汽车悬置系统设计规范指南.doc

汽车悬置系统设计规范指南.doc
汽车悬置系统设计规范指南.doc

悬置系统设计指南

编制:

审核:

批准:

主题与适用范围

1、主题

本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。

2、适用范围

本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。

目录

一、悬置系统中的基本概念 (4)

1.1 悬置系统设计时的基本概念 (4)

1.2动力总成振动激励简介 (6)

二、悬置系统的作用 (8)

2.1 悬置系统的设计意义及目标简介 (8)

2.2 动力总成悬置系统对整车NVH性能的影响 (8)

三、悬置系统的概念设计 (10)

3.1 悬置系统的布置方式选择 (10)

3.2 悬置点的数目及其位置选择 (11)

3.3 悬置系统设计的频率参数 (13)

四、悬置系统相关设计参数 (14)

4.1动力总成参数 (14)

4.2 制约条件 (15)

五、悬置系统设计过程中的相关技术文件 (16)

5.1 悬置系统VTS (16)

5.2 悬置系统DFMEA (17)

5.3 悬置系统DVP&R (17)

5.4 其它技术及流程文件 (17)

一、悬置系统中的基本概念

1.1 悬置系统设计时的基本概念

1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。

(图1-1)整车坐标系

2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。

(图1-2)发动机坐标系

3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。

(图1-3)主惯性坐标系

4:扭矩旋转轴坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着TRA方向,Y方向和Z方向可任意选择只要符合右手法则。由于动力总成的不对称,MOI坐标系永远与发动机坐标系不平行。所以围绕曲轴中心线如果有一小的扭矩波动,被很软的像弹簧支撑着的动力总成将会有一个围绕TRA旋转的趋势。

5:弹性轴和弹性中心:弹性轴只能由悬置位置、方向和刚度来确定,而与动力总成的质量特性无关。如果最小静态力或力矩沿着某一方向作用到刚性的车身上导致车身在相同的方向产生一个位移或旋转,那么该方向就定义为某一弹性轴方向。弹性中心是弹性轴线的交点,弹性轴是从静态的观点来定义的,在静态下,动力总成移动加速度和角加速度为零。因此,质量特性可以忽略。

6:打击中心:不用进行详细的数学解释,简单的刚性钟摆详见图(1-4)。钟摆在O点支撑,物体的质心位置是G。假定在OG的延长线上有一点Q,钟摆在Q点受到一个力,且与联机OQ垂直,这时在O点没有反作用力。则O点和Q点互为打击中心,也就意味着O点和Q点是可逆的。

(图1-4)打击中心示意图

6:解耦的概念:悬置系统的设计目标是减少发动机的振动,这种振动在一定的频率范围内与一定的发动机激励耦合有关;在某一时间获得一个激励,例如曲轴扭矩的激励,如果是一种自然频率一种纯模态的一种激励就更好。这样有两个优点。第一,需要关注的只是一种频率,例如,设计时可以远离激励的频率,如怠速时的频率。第二,某些动力总成的自由转角和频率对整车的结构很敏感。所以,如果受激励的几个动力总成的自由转角和几种频率只用一种来代替,产生这种被称作结

构敏感性的模型就是解耦。

了解为什么动力总成悬置系统解耦似乎很容易,但怎样评估悬置系统是解耦的,并不十分清楚。传统意义上来说,模型分析是在一个坐标系通常在发动机坐标系下进行KEF指数的计算。把在一定DOF下的KEF的百分比作为在这个DOF下解耦的百分比。这种评价解耦的方法是现在最常用的评价方法。但据说国外有关资料说这种评价方法不是最好的方法,而且常常造成很大理解误差。下面是国外最新的评价解耦的方法。

“解耦与某一特定的激励有关,对于位移或力的解耦,在特定的方向上应该达到100%或尽可能高的KEF指数。这个方向可以是也可以不是发动机DOF下的坐标系。为了转动或力矩的解耦,在运动以及发动机主惯性矩条件下,100%或尽可能高的KEF指数的力矩旋转轴方向是较好的。例如,为了曲轴力矩的解耦,需要在TRA方向100%或尽可能高的KEF指数。但是,TRA方向不是发动机坐标系下的某个DOF方向。所以,在发动机坐标系DOF下的KEF指数,不能反映在所有激励条件下解耦的百分比。”

对于理论分析来说,解耦的概念显得就更加复杂了。他实际上包括:惯性解耦、弹性解耦以及阻尼解耦(位移解耦)。在悬置系统解耦分析当中,阻尼解耦通常被省略掉。惯性解耦和弹性解耦成了关注最多的一种解耦途径。惯性解耦在实际工程中比较容易实现,由于弹性解耦受到的限制条件较多,所以一般弹性解耦都是十分困难的。在实际工程设计中,我们看到的解耦概念体现在能量的集中率上。但对于工程设计人员来说,能量集中是个很抽象的概念。它只可作为评价性的结论,不能作为实际的悬置系统设计的方向性的参考。对于解耦的概念这里只作简单的介绍。在以后的章节里,会介绍实际工程中解耦的方法。它们都是从“惯性解耦”与“弹性解耦”这两个概念出发,得出的一些实际工程经验。

