含字母参数的二次函数问题

含字母参数的二次函数问题
含字母参数的二次函数问题

含字母参数的二次函数问题

引入

1.什么是函数?

2.我们已经学过哪些函数?

3.对于函数我们需要掌握哪些知识?

二次函数知识点回顾

1.定义:一般地,如果c b a c bx ax y ,,(2

++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

3.求抛物线的顶点、对称轴的方法

(1)公式法:a b ac a b x a c bx ax y 44222

2

-+

??

? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a

b

x 2-

=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2

的形式,得到顶

点为(h ,k ),对称轴是直线h x =.

4.二次函数由特殊到一般,可分为以下几种形式:①2

ax y =;②k ax y +=2

;③

()2h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2.

它们的图像特征如下: 开口大小与|a |成反比,|a |越大,开口越小;|a |越小,开口越大. 5.用待定系数法求二次函数的解析式:

(1)一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 6.二次函数与一元二次方程的关系:

(1)一元二次方程20ax bx c ++=就是二次函数c bx ax y ++=2

当函数y 的值为0时的情况. (2)二次函数c bx ax y ++=2

的图象与x 轴的交点有三种情况:有两个交点、有一个交点、

没有交点;当二次函数

c bx ax y ++=2

的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2

+bx +c=0的根.

(3)当二次函数c bx ax y ++=2

的图象与 x 轴有两个交点时,则一元二次方程02=++c bx ax 有两个不相等的实数根;当二次函数c bx ax y ++=2

的图象与x 轴有一个交点时,则一元

二次方程02

=++c bx ax 有两个相等的实数根;当二次函数y =ax 2

+ bx+c 的图象与 x 轴没有交点时,则一元二次方程02

=++c bx ax 没有实数根.

练习1.请你利用配方法求下列函数的对称轴和顶点坐标。

(1)2

25y x x =++ (2)2

261y x x =+-

(3)(2)(5)y x x =++ (4)(23)(1)y x x =+-

二次函数专题之参数范围问题

二次函数专题之参数范围问题 1.在平面直角坐标系xoy 中,抛物线y=2 1 x 2-x+2与y 轴交于点A,顶点为点B ,点C 与点A 关于抛物 线的对称轴对称。 (1)求直线BC 的解析式; (2)点D 在抛物线上,且点D 的横坐标为4,将抛物线在点A,D 之间的部分(包含点A,D )记为图像G,若图象G 向下平移t (t >0)个单位后与直线BC 只有一个公共点,求t 的取值范围。 2.已知关于x 的一元二次方程ax 2-2(a-1)x+a-2=0(a >0). (1)求证:方程有两个不等的实数根. (2)设方程的两个实数根分别为x 1,x 2(其中x 1>x 2).若y 是关于a 的函数,且y=a x 2+x 1,求这个函数的表达式. (3)在(2)的条件下,若使y ≤-3a 2+1,则自变量a 的取值范围为?

3.已知关于x的方程x2+(m-2)x+m-3=0. (1)求证:方程x2+(m-2)x+m-3=0总有两个实数根; (2)求证:抛物线y=x2+(m-2)x+m-3总过x轴上的一个定点; (3)在平面直角坐标系xoy中,若(2)中的定点记作A,抛物线y=x2+(m-2)x+m-3与x轴的另一个交点为B,与y轴交于点C,且△OBC的面积小于或等于8,求m的取值范围. 4.在平面直角坐标系xoy中,二次函数y=(a-1)x2+2x+1的图像与x轴有交点,a为正整数. (1)求a的值. (2)将二次函数y=(a-1)x2+2x+1的图像先向右平移m个单位长度,再向下平移m2+1个单位长度,当-2≤x≤1时,二次函数有最小值-3,求实数m的值.

