矩阵分析第3章习题答案

矩阵分析第3章习题答案
矩阵分析第3章习题答案

第三章

1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n

C 中向量

1212(,,,),(,,

,)n n x x x y y y αβ==定义内积为(,)H A αβαβ=

(1) 证明在上述定义下,n

C 是酉空间; (2) 写出n

C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --??

=?

?

-??

,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知

308126(1)316,(2)103205114A A --??

??

????=-=-??

??

????----??

??

试求酉矩阵U ,使得H

U AU 是上三角矩阵。 提示:参见教材上的例子

4、 试证:在n

C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H

U AU 为对角矩阵,已知

1

31(1)612A ?????

=?????????

?

01(2)10000i A i -????=??????,434621(3)44326962260i

i i A i i i i i +--????=----?

???+--??

11(4)11A -??

=??

??

6、 试求正交矩阵Q ,使T

Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-??

,11011110(2)01111011A -??

??-?

?=??

-??-??

7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知

11(1)01112i i A i i +????=-????-??,222(2)254245A -??

??=-??

??--??

8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1

()()

H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1

()()U E iH E iH -=+-是酉矩阵。

证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满

秩。()()1

1()()()--=-+=-+-H

H

H H H

i E U E U i E U E U ,要H H H =,只要

()()1

1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U

故H

H

H =

由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得

0+≠E iH ,即E iH +满秩。

111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E

9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证:

1()()E T iS E T iS -++--是酉矩阵。

证明:

1111

[()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

设,A B 均是实对称矩阵,试证:A 与B 正交相似的充要条件是A 与B 的特征值相同。 证明:相似矩阵有相同的特征值。A 与B 正交相似?A 与B 的特征值相同。 若A 与B 的特征值相同,又,A B 均是实对称矩阵。所以存在正交阵Q ,P 使

()()T T T T T Q AQ P BP QP A QP B Λ==?=其中T QP 为正交阵。

10、 设,A B 均是Hermite 矩阵,试证:A 与B 酉相似的充要条件是A 与B 的特征值相同。 证明:同上一题。

11、 设,A B 均是正规矩阵,试证:与B 酉相似的充要条件是A 与B 的特征值相同。 同上

12、 设A 是Hermite 矩阵,且2A A =,则存在酉矩阵U ,使得000r

H E U AU ??=????

13、 设A 是Hermite 矩阵,且2

A E =,则存在酉矩阵U ,使得00

r

H

n r E U AU E -??

=?

?-??

14、 设A 为正定Hermite 矩阵,B 为反Hermite 矩阵,试证:AB 与BA 的特征值实部为0。 证:A 为正定Hermite 矩阵H

A L L ?=,L 为满秩的。

1()H H H H E AB E L LB L E LBL L λλλ--=-=-,()H H H H H LBL LB L LBL ==-

H LBL 是反Hermite 矩阵,反Hermite 矩阵的特征值实部为0,所以AB 的特征值实部为0。

15、 设,A B 均是Hermite 矩阵,且A 正定,试证:AB 与BA 的特征值都是实数。 证明:同上题。

1()H H H H E AB E L LB L E LBL L λλλ--=-=-,

()H H H H H LBL LB L LBL ==,H LBL 是Hermite 矩阵,Hermite 矩阵的特征值为实数,所以

AB 的特征值是实数。

16、 设A 为半正定Hermite 矩阵,且0A ≠,试证:1A E +>。

证明:A 的特征值为0i λ≥,矩阵的行列式等于特征值之积。A E +特征值为1i λ+,

(1)1+=+>∏i A E λ

17、 设A 为半正定Hermite 矩阵,0A ≠,B 是正定Hermite 矩阵,试证:A B B +>。 证明:H B L L =,L 为满秩的。

11111

1

()()()------+=+=+=+=+H H H H H H A B A L L L L AL E L L AL E L L L AL E B

11()--H L AL 为半正定Hermite 矩阵,由上题11()1--+>H L AL E ,

11()--+=+>H A B L AL E B B

18、 设A 为正定Hermite 矩阵,且n n

A U ?∈,则A E =。

证明:存在,?∈n n

U U

H A U U Λ=,1(,,),0n i diag λλλΛ=>。又n n A U ?∈,

(

)