1.2动力总成振动激励简介

动力总成系统是由发动机的爆发力、旋转和往复不平衡力、路面的状况以及由附件和车身其它零部件传递的动态力或运动而引起激励。主要的激励是曲轴上的内部震荡扭矩、汽缸方向上的内部力以及相关的运动;此外,还有来自路面和轮胎的激励。简单总结有如下几个振动的根源:

1.不平衡的回转运动质量所产生的离心力及离心力矩(都为一次)

2.不平衡的往复运动质量所产生的惯性力及惯性力矩(一次、二次)

3.不平衡的反作用简谐扭矩(其次数为汽缸数除2及其整数倍。如6缸发动机即为3、6、9等

次)

4.个别气缸不工作或爆发压力不均匀(其次数为1/2次及其整数倍)

5.因机身(曲柄箱)刚性不足导致内力矩输出引起(多数是一次机身弯曲振动)

6.由路面不平坦引起

7.由汽车行驶中加速或刹车时的惯性力引起(使发动机产生纵向振动)

8.发动机与变速箱连接处刚性不足,多为200HZ左右的3/2阶的振动

由此可以看出:造成汽车动力总成振动的原因是多方面的,由它引起的振动在阶次上、作用方向上、振动强弱上不尽相同,情况是相当的复杂。一般说来他们取决于发动机的平衡特性,即和发动机的型式、缸数、工作转速、曲柄排列以及发火次序等有关。对于悬置系统设计而言,前三项是最需要关注的振动源。而由其引起的动力总成振动模态主要是平摇,纵摇及横摇。一般高速下不平衡的惯性力(力矩)引起的振动大些,而低转速时(如怠速)则由不平衡的简谐扭矩引起的振动大些。

图1-5 发动机的三种主要的振动模态

作为工程实例。下表1.1给出了一些发动机的振动特性

表1.1

缸式,缸数

曲轴转速范围

(rpm)

发动机的主要扰动频率

不平衡的倾覆力矩不平衡的离心力及离心力矩

不平衡的惯性力及惯性力矩

第一阶主谐第二阶主谐

直列/V型4缸600~6000 20~200 40~400 20~200 直列5缸600~6000 25~250 50~500 10~100/20~200

直列/ V型6缸

600~5500

600~4600

30~275

15~115

60~550

30~260

10~90

20~115 V型8缸600~6000 40~400 80~800 10~100

V型10缸600~2400 50~200 100~400 20~80

V型12缸600~2100 60~210 120~420 10~35 和一般的机械不同的是汽车发动机的质量分布很不均匀,其转动惯量轴线和曲线中心线是不平行的。两者间的夹角可达15度~30度;其次,发动机的各种激励力和激励力矩均偏离机组的重心。因此能激起的振型很多。例如不平衡的回转质量,离心力激发发动机产生垂向(x),横向(z),纵摇(γ),平摇(α)等振动;由不均匀的简谐扭矩能激起发动机产生横摇(β)平摇(α)等振动。

具体发动机扭矩波可用以下公式计算得到:

f扭=2Nn/60C

其中:C——冲程数

N——气缸数

n——转速。

二、悬置系统的作用

2.1 悬置系统的设计意义及目标简介

现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。

由此可知,悬置系统的设计目标值:

1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉;

2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声;

3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声;

2.2 动力总成悬置系统对整车NVH性能的影响

动力总成悬置系统对整车NVH性能的影响仅次于排气系统、整车密封性和悬架系统,成为影响整车NVH性能的第4个重要因素。经过一段时期的工程经验的总结,悬置系统主要在以下几个方面跟NVH性能密切相关:

发动机点火瞬间的抖动;

经过颠簸路面引起的动力总成过大的振荡;

发动机怠速时,方向盘、坐椅、仪表盘面板和前歇脚板等振动;

整车在中频(30-60 HZ)时的粗躁度;

整车在中频(30-70 HZ)时的轰鸣;

由于动力总成悬置系统阻抗导致的齿轮啮合噪声;

1K-5K HZ时,悬置的金属结构传递的发动机噪声;

对于不同的振动噪声形式,其频率范围有所区别。在实际工程中,人的主观感觉是整车NVH性能的一种重要的评价的方式。但只有把主观感觉跟工程数据很好的结合在一起,才能区分并解决振动噪声问题。实际上就是把主观判断出的振动噪声型式与其对应的频率范围结合在一起。针对这个问题,下表2.1给出具体的方法