(三)二次函数图象与字母系数的关系(含答案)

题型(三) 二次函数图象与字母系数的关系 1.(2017贵州安顺第10题)二次函数y =ax 2 +bx +c (≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2 <0; ②3b +2c <0;③4a +c <2b ;④m (am +b )+b <a (m ≠1),其中结论正确的个数是( B ) A .1 B .2 C .3 D .4 2,(2017贵州黔东南州第9题)如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,给出下列结论: ①b 2 =4ac ;②abc >0;③a >c ;④4a ﹣2b +c >0,其中正确的个数有( C ) A .1个 B .2个 C .3个 D .4个 3.(2017山东烟台第11题)二次函数)0(2 ≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,下列结论: ①0;③0<++c b a ;④03<+c a . 其中正确的是( C ) A .①④ B .②④ C. ①②③ D .①②③④ 4.(2017四川宜宾第8题)如图,抛物线y 1=1 2 (x +1)2+1与y 2=a (x ﹣4)2﹣3交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论: ①a = 2 3 ;②AC =AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2 其中正确结论的个数是( B )

A .1个 B .2个 C .3个 D .4个 5.(2017山东日照第12题)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为 (4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a +b +c =0; ③a ﹣b +c <0; ④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( C ) A .①②③ B .③④⑤ C .①②④ D .①④⑤ 6.(2017山东菏泽第8题)一次函数b ax y +=和反比例函数x c y =在同一个平面直角坐标系中的图象如图所示,则二次函数c bx ax y ++=2 的图c 象可能是( C )

含参数二次函数分类讨论的方法

二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数y=a (x -m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a ①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a ②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a ③、当2≤a <4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3 ④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3 例2、已知函数2()(21)3f x ax a x =+--在区间3 [,2]2 -上最大值为1,求实数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 2项的系数 a 的符号分类,即 a 0,a 0,a 0; 例 1 解不等式: ax 2 a 2 x 1 0 分析: 本题二次项系数含有参数, a 2 2 4a a 2 4 0 ,故只需对二次项 系数进行分类讨论。 2 解 :∵ a 2 2 4a a 2 4 0 a 2 a 2 4 a 2 a 2 4 ∴当 a 0时,解集为 x|x a 2 a 4 或x a 2 a 4 2a 2a 当 a 0 时,不等式为 2x 1 0, 解集为 x| x 1 例 2 解不等式 ax 2 5ax 6a 0a 0 分析 因为 a 0, 0 ,所以我们只要讨论二次项系数的正负。 解 a(x 2 5x 6) a x 2 x 3 0 当 a 0时,解集为 x|x 2或x 3 ;当 a 0时,解集为 x|2 x 3 、按判别式 的符号分类,即 0, 0, 0 ; 例 3 解不等式 x 2 ax 4 0 分析 本题中由于 x 2 的系数大于 0, 故只需考虑 与根的情况。 解: ∵ a 2 16 ∴当 a 4,4 即 0 时,解集为 R ; 解得方程 2 ax 2 a 2 x 1 0 两根 x 1 a 2 a 2 4 2a , x 2 a 2 a 2 4 2a 当 a 0时 , 解集为 x| a 2 a 2 4 2a x a 2 a 2 4 2a

当 a 4即Δ=0时,解集为 x x R 且x a ; 当 a 4 或 a 4 即 0, 此时两根分别为 x 1 a a 16 , x 2 2 x 1 x 2 , a a 2 16 a a 2 16 x 或 x 〈 22 例 4 解不等式 m 2 1 x 2 4x 1 0 m R 2 2 2 2 解 因 m 2 1 0, ( 4)2 4 m 2 1 4 3 m 2 当 m 3或 m 3 ,即 0 时,解集为 R 。 2 三、按方程 ax bx c 0 的根 x 1 , x 2的大小来分类,即 x 1 x 2,x 1 x 2 ,x 1 x 2; 1 例 5 解不等式 x 2 (a )x 1 0 (a 0) a 1 分析: 此不等式可以分解为: x a (x ) 0 ,故对应的方程必有两解。本题 a 只需讨论两根的大小即可。 11 解: 原不等式可化为: x a (x ) 0 ,令 a ,可得: a 1 aa 11 ∴当 a 1或 0 a 1时, a ,故原不等式的解集为 x |a x ; a 1 当 a 1 或 a 1 时, a , 可得其解集为 ; a 11 当 1 a 0或a 1时, a ,解集为 x| x a a 例 6 解不等式 x 2 5ax 6a 2 0 , a 0 分析 此不等式 5a 2 24a 2 a 2 0 ,又不等式可分解为 x 2a (x 3a) 0 ,故 所以当 m 3 ,即 0 时,解集为 x| x 1 2 当 3 m 3 ,即 0 时,解集为 2 3 m 2 x 或 x m 2 1 2 m 2 1 3 m 2 ; ; a a 2 16 a a 16 ,显然 ∴不等式的解集为