2H

H

H

H E A A U U

U U ΛΛΛ===211i i λλ?=?=H H A U U UEU E Λ?===

19、 试证:(1)两个半正定Hermite 矩阵之和是半正定的;(2)半正定Hermite 矩阵与正定

Hermite 矩阵之和是正定的。 提示:考查()H

X A B X +

20、 设A 是正定Hermite 矩阵,B 是反Hermite 矩阵,试证:A +B 是可逆矩阵。 提示:A 为正定Hermite 矩阵H

A L L ?=,L 为满秩的。11()H H A

B L E L BL L --+=+

11()H L BL --是反Hermite 矩阵,特征值i λ实部为0,11()(1)0H i E L BL λ--+=+≠∏,所

以0A B +≠

21、 设A ,B 是n 阶正规矩阵,试证:A 与B 相似的充要条件是A 与B 酉相似。 证明:充分性,酉相似?相似。

必要性,A ,B 是n 阶正规矩阵,111222,,H H n n

i A U U B U U U U ΛΛ?==∈,又A 与

B 相似, A 与B 的特征值相同,可设

=12ΛΛ,?===∈111122121,H H H H n n A U U U U BU U U U U Λ

22、 设H

A A =,试证:总存在0t >,使得A tE +是正定Hermite 矩阵,A tE -是负定

Hermite 矩阵。

提示:A 的特征值为i λ,则A tE +的特征值为i t λ+

23、 设A 是正定Hermite 矩阵,且A 还是酉矩阵,则A E =。 提示:

24、 设A 、B 均为正规矩阵。且AB BA =,则AB 与BA 均为正规矩阵。 提示:用P150定理,,A B 可以同时酉对角化。

25、 设H A A =-,试证:1

()()U A E A E -=+-是酉矩阵。 提示:

111111[()()]()()()()()()()()()()------=+-+-=---++-=++--=H H U U A E A E A E A E A E A E A E A E A E A E A E A E E

26、 设A 为n 阶正规矩阵,12,,

,n λλλ为A 的特征值,试证:H A A 的特征值为

22212||,||,,||n λλλ。

提示:1H

n U AU λλ??

??=?

?

???

?,11H H n n U A AU λλλλ??

?

?=??????

,所以H

A A 的特征值为2

i i i λλλ=

27、 设n n

A C ?∈,试证:(1)H A A 和H AA 都是半正定的Hermite 矩阵;(2)H A A 和H

AA

的非零特征值相同。

提示:(1)()()0=≥H

H

H

X A AX AX AX

(2)=?=H

H i i A AX X

AA AX AX λλ,特征值的重数也相同,参见P191

28、 设A 是正规矩阵,试证:(1)若0r

A =(r 为自然数),则0A =;(2)若2

A A =,

则H

A A =;(3)若3

2

A A =,则2

A A =。 29、 设,H

H

A A B

B ==-,求证以下三条件等价:

(1)A B +为正规矩阵 (2)=AB BA (3)()H

AB AB =-

解:(1)?(2)()()()()

++=++H

H

A B A B A B A B H H H H A B B A AB BA ?+=+由

,H H A A B B ==-AB BA ?=。

(2)?(3)AB BA =,由,H

H

A A B

B ==-()H H H AB B A AB ?=-=-

(2)?(1)()()()()++=-+H

A B A B A B A B ,由

AB BA =()()()()A B A B A B A B ?-+=+-

31、设n n

∈,则A可以唯一的写为A S iT

A C?

=+,其中,S T为Hermite矩阵。且A可以唯一的写为

A B C =+,其中B 是Hermite 矩阵,C 是反Hermite 矩阵。

解:设A S iT =+,其中,S T 为Hermite 矩阵,则=-=-H

H

H

A S iT

S iT 。

,22H H

A A A A S T i

+-?==。唯一性(略)

如有侵权请联系告知删除,感谢你们的配合!

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

矩阵分析期末考试

错误! 2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 一、(共30分,每小题6分)完成下列各题: (1)设4R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,????????????--=43234α,???? ? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2 {}54,αα,分别求21V V +和21V V 的维数. 解:=A {}54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为3和1 (2) 设()T i i 11-=α,()T i i 11-=β是酉空间中两向量,求内积()βα, 及它们的长度(i =). (0, 2, 2); (3)求矩阵?? ??? ?????----=137723521111A 的满秩分解. 解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201

??????????----=137723521111A ??????????--=775211??????? ? ?? ??? ??? ----747 510737201* (4)设-λ矩阵??? ? ? ??++=2)1(0000 00 )1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 * H x x α=,验证x 是向量 范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++ (2)矩阵A的核为AX=0的解空间。不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的 维数. 解:=A {} 54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 与它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ???? ? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形与其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数与一组基; (2)(5分)求T 的核)(T N 的维数与一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用 ij E (,1,2, ,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素 为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此即对称矩阵组成 (1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间,只需找出 (1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1) 2 n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 1234 1231211203x x x x x x x x x x +++++?? ??=??? ?+???? 于是 12341231,2x x x x x x x +++=++=