表2.1 振动噪声与其对应的频率范围

频率范围(HZ)0-5 5-10 10-30 30-60 60——25-75 75-250 25-1500 1500——

振动/噪声描述振荡抖动颤抖粗糙度嗡嗡声轰鸣声啸啸声鸣鸣声口哨声

结合表2.1可以看出,动力总成悬置系统影响整车的NVH性能主要是在振动方面。对于一个整车而言,其振动的隔离系统包括很多。对于不同的系统其隔离的振动型式又有所区别。虽然其隔离的振动频率相对较容易区分开来,但是其导致的振动的表现形式却很难区分。比如:方向盘的振动于发动机悬置的隔振性能密切相关,它同时也与底盘的衬套和转向系统本身的减振性能相关。所以针对NVH问题评判的同时需对整车的减振系统有个很好的了解。

(图2-1)整车的隔振系统分布

整车的振动源主要来自于发动机和路面,图2-1中减振系统的根据振源也可以分为两类。这样的分法,将更加清楚的看出振动问题的原因。下面将针对于悬置直接影响NVH的有关问题展开叙述。

动机点火瞬间的抖动:

发动机的点火的瞬间,其振动频率应为0HZ-25HZ。悬置系统的固有频率通常分布在7HZ-15HZ。于是,如果悬置系统的固有频率未能很好的匹配,动力总成的刚体模态将发生严重的共振。发动机点火时,主要的刚体振型为:垂向的平动和横摇(沿着曲轴中心线的转动)。在发动机在点火瞬间,刚体的主要振动模态是自然的耦合在一起的。所以悬置系统在Z向和Pitch这两个固有频率必须≧2HZ。但实际上很难控制。因为悬置系统Z向的固有频率对应的是发动机的第三阶振型;悬置系统Pitch向的固有频率对应的又恰恰是发动机的第四阶振型。因此两阶模态的分开,是动力总成悬置系

统设计中十分关键的问题。通过悬置系统的解耦设计,使得Z向Pitch向的耦合刚度为零可以缓解振动的幅值。

需要指出的是:在点火瞬间,动力总成悬置系统的共振是不可避免的。根据人机工程学,人的心脏、胃、肝等身体器官在垂向(Z向)的4-8 HZ时会产生共振,十分敏感。所以,在设计悬置系统时,应该将Z向的固有频率避开这个范围,实际工程中应该保证在:9-11 HZ。

经过颠簸路面引起的动力总成过大的振荡:

汽车行使过颠簸路面所引起的振动主要集中在0-5 HZ 。经过底盘悬架系统的隔振后,其振幅将大大的被降低。对于动力总成悬置来来说,只要保证其最第阶的固有频率的高于此频率范围即可。

在这里需要明确一下,本书中所提出的共振概念都是基于一定的结构阻尼来说的。悬置最低阶的固有频率对应的是动力总成在整车上X向的振型。而发动机在X向的与Z向的平动以及与Pitch 向的振型无耦合情况。且,人际工程学中平动的敏感范围集中在1-2 HZ。所以,对最低阶的固有频率值不作过多的要求。仍然是需要保证其Z向固有频率即可。

发动机怠速时,方向盘、座椅、仪表盘面板和前歇脚板等振动

发动机怠速时,振动频率集中在25-30 HZ;在怠速时,发动机的振动以绕曲轴中心线的转动为主。在动力总成刚体的振型中,横摇(XX发动机坐标)与纵摇(YY发动机坐标)两种模态耦合在一起。对于悬置系统的固有频率匹配难度较大。根据隔振原理,只有当隔振器的固有频率小于激励

频率的时候,系统才具备隔振性能。这就导致,如果固有频率超过或者接近与这个要求的时候。强迫振动的衰减差。动力总成的振动能量完全传递到车身中,引起相关零件的振动。而当此两种的模态接近于发动机怠速的频率时,将产生严重的共振。

4)在中高频时影响整车的NVH性能

在中高频时,悬置系统的动态硬化将导致系统的整体固有频率提高。严重影响起隔振效果。其次,在中高频时悬置的金属骨架和连接支架的模态将被激发出来。导致支架共振并传递到车体,使得车体的大面积板金振动发出噪声。所以,应该加强悬置的金属骨架和连接支架的刚度,使其一阶的约束模态在450HZ以上,避开发动机传过来的主要激励。

三、悬置系统的概念设计

3.1 悬置系统的布置方式选择

每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式:

1) 平置式。这是常用的、传统的布置方式,其特征是布局简单、安装容易。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。

2) 斜置式。这是一种目前汽车发动机中用得最多的布置方式。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于像汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。此外,它还可以通过斜置角度、布置位置以及隔振器两个方向上的刚度比等适当配合来达到横向——横摇解耦的目的,这是平置式较难做到的。

3) 会聚式。这种布置方式的特点是弹性支承的所有隔振器的主要刚度轴均会聚相交于同一点。除了有良好的稳定性外它最大的优点是可以通过调节倾斜角度和布置坐标的关系来获得六种完全独立的振动模态。但是这种布置方式实施起来并不容易,且一般汽车发动机并没有纵向激励,斜置式完全能够满足隔振要求,因此应用不多。