26.3 二次函数的字母系数

二次函数的字母系数 今天我们一起来谈一谈二次函数的一般式和顶点式中的字母系数的问题吧! 例1:如图,根据图形来判别二次函数一般式:)0(2≠++=a c bx ax y 和顶点式:)0()(2≠++=a k m x a y 中字母系数的范围。 解:一般式: 由开口方向可得0>a 由对称轴可得02>-a b 因为0>a 所以0c 顶点式: 由开口方向可得0>a 由对称轴可得0>-m 所以0c 顶点式: 由开口方向可得0>a 由对称轴可得0<-m 所以0>m 由图像可得顶点在第二象限,所以0>k

大家通过上面的问题应该对于二次函数的一般式)0(2≠++=a c bx ax y 中的字母系数所对应的图像特征应该掌握的不错了,那么对于关于字母系数的一些式子你是否了解呢?下面我们一起来看一看。 例1:如图为二次函数)0(2≠++=a c bx ax y 的图像,根据图形判别 c b a b a ac b abc +++-、、、242的正负性 解:由开口方向可得0>a 由对称轴可得02>-a b 因为0>a 所以0abc 因为由图可知抛物线与x 轴有两个交点 所以042>-ac b 因为由对称轴可知:12<-a b 因为0>a 所以02>+b a 因为抛物线经过点(1,0),所以0=++ c b a 例2:如图为二次函数)0(2≠++=a c bx ax y 的图像,根据图形判别 c b a b a ac b abc +---、、、242的正负性 解:由开口方向可得0>a 由对称轴可得 因为0>a 所以0>b 由图像与y 轴交于负半轴,所以0-ac b 因为由对称轴可知:12-=-a b 所以02=-b a 因为由图可得:当x=-1时,y 的值为负。所以0<++ c b a

二次函数图象与字母系数的关系

二次函数图象与字母系数的关系 教学目标: 1.准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 2.能通过二次函数的图象确定字母a,b,c 的值及ac b 42-的符号. 教学重点:准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 教学难点:准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 教学过程:一、知识构架 知识点:二次函数图象与字母系数a,b,c 以及ac b 42 -的符号之间的关系 (1)a 的符号:由抛物线的开口方向确定 开口向上 a>0 开口向下 a<0 (2)c 的符号:由抛物线与y 轴的交点位置确定 交点在y 轴正半轴 c>0 交点在y 轴负半轴 c<0 交点在坐标原点 c=0 (3)b 的符号:由对称轴的位置及a 的符号确定 对称轴在y 轴左侧 a,b 同号 对称轴在y 轴右侧 a,b 异号 对称轴在y 轴 b=0 (4)ac b 42 -的符号:由抛物线与x 轴的交点个数确定 与x 轴有两个交点 042>-ac b 与x 轴有一个交点 042=-ac b 与x 轴无交点 042<-ac b (5)a+b+c 的符号:因为x=1时,y=a+b+c,所以 a+b+c 的符号由x=1时,对应的y 值确定 a-b+c 的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y 值确定。 抛物线上几个特殊点的坐标所决定的代数式的正负:(1,a+b+c ), (-1,a-b+c ), (2,4a+2b+c ), (-2,4a-2b+c ), (6) 判断2a+b 与2a-b 的正负经常由对称轴与±1的关系确定 二、典型例题 例1 (1) 已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的 位置如图所示,则下列结论中,正确的是( ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >0 (2)已知抛物线y=ax 2+bx+c 的图象如图所示,则下列结论:①abc >0;②a+b+c=2; ③a <;④b >1.其中正确的结论是( ) A .①② B .②③ C .③④ D .②④ 例2 二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数 b ax y +=与反比例函数x c y = 在同一平面直角坐标系中的大致图象为( ) 练习:1.如图001是二次函数)0(2≠++=a c bx ax y 的图象,下列判断: ?0b ?0>c ④0<++c b a ⑤02<+b a ,正确的 (填序号) 2.如图002是二次函数)0(2≠++=a c bx ax y 的图象,下列判断: ?042>-ac b ?1>c ?02<-b a ④0<++c b a ⑤)1()(-≠-<+m b a b am m 其中错误的有 (填序号) 3.二次函数)0(2≠++=a c bx ax y 的图象如图所示,则函数x a y =与c bx y +=在同一直角坐标系内的大致图象是( ) 三、课堂小结:谈谈你的收获 四、课下作业 1.如图003是二次函数)0(2≠++=a c bx ax y 的图象一部分,则以下正确的有?a b 2>; ②02=++c bx ax 的两根分别为-3和1;?02<+-c b a ④0=++c b a ⑤08>+c a 其中正确的有 (填序号)