1210,3x x x +== 解之得 12343,3,2,1x x x x ==-==- 即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 方法二 应用同构的概念,22R ?是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T , 1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有 111111 000 31110201003110000 01021000300011???? ????-??? ?→???? ??? ? -???? 因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 1-4 解:证:设112233440k k k k αααα+++= 即 12341234123134 12411111110110110110 k k k k k k k k k k k k k k k k k ????????+++???????????????? +++++??==??++++?? 于是 12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++= 解之得 12340k k k k ==== 故1234,,,αααα线性无关. 设

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 , , 。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (),123设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。在 3[]R x 中取两个基:21231,1,(1)x x ααα==-=-; 21232,2,(2)x x βββ==-=-。(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。 二. (14分)设T 是n R 的线性映射,对任意12(,, ,)T n n x x x x R =∈满足 11(0,, ,)n Tx x x -=。(1)证明0n T =; (2)求T 的核()N T 及值域 ()R T 的 基和维数。 三. (12分)设1023510224i A i i i -?? ?=++ ? ?-??,120x i -?? ? ?= ? ? ?-?? ,i = 。 计算11, , , Ax Ax A A ∞∞。 四.(10分)求矩阵1123101032160113A -?? ?-- ? = ?- ? ?-? ? 的满秩分解。 五. (12分)求矩阵011110101A ?? ? = ? ??? 的正交三角分解A UR =,其中U

是酉矩阵,R 是正线上三角矩阵。 六. (16分,1、2小题各5分, 3小题6分)证明题: 1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。 2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。 3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。 七. (24分) 设100011101A ?? ? =- ? ?-?? 。(1)求E A λ-的Smith 标准形; (2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。 2004-2005学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 两个:123(1,0,1),(1,0,0),(0,1,1)T T T ααα==-=; 123(0,1,1),(1,1,0),(1,0,1)T T T βββ=-=-=。(1)求123,,ααα到 123,,βββ的过度矩阵,(2) 求子空间V ,其中V 中的向量在两个基下的坐标相同。 二. (14分)设线性映射43:T R R →满足:对任意41234(,,,)T x x x x R ∈, 求的核()N T 及值域()R T 的基和维数。

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

矩阵分析习题

一,设311202113A -?? ?=- ? ?--?? (1)求矩阵e At . (2)求()At d e dt . 二,(15分)设矩阵1001200-1A ??????=?????? , (1)求矩阵A 的奇异值。 (2)求矩阵A 的奇异值分解。 三、证明对任何方阵A 和B ,有 A B A B B A e =e e =e e ⊕??,其中A B=A I+I B ⊕??。 四、已知102011121A -?? ?= ? ?--?? (1) 写出A 的若当标准型 (2) 写出A 的最小多项式()A m λ (3)计算矩阵函数At e 五、设矩阵方程为AX XB D +=,其中111020,,02011A B D λ--??????=== ? ? ??????? (1) 当λ为何值时, 矩阵方阵有唯一解 (2) 当=1λ 时,求矩阵的解X 六、设 110021001A ?? ?= ? ??? ,求一个次数不超过3 的矩阵多项式 ()g x , 将矩阵函数 ()cos A 用矩阵多项式 ()g A 表示出来 七、对给定的矩阵5010,1253A B -????== ? ????? , 矩阵空间22 R ?上的线性变换 T 被定义为 : ()22 ,T X AX XB X R ?=+?∈ (a) 求变换 T 在空间 22 R ?的基 {}11211222,,, E E E E 下的变换矩阵P .

(b) 求矩阵P 的特征值 , 讨论P 是否可逆 八、叙述奇异值分解定理(即酉相抵标准形定理)并用其证明方阵的极分解定理: 九、设A 是n 阶不可约非负矩阵,证明:若A 恰有d 个对角元非零,则21n d A O --> . 十、证明分块上三角矩阵为酉矩阵当且仅当其为对角块均为酉矩阵的分块对角阵 十一、试证:如果A 是n 阶正规矩阵,则A 相应于不同特征值的特征向量复正交 十二、设矩阵U 是酉矩阵,()12diag ,, ,n A a a a = 证明UA 的所有特征值λ满足 不等式 {}{}min max i i i i a a λ≤≤ 十三、设A 是正定Hermite 矩阵,B 是斜Hermite 矩阵,证明A B +是可逆矩阵. 十四、证明若A 是Hermite 矩阵,则i A e 为酉矩阵 十五、设A 是正规矩阵,证明A 是酉矩阵的充要条件是A 的特征值的绝对值等于1。 十六、设,A B 均为n 阶半正定阵,证明A B 也是半正定阵. 十七、设,m m n n A C B C ??∈∈ 及m n F C ?∈ ,且,A B 无公共特征值, 证明: B O F A ?? ??? 与B O O A ?? ??? 相似 十八、设A 是n 阶复方阵,(){}12,,,n Spec A λλλ=,证明: ()(){} 1211k k i i i k Spec C A i i n λλλ=≤<<≤ 十九、陈述Perron-Frobenius 系列定理。 二十、陈述关于Hermite 方阵特征值的min-max 原理