以上三种布置方式,各有其优点,在实际设计工作中,根据相关的边界条件、整车的开发定位、系统设计的细化目标等设计环境而灵活选择。

3.2 悬置点的数目及其位置选择

汽车发动机的悬置系统多采用三点或四点支承。一般较老式的发动机多在风扇端设置一个或两个支承点,而在飞轮端设置两个支承点;新式的则反过来,在风扇端设置两个支承点,而在飞轮端则放一个或两个。这主要是根据发动机类型(是汽油机还是柴油机),前后承载重量分配以及激振力情况而定的。三点支承的优点是不管汽车怎样颠簸、跳动,它总能保证各支承点处在一个平面上,这就大大改善了机体的受力情况。目前有很多汽车发动机即使是采用四点支承的也力求将飞轮端的那两点尽量靠拢,以达到三点支承的效果。

此外三点悬置系统,通过合理设计可以达到上下方向、扭转振动的独立解耦,从而大幅减小了耦合振动。其中左右悬置通常接近扭转惯性轴位置布置,特别支持上下方向的振动解耦。右悬置通常采用效果更佳的液压悬置,与发动机连接布置,支持隔离发动机燃烧激励、惯性力激励、路面激励。左悬置通常就采用普通的橡胶悬置,与变速箱连接布置,在隔离激振的同时起到动力总成限位的作用。后悬置通常与变速箱连接布置,承受扭矩,重点起到动力总成的纵向限位。

四点悬置系统,同样可以达到上下方向、扭转振动的独立解耦,从而大幅减小了耦合振动的要求。其中左右悬置也接近扭转惯性轴位置布置,特别支持上下方向的振动解耦。前后悬置主要承受由行驶工况引起的扭矩,重点起到动力总成的纵向限位。相对于三点悬置系统,四点悬置系统的优点是发动机摇振和怠速工况振动效果良好,但此种布置中前后悬置的刚度变化将引起发动机位置变化,导致怠速时的预载变化,其次通常需要前横梁支撑前悬置,导致减振效果的下降。

通常在选择支承点的布置位置时除了要满足整车布置协调、系统解耦条件外还有两个问题需

要考虑:一是打击中心问题。设计良好的悬置系统发动机本身的运动即使是在恶劣的道路条件下也不会很大,且隔振器也不会遭受过大的动载荷。但在有些发动机中,如直列式四缸发动机,当曲柄间隔为180度时存在着严重的二次不平衡惯性力,由它将引起机组剧烈的纵摇振动。在这种情况下如应用打击中心理论将发动机的前支承布置在激振力的作用平面内(气缸体的横向中心面处),后支承布置在打击中心处,就可以大大减轻激振力通过后支承向车身的传递,有效地减小汽车振动。后支承位置可按下式确定:

L=(J+b m)/(b m)??

式中: J ——发动机绕通过重心的横向主惯性轴ZZ 轴的转动惯量

m ——发动机的质量

b ——发动机前支承到重心的距离 L ——发动机前后支承间距离

二是车身一阶弯曲振动问题。现代汽车发动机机组作为一个弹性体其一阶弯曲振动的固有频率并不是很高的,而功率强大的发动机的高频段的激励频率却是很丰富的,因此很有可能导致机身产生一阶弯曲振动共振。在这种情况下如能将支承点安置在振型曲线的节点处,对于减轻隔振器的附加载荷是很有利的。

利用打击中心布置发动机悬置示意如图(2-2)

(图2-2)打击中心布置前后(左右)悬置的位置

应用打击中心理论和基于扭布置发动的悬置,首先找出扭矩轴,使前(右)悬置的弹性中心落在扭矩轴线上,以使垂向、横向和侧倾三个自由度之间的耦合刚度为零,同时尽量使侧倾刚度较小;然后以扭矩轴为基准,把前后(右左)悬置布置在互为撞击中心的共轭点上。

对于受较大不平衡往复惯 性力 扰动的动力总成,应将前(右)悬置布置在不平衡往复惯性力的作用中心点,后(左)悬置则布置在与前悬置互为撞击中心的共轭点上,使不平衡惯性力不会引起后

动力总成质心

打击中心

后(左)悬置的位置

抗摆悬置对应的位

(左)悬置的过大响应。这种布置尤其适合于前(右)端装用液阻悬置后(左)端仍装用橡胶悬置的动力总成悬置系统,可充分发挥液阻悬置的低频时大阻尼高频时低动刚特性的高效隔振缓冲作用。

在考虑动力总成和车身 的弹性弯曲振动模 态时,对前后悬置(右左)的布置又提出了更多的要求。仅考虑动力总成的垂向第一阶弯曲振动模态时,如果使前后(右左)悬置分别位于该模态的两个节点A B 上,如图(2-3)所示,则动力总成的第一阶弯曲振动不会传递到车身上,车身的高频弯曲振动也不会激起动力总成的一阶弯曲共振,既可显著提高汽车的舒适性,又改善了动力总成的工作条件和使用寿命。