最新含参数的二次函数问题教学文案

杭九年级数学校本作业 编制人: 含参数的二次函数问题 姓名_________ 1、将二次函数2 ()1y x k k =--++的图象向右平移1个单位,向上平移2个单位后,顶点在直线21y x =+上,则k 的值为( ) A .2 B .1 C .0 D .1- 2、关于x 的二次函数 2()1y x m =--的图象与x 轴交于A,B 两点,与y 轴交于点C.下列说法正确的是( ) A .点C 的坐标是(0,-1) B .点(1, -2m )在该二次函数的图象上 C .线段AB 的长为2m D .若当1≤x 时,y 随x 的增大而减小,则1≥m 3、如图,抛物线2+(0)y ax bx c a =+≠过点(1,0)和点(0,-4),且顶 点在第三象限,设P =c b a +-,则P 的取值范围是( ) A .-8<P <0 B .-8<P <-4 C .-4<P <0 D .-2<P <0 4、下列四个说法: ①已知反比例函数6y x =,则当32 y ≤时自变量x 的取值范围是4x ≥; ②点11(,)x y 和点22(,)x y 在反比例函数3y x =- 的图象上,若12x x <,则12y y <; ③二次函数228+13-30)y x x x =+≤≤(的最大值为13,最小值为7; ④已知函数2213y x mx =++的图象当24x ≤时,y 随着x 的增大而减小,则m =23 -. 其中正确的是( ) A .④ B .①② C .③④ D .四个说法都不对 5、已知下列命题: ①对于不为零的实数c ,关于x 的方程1+=+c x c x 的根是c ;

2019届九年级数学下册 小专题(二)二次函数的图象与字母系数的关系练习 (新版)湘教版

小专题(二) 二次函数的图象与字母系数的关系 抛物线y=ax2+bx+c的图象与字母系数a,b,c之间的关系: (1)当a>0时,开口向上,当a<0时,开口向下; (2)若对称轴在y轴的左边,则a,b同号;若对称轴在y轴的右边,则a,b异号;若对称轴为y轴,则b=0; (3)若抛物线与y轴的正半轴相交,则c>0;若抛物线与y轴的负半轴相交,则c<0;若抛物线经过原点,则c=0; (4)当x=1时,y=ax2+bx+c=a+b+c; 当x=-1时,y=ax2+bx+c=a-b+c; 当x=2时,y=ax2+bx+c=4a+2b+c; 当x=-2时,y=ax2+bx+c=4a-2b+c;…;故要比较a+b+c与0的大小,只需看抛物线中横坐标为1的点与x轴的位置关系即可; (5)当对称轴为直线x=1时,x=-b 2a =1,所以-b=2a,此时2a+b=0;当对称轴为直线x=-1 时,x=-b 2a =-1,所以b=2a,此时2a-b=0;判断2a+b大于或小于0,看对称轴与直线x=1的位置关系;判断2a-b大于或小于0,看对称轴与直线x=-1的位置关系; (6)b2-4ac>0?抛物线与x轴有两个交点; b2-4ac=0?抛物线与x轴有一个交点; b2-4ac<0?抛物线与x轴无交点. 1.(xx·深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是(C) A.abc>0 B.2a+b<0 C.3a+c<0 D.ax2+bx+c-3=0有两个不相等的实数根