2014矩阵分析试卷

2014矩阵分析试卷 一、判断题(不要求证明)(20分) 1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。 ( √ ) 2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r 的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。 ( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变 换。 ( × ) 4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n R 上的对称变换。 ( √ ) 二、计算题 1. (1,1,1,1)T 2. 已知1 12212W ={,},W ={,}Span a a Span b b ,而 1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。 12W W ?的基为(1,1,3,1)T --与维数1; 12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3 3. 23:,()R R A ββ→=A A ,基 123(1,0,0),(0,1,0);(0,0,1) ααα===及基 12(1,0),(0,1)ββ==下的矩阵为110=211T B ?? ? ?? 。 4. (10分)设线性变换22:R R →A ,在基12(1,0),(0,1)ββ==的矩阵为12=24A ?? ??? ,求A 的核为{k(-2,1)| k}T ?、值域的基1 2+2β β,维数1。 6.(8分)求矩阵11010=0111123131A ?? ? ? ??? 的满秩分解 7.(24分)设矩阵308=3-16-20-5A ?? ? ? ??? ,求可逆矩阵P ,使得1 P AP -为约当阵。 A E -λ = ??? ? ? ??+-+---502613803 λλλ→ ????? ??++2)1(0001 0001λλ,

2021中国海洋大学《矩阵分析》期末复习题

题型1:求V ∩M 的一个基 方法:课本习题一第9题 1.求R 4的子空间 V = {( a1 , a2 , a3 , a4 ) |a1 - a2 + a3 - a4 = 0} , W = {( a1 , a2 , a3 , a4 ) |a1 + a2 + a3 + a4 = 0} 的交V ∩ W 的一个基.(课本习题一第9题) 2. 求3R 的子空间 }02|),,{(} 032,0|),,{(32132131321321=++==+=+-=a a a a a a W a a a a a a a a V 的交 W V ?的一组基。

题型2:求V1+V2的维数及一个基 方法:课本习题一第10题 1.)0,2,4(),0,1,2(), 4,0,2(),2,0, 1(2121====ββαα. 若),(),,(212211ββααL V L V ==,求21V V +的维数及一组基。 初等行变换可参考https://www.360docs.net/doc/294506580.html,/lesson_crs78/self/j_0022/soft/ch0603.html

方法:课本习题二第3题

方法:课本习题二第6题 1.设321,,e e e 是三维欧氏空间的一组标准正交基,证明: ) 22(3 1),22(3 1),22(3 1321332123211e e e e e e e e e -+=++=+-=ααα 也是一组标准正交基。

题型5:求方程组的标准正交基 方法:课本习题二第7题 1.求齐次线性方程组 0220 43214321=---=+-+x x x x x x x x 的解空间(作为的子空间)的一组标准正交基。 正交化标准化可参考https://https://www.360docs.net/doc/294506580.html,/article/5bbb5a1be10d4813eba179ce.html

矩阵分析期末考试学习资料

北京交通大学 2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 一、(共30分,每小题6分)完成下列各题: (1)设4R 空间中的向量????????????=23121α,????????????--=32232α,????? ???????=78013α,????????????--=43234α,???? ????????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和2 1V V I 的维数. 解:=A {}54321,,,,ααααα????????????--→00000 4100030110202 01 21V V +和21V V I 的维数为3和1 (2) 设()T i i 11-=α,()T i i 11-=β是酉空间中两向量,求内积()βα, 及它们的长度(i =). (0, 2, 2); (3)求矩阵???? ??????----=137723521111A 的满秩分解. 解:??????????----=137723521111A ??????? ?????????----→00 00747510737201

??????????----=137723521111A ??????????--=775211??????? ?????????----747510737201* (4)设-λ矩阵???? ? ??++=2)1(0000 00)1()(λλλλλA ,求)(λA 的Smith 标准形及其行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()???? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 * H x x α=,验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为???? ??????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]???? ??????-021110111,,321εεε 线性变换T 的值域为T (V )= {}321312,span εεεεε+++ 所以A (V )的维数为2, 基为{}321312,εεεεε+++ (2)矩阵A 的核为AX=0的解空间。不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.

矩阵分析第章习题答案

第三章 1、 已知()ij A a =是 n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,, ,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ?-?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----???? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设 n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且 1()()H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则 E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =, 只要()()1 1 ()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS

相关文档
最新文档