(图2-3) 动力总成第一阶弯曲振动模态

3.3 悬置系统设计的频率参数

在工程实际中悬置系统的振动都是按刚体模态来处理的,整台机组在空间的运动具有六个自由度,即三个沿相互垂直的通过重心的轴线的往复运动和三个绕此三根轴线的回转运动,这样就有六个振动模态,相应就有六个固有频率。而理论分析表明,汽车发动机的六个振动模态并不是完全耦合在一起的,而是形成两组三联耦合振动,即垂向-纵向-纵摇及平摇-横向-横摇。

推荐的悬置系统固有频率范围如下:

1 平摇f α、横摇f β(以及平摇-横摇耦合振动时的1f )

这两个固有频率是汽车发动机隔振设计能否成功的关键要素,特别是横摇f β,一般推荐值为: f α,f β(或1f )≤1/(1.2∽1.4)*1/21/2*h/2*n/60 (Hz)

这里h 为气缸数(对于V 型发动机则为一列的气缸数),n 为曲轴的怠速转速(r.p.m),系数(1.2∽1.4)是考虑到底架有限质量的影响,当底架越轻巧而机器越重时取大的值,1/21/2则是为满足隔振要求所必需的频率比。

2 垂向x f 、纵摇f γ(以及纵向-纵摇耦合振动时的2f )

在选择这三个固有频率时要考虑到不要引起怠速转数下的一次激振力共振,以及由于道路不平引起的汽车上、下过大的振动载荷。也即是说x f 不宜过小,一般可取

x f ,f (或2f )=10∽15 (Hz ) 3 横向z f

由于汽车行走时左、右方向的动载荷没有上、下方向大,因此z f 的数值可以取得比x f 小些,只需避开怠速转数下的一次激振力共振即可,一般可取

z f =5∽10 (Hz ) 4 纵向y f

这个频率是无足轻重的,因为发动机不存在纵向激振力。

四、悬置系统相关设计参数 4.1动力总成参数

悬置系统在设计分析中,动力总成的各项特性参数是悬置系统设计的主要输入条件,它包括:动力总成的重量、重心位置、惯性轴的位置、各转动惯量等。如下表4.1、表4.2。 表4.1

表4.2

以上动力总成的数据由发动机和变速箱分别提供,根据实际情况也可以测试得到,具体的测试方法可以参考《动力总成质心转动惯量测试规范》。

4.2 制约条件

理论设计上的悬置点具体位置以及为达到各点悬置性能所需的结构、外形尺寸常常受到整车布置中的布置空间、边界条件等的限制而需要适当地修改相应的一些具体设计目标参数。例如:XX 车型的前舱相对于某一款发动机其布置空间很有限,前后方向上发动机体与车身的静态间隙非常小,这时候悬置系统的设计必须考虑到发动机动态时的前后翻转角必须小于实际的允许值,否则动态的情况下就很容易发生干涉现象。对于动力总成在各种工况之下都必须保证其极限运动不得超出下表4.3的数值;动力总成悬置系统固有频率与能量解耦的匹配要满足下表4.4的数值

表4.3

POWERTRAIN DEGREE OF FREEDOM C.G. MAX. MOTION +/-(mm) OR (deg.)

Fore/aft x 15

Lateral y 8 Vertical – downward z 12 Vertical – upward, z 12 Roll xx 1.0

Pitch yy 3.5

Yaw zz 1.0 表4.4

Low Amplitude ( 0.1 mm, 0.2mm p-p) PT Rigid Body Mode Allocation

Hydraulic (or Elastomer*) Mount System

Vehicle Dynamics considerations must be included in the final requirements for the

bounce mode frequency and decoupling

In Vehicle

Frequency Range % Decoupling

Mode Lower Limit Upper Limit Max % Separation Bounce 9 11 >90% >2Hz from pitch

and roll Fore/Aft 7 13 >85% >1Hz Lateral 7 15 >60% > 2Hz from roll Pitch 8 12 >90% >2Hz from bounce Roll 8 18 >85% >2Hz from Lateral Yaw 8 17 >60% >1Hz

五、悬置系统设计过程中的相关技术文件

5.1 悬置系统VTS

5.2 悬置系统DFMEA

5.3 悬置系统DVP&R

5.4 其它技术及流程文件

悬置系统开发设计中的其它技术及流程文件《悬置系统开发流传》、《悬置系统计算指南》、《专用紧固件的技术要求标准化(螺栓图纸)》、《悬置选用螺栓力矩标准》、《悬置系统连接部位尺寸公差》、《悬置支架试验规范》、《悬置支架图纸规范》、《悬置软垫总成图纸规范》、《OTS认可流程》、《质量整改流程》等文件均可以参考其详细的文件。

此外,动力总成悬置系统的试验验证均需要满足公司相应的标准,因时间及精力的关系就不在此版设计指南中一一列举。

汽车悬置系统设计指南

悬置系统设计指南 编制: 审核: 批准: 发动机工程研究二院 动力总成开发部

主题与适用范围 1、主题 本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。 2、适用范围 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。