2.(xx·黔东南)如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,给出下列结论:①b 2 =4ac ;②abc>0;③a>c ;④4a-2b +c >0,其中正确的有(C) A .1个 B .2个 C .3个 D .4个 3.(xx·滨州)如图,若二次函数y =ax 2 +bx +c(a≠0)图象的对称轴为直线x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则:①二次函数的最大值为a +b +c ;②a-b +c <0;③b 2-4ac <0;④当y >0时,-1<x <3,其中正确的个数是(B) A .1 B .2 C .3 D .4 4.已知抛物线y =ax 2 +bx +c 的图象如图所示,则|a -b +c|+|2a +b|=(D) A .a +b B .a -2b C .a -b D .3a 5.(xx·达州)如图,二次函数y =ax 2 +bx +c 的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc<0;②9a+3b +c >0; ③若点M(12,y 1),点N(52,y 2)是函数图象上的两点,则y 1<y 2;④-35<a <-25 .其中正确的有(D) A .1个 B .2个 C .3个 D .4个 6.(xx·乌鲁木齐)如图,抛物线y =ax 2 +bx +c 过点(-1,0),且对称轴为直线x =1,有下列结论:①abc<0;②

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

含字母参数的二次函数问题

含字母参数的二次函数问题 引入 1.什么是函数? 2.我们已经学过哪些函数? 3.对于函数我们需要掌握哪些知识? 二次函数知识点回顾 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 3.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶 点为(h ,k ),对称轴是直线h x =. 4.二次函数由特殊到一般,可分为以下几种形式:①2 ax y =;②k ax y +=2 ;③ ()2h x a y -=;④()k h x a y +-=2 ;⑤c bx ax y ++=2.

它们的图像特征如下: 开口大小与|a |成反比,|a |越大,开口越小;|a |越小,开口越大. 5.用待定系数法求二次函数的解析式: (1)一般式:c bx ax y ++=2 .已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 6.二次函数与一元二次方程的关系: (1)一元二次方程20ax bx c ++=就是二次函数c bx ax y ++=2 当函数y 的值为0时的情况. (2)二次函数c bx ax y ++=2 的图象与x 轴的交点有三种情况:有两个交点、有一个交点、 没有交点;当二次函数 c bx ax y ++=2 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2 +bx +c=0的根. (3)当二次函数c bx ax y ++=2 的图象与 x 轴有两个交点时,则一元二次方程02=++c bx ax 有两个不相等的实数根;当二次函数c bx ax y ++=2 的图象与x 轴有一个交点时,则一元 二次方程02 =++c bx ax 有两个相等的实数根;当二次函数y =ax 2 + bx+c 的图象与 x 轴没有交点时,则一元二次方程02 =++c bx ax 没有实数根. 练习1.请你利用配方法求下列函数的对称轴和顶点坐标。 (1)2 25y x x =++ (2)2 261y x x =+- (3)(2)(5)y x x =++ (4)(23)(1)y x x =+-

