量、分子量分布是要研究的重要内容。在共聚合中,共聚物的组成和 分布成为首要问题。 15.根据聚合度和基团的变化,聚合物化学反应可分为相似转变;聚合度变大的反应,如嵌段、 交联 、接枝、 接枝 ;聚合度变小的反应,如降解、 解聚 。 16.单体结构与竞聚率之间有着密切的关系,单体对某一自由基反应的活性大小是由 取代基得共轭效应 和 极性效应 两者共同决定的。

活性可控聚合

活性可控聚合 (江婷婷 04300051) 摘要:活性聚合是合成特制聚合物一种十分有效的方法。近十几二十年来,人们除了在活性阴离子聚合理论和应用方面不断拓宽和深入外,还发现了活性阳离子聚合,自由基活性聚合,基团转移聚合以及其他准活性聚合方法。本文就各种活性聚合化学理论成就,分类作一介绍。 关键词:活性可控聚合;阴离子活性聚合;阳离子活性聚合;自由基活性聚合;基团转移聚合 1.前言 活性聚合(living polymerization)是指不存在任何使聚合链增长反应停止或不可逆转副反应的聚合反应。而实际上这种真正理想的情况十分罕见, 为此Matyjaszewski曾提出了可控聚合的概念:一种制备预先设定好的相对分子质量、低分散性(窄相对分子质量分布)和功能度可控的聚合物的方法。 目前活性聚合的判据可归纳为下列7 点[1]: ( 1)聚合一直进行到单体全部转化,继续加入单体,大分子链又可继续增长; ( 2) 聚合物的数均相对分子质量随单体的不断转化呈线性增加; ( 3) 在整个聚合过程中,活性中心数保持不变; ( 4) 聚合物相对分子质量可进行计量调控(不可能发生链转移而影响高聚物的相对分子质量); ( 5) 聚合物相对分子质量分布为窄分布(Mw /Mn 接近于1) ; ( 6) 采用顺序加入不同单体的方法,可制备嵌段共聚物; ( 7) 可合成链末端带功能化基团的聚合物。 但到目前为止, 极少有某种聚合能同时满足这7方面的要求。因此对活性聚合的要求拓宽,凡能满足以上几个重要判据的聚合都称为活性聚合。 2.可控“活性”聚合原理 一般活性聚合的原理,即聚合过程中聚合物链的末端始终保持有反应活性。聚合过程中聚合物链的增长速率可由: - d [M]/ dt = k [M] [ R ·]表示,在聚合过程中几乎没有终止反应,即[ R ·]为常数,因而可以通过调节单体浓度来控制聚合物链的增长速度,在单体浓度一定的条件下,可由反应时间来控制聚合物的分子量和厚度,可以认为聚合物的分子量及厚度随单体浓度、反应时间线性增加。活性聚合可以阻止相邻的自由基之间发生双基终止反应,因为链增长自由基Mn ·(活性种) 的稳态浓度低,同时Mn ·与MnX(休眠种) 处于一种快速动态平衡之中:MnX ←→Mn ·+X ·,对于增长自由基而言,终止是二级反应,而增长是一级反应,因此自由基浓度低使得终止的机会下降。Mn ·与MnX 之间的交换是一个快速可逆过程,可以用已消耗单体浓度与休眠链浓度的比值预测聚合度[2]。 3.活性可控聚合的方法 1阴离子活性聚合

受控聚合

受控聚合以及其在涂料方面的应用 复材102 李妙甜10100742 一,受控聚合的意义 受控聚合技术是一种新型的高分子聚合技术,在当前是—个热门学术课题,它是目前高分子化学领域中最具学术意义和工业应用价值的研究方向之一。目前,许多世界知名的大公司都在该课题上进行了大量的投入,并已获得了实用性的结果。例如,目前聚合物型颜料分散剂通常是由常规的聚合反应合成的,常规的聚合反应不可避免地会发生一些副反应。因此无法很好地控制聚合物的分子结构和相对分子质量分布,难以得到嵌段结构明确、相对分子质量分布窄的聚合物型分散剂。近年来逐步开发和完善的多种可控/活性聚合技术为制备结构明确、分子链中结构单元排列可控、相对分子质量分布狭窄的聚合物提供了技术保障。 二,常见的受控聚合方法 在21世纪,受控聚合成为了高分子聚合技术的主要与重要的发展方向,其控制聚合的方法也得到了发展,形成了很多种的受控聚合法。有以下几种常用方法,基团转移聚合(GTP),受控游离基聚合(CRP) 技术,原子转移游离基聚合(A T R P),硝酰基聚合(NMP)和可逆加成分裂链段转移方法(R A F T)是当今最常用的受控聚合技术。这些技术用于合成定制的聚合物。与自由基聚合(FRP)相比,这些技术可更好地控制聚合物结构和分子量分布,并具各自特性。

GTP是假阴离子聚合,在非质子中介如THF中以非质子甲基丙烯酸酯作单体进行聚合。功能性单体如甲基丙烯酸需要保护性基团的覆盖。GTP提供非常窄的分子量分布但是微量的质子杂质会导致链终止反应从而分子量分布会变宽。因而提纯是GTP中最重要的一步。 在A TRP中,中介是卤素原子,通过铜催化剂来活化。铜催化剂的颜色较深,反应后必须将其除去。A TRP在单体选择的范围比GTP的广,如:甲基丙烯酸、丙烯酸和苯乙烯单体都可用于聚合,且也可使用如羟基的官能团。 NMP以硝酰自由基作中介,无须专门的提纯方法。此技术的单体选择范围与A TRP相似。 RAFT以专门的硫代组分为中介,几乎是单体选择范围最广的聚合技术。此技术的缺点是在合成低分子量聚合物时,由于延迟,相比高分子量聚合物需要更长的反应时间。本文将简单阐述丙烯酸钠与丙烯酰胺的受控共聚反应机理。 三,受控聚合在涂料方面的应用 受控聚合的应用十分广泛,这里只举一个粒子来说明受控聚合的应用和有点,以及受控聚合的机理。因为传统的疏水,疏油涂料的涂装工程,最后都需要涂覆一层照光清漆,因为其反光的原因,非常不利于观察者清楚地观察到基材的工作情况,为检测造成一定的困难。旭硝子新研发的涂料,可以在360-430nm波长的光线照射下自动发光,发光颜色为宝石绿颜色,在黑暗的环境中非常轻易发现,为观察和监

相关文档
最新文档