目录 一、悬置系统中的基本概念 (4) 1.1 悬置系统设计时的基本概念 (4) 1.2动力总成振动激励简介 (6) 二、悬置系统的作用 (8) 2.1 悬置系统的设计意义及目标简介 (8) 2.2 动力总成悬置系统对整车NVH性能的影响 (8) 三、悬置系统的概念设计 (10) 3.1 悬置系统的布置方式选择 (10) 3.2 悬置点的数目及其位置选择 (11) 3.3 悬置系统设计的频率参数 (13) 四、悬置系统相关设计参数 (14) 4.1动力总成参数 (14) 4.2 制约条件 (15) 五、悬置系统设计过程中的相关技术文件 (16) 5.1 悬置系统VTS (16) 5.2 悬置系统DFMEA (17) 5.3 悬置系统DVP&R (17) 5.4 其它技术及流程文件 (17)

一、悬置系统中的基本概念 1.1 悬置系统设计时的基本概念 1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。 (图1-1)整车坐标系 2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。 (图1-2)发动机坐标系 3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参 数的选取、计算、验证等作出较详细的工作模板。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的 修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991汽车钢板弹簧技术条件 QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法 3符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013汽车操纵稳定性术语及其定义 GB 7258-2017机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999汽车操纵稳定性指标限值与评价方法 QC/T 474-2011客车平顺性评价指标及限值 GB/T 12428-2005客车装载质量计算方法 GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置 (减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的 振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种

汽车库建筑设计规范JGJ

汽车库建筑设计规范 中华人民共和国行业标准 汽车库建筑设计规范 Design Code for Garage JGJ100-98 主编单位:北京建筑工程学院 批准部门:中华人民共和国建设部 施行日期:1998年9月1日 (目录) 1 总则 2 术语 3 库址和总平面 库址 总平面 4 坡道式汽车库 一般规定 坡道式汽车库设计 5 机械式汽车库 一般规定 机械式汽车库设计 6 建筑设备 一般规定 给水排水 采暖通风 电气 附录A 本规范用词说明 1 总则 1.0.1 为了适应城市建设发展需要,使汽车库建筑设计符合使用、安全、卫生等基本要求,制定本规范。 本规范适用于新建、扩建和改建汽车库建筑设计。 汽车库建筑设计应使用方便、技术先进、安全可靠、经济合理并符合城市交通现代化管理和符合城市环境保护的要求。

汽车库建筑分类表1.0.4 规模 特大型 大型 中型 小型 停车数(辆) >500 301~500 51~300 <50 注:此分类适用于中、小型车辆的坡道式汽车库及升降机式汽车库,并不适用其他机械式汽车库。 1.0.5汽车库建筑设计除应符合本规范外,尚应符合国家现行的有关标准的规定。 2 术语 2.0.1汽车库(Garage) 停放和储存汽车的建筑物。 汽车最小转弯半径(Minimum turn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 地下汽车库(Underground garage) 停车间室内地坪面低于室外地坪面高度超过该层车库净高一半的汽车库。 坡道式汽车库(Ramp garage) 汽车库停车楼层之间,汽车沿坡道上、下行驶者为坡道式汽车库。坡道可以是直线型、曲线型或两者的组合。 敞开式汽车库(Open garage) 汽车库内停车楼层每层外墙敞开面积超过该层四周墙体总面积25%的汽车库。 缓坡段(Transition slope) 当坡道坡度大时,为了避免汽车在坡道两端擦地面设的缓和线段。

悬置设计指南

1 发动机悬置系统的设计指南

1.1 悬置系统的设计意义及目标简介 现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。 由此可知,悬置系统的设计目标值: 1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉; 2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声; 3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声; 4) 保证发动机机体与飞轮壳的连接弯矩不超过发动机厂家的允许值。

1.2 悬置系统的布置方式选择 每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式: 1) 平置式。这是常用的、传统的布置方式,其特征是布局简单、安装容易。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。 2) 斜置式。这是一种目前汽车发动机中用得最多的布置方式。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于象汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。此外,它还可以通过斜置角度、布置位置以及隔振器两个方向上的刚度比等适当配合来达到横向——横摇解耦的目的,这是平置式较难做到的。 3) 会聚式。这种布置方式的特点是弹性支承的所有隔振器的主要刚度轴均会聚相交于同一点。除了有良好的稳定性外它最大的优点是可以通过调节倾斜角度和布置坐标的关系来获得六种完全独立的