含参数的二次函数求值域问题解析.doc

含参数的二次函数求值域问题专题 有时参数在区间上, 有时参数在解析式上, 构成了有时轴动区间定, 而有时轴定区间动 1 函数f(x)=x 2 -2x2的定义域为 Li, mJ 值域为41…由实数m 的取值范围是 H, 31 2 已知函数f(x)=x 2 -2x+3在区间d, rnJk 有最大值3,最小值2,则实数m 的取值范围是 匕2】 2 2 3 已知f (x) = -4x + 4ax 4a -a 在区间[0, 1]内有最大值一5,求a 的值? 3 a 解:??? f(x)的对称轴为X0二厂①当0 <- <1,即o 2时[f ( x)lmax= f ⑴=-4 殳2 = -5八 a = ±1 不合; 综上,a =—或a.= —5? 2 4已知定义在区间 [0,3]上的函数f(x)= kx- 解析:V f(x)= k(x- %— k, (1) 当k>0时,二次函数图象开口向上,当 ?k= 1; (2) 当k<0时,二次函数图象开口向下,当 —3. (3) 当k= 0时,显然不成立. 故k 的取值集合为{1, — 3}? 答案:{1, - 3} o =—x -ax b 有最小值一1,最大值1 ?求使函数取 得最大值和最小值吋相应的 x 的值? a 解:a>0, /. f(X )对称轴 X = —— V 0 J. [ f ( X )] min = f ( X )= —1 二 3 = b ; a 2kx 的最大值为3,那么实数k 的取值范围为 ___________ ? 2 x= 3时,f(x)有最大值,f(3) = k - 3-2kx3= 3k= 3 x= 1 时,f(x)有最大值,f(1)= k- 2k=- k= 3?k= 5. 已知 a>0,当 x e 函数 f (x) \T2 /(\ XI -

含字母系数的二次函数

含字母系数的二次函数 类型1:根据字母判断函数的形式 例1:已知函数()n mx x n y m -+++=11(m ,n 为实数) 当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由; 类型2:图形的变换 例2:将二次函数2()1y x k k =--++的图象向右平移1个单位,向上平移2个单位后,顶点在直线21y x =+上,则k 的值为( ) A .2 B .1 C .0 D .1- 类型3:判定抛物线与直线的交点情况 例3:已知抛物线p :12 3)1(2-++-=k x k x y 和直线l :2k kx y +=:对下列命题判断真伪,并说明理由:无论k 取何实数值,抛物线p 总与x 轴有两个不同的交点。 拓展:设抛物线p 与y 轴交点为C ,与x 轴的交点为A 、B ,原点O 不在线段AB 上;直线l 与x 轴的交点为D ,与y 轴交点为C 1,当OC 1=OC +2且OD 2=4AB 2时,求出抛物线的解析式及最小值.

类型4:求二次函数解析式 例4:已知二次函数c ax ax y +-=22的图像与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴正半轴交于点C ,AB=4,OA=OC ,求二次函数解析式。 类型5:有关公式的应用 已知抛物线 21(0,)y ax bx c a a c =++≠≠过点(1,0)A ,顶点为B ,且抛物线不经过第三象限. (1) 使用a 、c 表示b ; (2) 判断点B 所在象限,并说明理由; (3) 若直线22y x m =+经过点B ,且与该抛物线交于另一点(,8)c C b a +, 求当1x ≥时1y 的取值范围.

二次函数图像与字母系数的关系

一.选择题 1. 若实数m满足,则下列对m值的估计正确的是() A.﹣2<m<﹣1B.﹣1<m<0C.0<m<1D.1<m<2 2. 设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2B.﹣2C.﹣1D.0 3. 设a、b是常数,且b>0,抛物线y=ax2+bx+a2﹣5a﹣6为下图中四个图象之一,则a的值为() A.6或﹣1B.﹣6或1C.6D.﹣1 4. 小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面六条信息: ①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤4a+2b+c>0;⑥一元二次方程ax2+bx+c=0有两异号实根.你认为其中正确信息的个数有() 5. 已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为() A.1个B.2个C.3个D.4个 6. 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA?OB=﹣. 其中正确结论的个数是()A.4B.3C.2D.1 7. 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()

A.②④B.①④C.①③D.②③ 8. 如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB=OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为() A.0B.1C.2D.3 9. 如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c, 则P的取值范围是() A.﹣3<P<﹣1B.﹣6<P<0C.﹣3<P<0D.﹣6<P<﹣3 10. 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a; 其中正确的结论是() A.①③④B.①②③C.①②④D.①②③④ 二.填空题 11.(2016?南充)已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a﹣1)x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是 12.(2016?十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是13.(2016?东明县)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是.