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

动力总成悬置系统运动包络及工况载荷计算方法

动力总成悬置系统运动包络及工况载荷计算方法 吕兆平吴川永 上汽通用五菱汽车股份有限公司技术中心 【摘要】本文论述了动力总成位移控制设计的一般原理,以一微车动力总成悬置系统为研究对象,结合通用汽车公司全球标准的28种载荷工况,介绍了求解各悬置点反力以及发动机质心位移和转角的方法,该计算数据为悬置支架的强度校核以及发动机仓零件设计及布置提供了理论依据。 [关键词]动力总成悬置系统,运动包络,工况载荷 The calculation method for the motion envelop and loadcase force of the powertrain mount system Lv Zhaoping Wu chuanyong (Technical Development Center,SAIC GM Wuling Automobile Co.,Ltd..,Liuzhou 545007 ) [Abstract]The general principle for the design of motion control for powertrain mounting system is presented。Take a mini van powertrain mounting system as the object of study. with the 28 loadcase of the GM global standards. Introduces the method to solve the reaction force at the mounting points and the displacement and rotation of the COG of the powertrain.the calculated data provides a theoretical basis for the mounting bracket strength check and the parts of engine warehouse design and layout. [Keywords] powertrain mount system,motion envelop,Loadcase force 前言 [1]动力总成悬置系统的主要功能有两个,一是减振,二是限位。从悬置元件的刚度曲线来看,一般可以分为线性段和非线性段。其中,线性段可以看作悬置元件减振功能的体现。悬置系统设计工程师在设计悬置刚度线性段时,需要用悬置元件动刚度对动力总成的模态及解耦率进行计算。当动力总成的模态及解耦率满足要求时,悬置动刚度就确定了。而动刚度和静刚度成一定的比例关系(一般动刚度为静刚度的1.3~1.5倍),这样即可确定悬置元件线性段的刚度。刚度曲线的拐点则是动力总成的限位点,限位要求通常是主机厂提供的。如主机厂要求在三挡80%油门开度下动力总成需要良好的解耦,即要求动力总成各悬置点的位移量均在线性段内,供应商根据这个要求即可设计刚度曲线的拐点。在拐点之后,悬置刚度曲线可以看作是大刚度的线性段。这个大刚度的设计,则要满足主机厂对动力总成总体位移的设计目标值。因此,整个非线性段是为了实现悬置系统的限位功能。 [2]本文通过Adams/View软件建立动力总成模型及考虑了悬置在其三个弹性主轴方向力——位移特性的非线性关系,设计了悬置非线性刚度曲线,对某车型的动力总成进行28种工况的模拟计算,对动力总成悬置系统运动包络进行了校核并获得了28工况下各悬置点的工况载荷,为悬置支架、车身结构甚至变速器壳体强度校核都提供了输入条件。 1 工况计算前期准备 1.1 坐标系定义 一般我们在发动机大总成测试时,获得的质心坐标是在发动机坐标系下的坐标,转动惯量则是在质心坐标系下的转动惯量。因此在此先介绍一下坐标系的定义问题。 1.1.1 发动机坐标系 OeXeYeZe 以曲轴中心线与发动机后端面(RFB)的交点为坐标原点Oe; Xe轴平行于曲轴中心线,指向发动机前端; Ze轴平行与气缸线,指向缸盖; Ye根据右手定则确定,应与气缸中心线所在的中心面垂直,指向发动机左侧(从变速箱端向皮带轮端看).

汽车库建筑设计规范

汽车库建筑设计规范 JGJ100-98 第1章总则 第1.0.1条为了适应城市建设发展需要,使汽车库建筑设计符合使用、安全、卫生等基本要求,制定本规范。 第1.0.2条本规范适用于新建、扩建和改建汽车库建筑设计。 第1.0.3条汽车库建筑设计应使用方便、技术先进、安全可靠、经济合理并符合城市交通现代化管理和符合城市环境保护的要求。 第1.0.4条汽车库建筑规模宜按汽车类型和容量分为四类并应符合表1.0.4的规定。 汽车库建筑分类表1.0.4 规模特大型大型中型小型停车数(辆) >500 301-500 51-300 <50 注: 此分类适用于中、小型车辆的坡道式汽车库及升降机式汽车库,并不适用其他机械式汽车库。 第1.0.5条汽车库建筑设计除应符合本规范外,尚应符合国家现行的有关标准的规定。第2 章术语

第2.0.1条汽车库(Garage) 停放和储存汽车的建筑物。 停放和储存汽车的建筑物。 第2.0.2条汽车最小转弯半径(Minimum Turn Radius of Car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 第2.0.3条地下汽车库 (Underground Garage) 停车间室内地坪面低于室外地坪面高度超过该层车库净高一半的汽车库。 第2.0.4条坡道式汽车库 (Ramp Garage) 汽车库停车楼层之间,汽车沿坡道上、下行驶者为坡道式汽车库。坡道可以是直线型、曲线型或两者的组合。 第2.0.5条敞开式汽车库(Opengarage) 汽车库内停车楼层每层外墙敞开面积超过该层四周墙体总面积25%的汽车库。 第2.0.6条缓坡段(Transitionslpoe) 当坡道坡度大时,为了避免汽车在坡道两端擦地面设的缓和线段。 第2.0.7条弯道超高(Rampturnsupperelcvation 为了平衡汽车在弯道上行驶所产生的离心力所设置的弯道横向坡度而形成的高差称弯道超高。第2.0.8条机械式汽车库(Mechanicalgarage) 使用机械设备作为运送或运送且停放汽车的汽车库。 第2.0.9条机械停车设备(Mechanicaleguipmentforparkingauto-mobile) 机械式汽车库中运送和停放汽车设备的总称。 第2.0.10条运送器(Conveyer) 机械停车设备中承托和运送汽车的部件的总称,它包括托架、托板、台车等。