(完整版)二次函数含参问题

二次函数含参问题 本质:解决二次函数含参问题就是解决对称轴与定义域的问题。 课堂例题: 1. 若函数a ax x x f --=2)(在区间[0,2]上的最大值为1,则实数=a ; 2. 若函数x x x f 3)(2-=,在[]m ,0上的值域为?? ????-0,49,则m 的取值范围为 ; 当堂练习: 1. 若函数)0(22 ≠-=a ax ax y 在区间]3,0[上有最大值3,则a 的值是 ; 2. 已知函数22)(22++-=a ax x x f [])3,1(-∈x 有最大值18,则实数a 的值为 ;

1. 若函数f(x)=4 x?12?a ·2x +272在区间[]2,0上的最大值为9,求实数a 的值; 当堂练习: 1. 已知函数)0(4 9433)(22>+ +--=b b x x x f 在区间[-b, 1-b]上的最大值为25,求b 的值; 2. 已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的值; 家庭作业: 1.函数432--=x x y 的定义域为[]m ,0,值域为?? ????--4,425,则实数m 的取值范围是__________. 2.若函数12)(2+-=x x x f 在区间[]2,+a a 上的最大值为4,则a 的值为 ; 3.已知函数32)(2+-=x x x f 在闭区间[]m ,0上的最大值为3,最小值为2,则m 的取值范围为 ; 4.若函数22422y x ax a a =-+-+在[0,2]的最小值是2,则a 的值为 ; 5.若三条抛物线,,中至少有一条与轴有交点,则的取值范围是 ; 3442+-+=a ax x y 22)1(a x a x y +-+=a ax x y 222-+=x a

二次函数含参问题

一般地,含参的二次函数有三种情形,其一是函数式中含参,其二是定义区间含参;这两种情形的基本做法都是将函数的对称轴与定义区间的位置关系进行讨论;其三是涉及含参的二次方程的根的分布问题,一般可结合图像研究。 一.含参二次函数最值问题。 例1. 函数2()44f x x x =--在闭区间[t ,t +1](t ∈R )上的最小值记为g (t )。 (I )试写出g (t )的函数表达式;(II )求出g (t )的最小值。 变式训练1:讨论函数2()44f x x tx =--在定义域[0,1]上的最小值。 变式训练2:20443p p x px x p x ≤≤+>+-对于满足的所有实数,是不等式都成立,求的取值范围。 二.二次函数根的区间分布归纳。 例2、已知方程()2 210x m x m -++=有两个不等正实根,求实数m 的取值范围。 变式训练1:已知二次方程()()2 21210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

变式训练2:已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,其横坐标一个大于1,一个小于1,求实数m 的取值范围。 例3. 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围。 变式训练1:已知关于x 的方程012)1(22=-+-mx x m 的根在区间[0,1]内,求实数m 的取值范围。 变式训练2 (2007年广东卷)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围。

二次函数的图象与字母系数的关系

二次函数的图象与字母系数的关系 抛物线y=ax2+bx+c的图象与字母系数a、b、c之间的关系: (1)当a>0时,开口向______,当a<0时,开口向______; (2)若对称轴在y轴的左边,则a,b______号 ,若对称轴在y轴的右边,则a,b______号,若对称轴为y轴,则b ______; (3)若抛物线与y轴的正半轴相交,则c______0, 若抛物线与y轴的负半轴相交,则c______0,若抛物线经过原点,则c______0; (4)当x=1时,y=ax2+bx+c=________;当x=-1时,y=ax2+bx+c=________; 当x=2时,y=ax2+bx+c=__________;当x=-2时,y=ax2+bx+c=__________;…故要比较a+b+c与0的大小,只需看抛物线中横坐标为1的点与x轴的位置关系即可; (5)当对称轴x=1时,x=-b 2a=______,所以-b=______,此时2a+b=______; 当对称轴x=-1时,x=-b 2a=______,所以b=______,此时2a-b=______; 判断2a+b大于或者等于0,看对称轴与______的大小关系; 判断2a-b大于或者等于0,看对称轴与______的大小关系; (6)b2-4ac>0?二次函数与横轴________交点;b2-4ac=0 ?二次函数与横轴________交点; b2-4ac<0 ?二次函数与横轴______交点. 1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是() A.abc>0B.2a+b<0 C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根 2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有() A.1个B.2个C.3个D.4个 第1题图第2题图

含参数的二次函数问题

含参数的二次函数问题练习题 南平八中 许文新 1、当41≤≤x 时,求函数242-+-=x x y 的最小值。 2、已知函数()12-+=ax ax x f ,若()0

8、方程k x x =-2 32在()1,1-上有实根,求实数k 的取值范围。 9、已知()2223t tx x x f --=,当31≤≤-x 时,有()0≤x f 恒成立,求实数t 的取值范围。 10、已知()t x x x f ++-=232,当11≤≤-x 时,有()0≥x f 恒成立,求实数t 的取值范围。 11、已知()2234a ax x x f -+-=,当21≤≤x 时,有()0≥x f 恒成立,求实数a 的取值范围。 12、已知()b bx x x f +-=23,当12≤≤-x 时,有()0≥x f 恒成立,求实数b 的取值范围。

13、函数2()(0)f x ax bx c a =++≠的图象关于直线2b x a =- 对称。据此可推测,对任意 的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程[]2 ()()0m f x nf x p ++=的解集不可能是 A. {}1,2 B {}1,4 C {}1,2,3,4 D {}1,4,16,64 含参数的二次函数问题练习题答案: 1、2m in -=y ;2、04≤<-a ;3、2 1- ≥a ;4、21≤≤m ;5、1≤p 6、1≤a ; 7、23≤

有限区间上含参数的二次函数的最值问题

有限区间上含参数的二次函数的最值问题 执教:吴雄华 时间:2006-9 班级:高三(1) 班 教学目标: 知识与技能: 1.掌握定义在变化区间上的一元二次函数最值的求解方法; 2.掌握系数含参数的一元二次函数在定区间上最值的求解方法; 过程与方法: 3.加深学生运用分类讨论和数形结合数学思想方法的体验; 情感、态度与价值观:4.通过学生自己的探索解决问题,增强其学习数学的兴趣和信心; 5.培养学生严密的分析和解决问题的能力。 教学重点:含参数的一元二次函数的最值问题的求解。 教学难点:分类讨论与数形结合数学思想方法的运用。 教学内容 教师活动 学生活动 一.复习一元二次函数最值的求 法。 1. 没有限定区间的情况。 2. 有限定区间的情况。 提问一:我们已学习了哪些一元二次函数求最值问题?请同学指出类型和求解方法。 回答一:两种情况,分别为没有限定区间的情况和有限定区间的情况。 前者用配方法即可,后者先配方,再借助图像来观察函数在给定区间上的单调性,从而得出函数的最值。 二.研究定义在变化区间上的一 元二次函数最值问题的求解。 例1已知函数()222++=x x x f , (1)若R x ∈,求函数的最值; (2)若[]1,3x ∈,求函数的最值; (3)若]3,2[-∈x ,求函数的最值; (4)若[]R a a a x ∈+∈,2,,求函数的最小值; (5)[]R a a a x ∈+∈,2,,求函数的最大值。 ?? ? ??-<++-<≤--≥++=.3,106;13,1; 1,2222min a a a a a a a y ?????-<++-≥++=. 2,22;2,1062 2max a a a a a a y 给出例1。 借助(1)(2)(3)复习,请同学口头回答解法。 提问二:(4)题与(1)(2)(3)题有什么联系和区别? 提示后请同学们完成(4)题。 允许讨论。 其中请两位同学在黑板上分别完成(4)(5)题。 教师巡视,若多数同学感到困难,则再提示要不要通过图像来解答。 学生完成后讲评。 提问三:请同学指出分类讨论的依据,并对问题类型归纳。 读题后思考(1)(2)(3)题,口头回答解法。 回答二:都是一元二次函数求最值的问题,但(4)题中函数的定义域(区间)是变化的。 区间变化,函数的最值相应变化。故要进行分类讨论。 先独立思考,有困难再讨论,最后完成解答。 回答三: 最小值:对此区间是否有函数的对称轴穿过进行讨论; 最大值对此区间的两个端点离对称轴的远近讨论。

相关文档
最新文档