现代汽车动力总成悬置系统的发展

现代汽车动力总成悬置系统的发展 一、汽车动力总成悬置系统设计的发展概述 从上个世纪五十年代起,汽车行业对动力总成的隔振、降噪研究做了大量的工作,取得了显著的效果。较为成熟的六自由度解耦理论和计算方法由Anon、Harison和Horovitz完成的,他们将汽车发动机动力总成和车架视为刚体,将减振橡胶块视为单纯的弹簧,利用发动机动力总成惯性主轴特性和撞击中心理论阐述了如何调整橡胶悬置的安装位置和悬置刚度,使发动机动力总成的前后悬置的振动互相独立,然后分别按照单自由度线性振动系统处理,他们认为系统垂直方向的固有频率与绕曲轴方向的固有频率应小于发动机怠速时相应扰动频率的三分之一,这样可以获得较好的减振效果。这些较早提出的设计理论对于后人的深入研究有着积极的指导作用。 1965年,美国通用汽车公司的Timpner F.F通过合理布置发动机悬置元件来进行发动机动力总成悬置系统解耦设计。他指出通过合理的布置悬置元件,使它们的弹性中心位于发动机动力总成悬置系统的质心处或主惯性轴上,己达到发动机动力总成悬置系统振动解耦的目的。 1979年,美国通用汽车公司的Stephen R.Johnson首次将优化技术应用于悬置系统的设计,以合理匹配系统固有频率和实现各个自由度之间的振动解耦为目标函数,以悬置元件刚度和悬置元件安装位置为设计变量进行优化计算,并推出COEMS软件,结果使系统各振动自由度之间的振动耦合大为减少,同时保证了悬置系统六阶固有频率在期望的范围内。 1982年,R.Racca以限制悬置空间、悬置位置、悬置刚度、固有频率和振动解耦等方面来考虑悬置的减振隔振性能,对传统的FR式悬置系统进行了全面地总结。 1984年,Geck P.E.等人将发动机悬置系统的最主要作用看成隔离低频域振动,这就要求它的侧倾固有频率要低,以吸收发动机不平衡扭矩引起的振动。因此,他们以侧倾解耦,低化侧倾模态为目标对悬置系统进行优化,并提出了较合

发动机悬置设计

发动机悬置设计 5.1 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 5.2、悬置系统功能介绍 5.2.1 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 5.3 动力总成悬置系统设计方法 5.3.1 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

悬架设计作业指导书

悬架系统设计作业指导书 编制:日期: 审核:日期: 批准:日期: 发布日期:年 月 日 实施日期:年 月 日

前言 为使本中心悬架系统设计规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。意在对本公司设计人员在设计过程中起到一种指导操作的作用,让一些相关设计经验不够丰富的员工有所依据,提高设计的效率和成效。本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。 本标准于201X年XX月XX日起实施。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院提出。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院负责归 口管理。 本标准主要起草人:蔡礼刚

目录 1 悬架系统概述 (1) 1.1悬架系统功能 (1) 1.2悬架系统构成 (1) 1.2.1独立悬架结构型式 (1) 1.2.2复合式悬架结构型式 (3) 1.3悬架的发展趋势 (4) 1.3.1液压调控悬架系统 (4) 1.3.2空气悬架系统 (5) 1.3.3电控磁性液体悬架系统 (6) 1.4主要零部件介绍 (7) 1.4.1弹性元件 (7) 1.4.2减振器 (8) 1.4.3缓冲块 (10) 1.4.4横向稳定杆 (11) 1.4.5控制臂和推力杆 (12) 2 悬架系统的主要设计流程及要求 (13) 2.1悬架系统的主要设计流程 (13) 2.2悬架系统设计要求 (16) 2.3相关设计标准 (16) 3 悬架系统设计过程 (17) 3.1设计输入及标杆车对比分析 (17) 3.1.1设计输入 (17) 3.1.2标杆车对比分析 (17) 3.1.3设计构想 (24) 3.1.4相关试验 (25) 3.2匹配计算 (27) 3.3开发方案确认 (27)

动力总成悬置系统设计

动力总成悬置系统设计 发表时间:2017-08-18T11:23:56.023Z 来源:《基层建设》2017年第12期作者:郝永生蔡志坤杨林[导读] 摘要:悬置系统作为车辆的主要隔振元件,对车辆的NVH性能尤为重要。 长城汽车股份有限公司技术中心河北保定 071000 摘要:悬置系统作为车辆的主要隔振元件,对车辆的NVH性能尤为重要,本文主要介绍了悬置系统在设计过程中采用的方法,以及在设计过程中常遇到的问题,并通过设计仿真及实际验证相结合,最终实现了车辆悬置系统良好的NVH性能。 关键词:动力总成;悬置系统;解耦;匹配 引言 随着汽车工业的发展,汽车产业的竞争进入了白热化的阶段,以往单独追求动力性、经济性的产品已经不能满足客户的需求,尤其近些年来,车辆的舒适性(NVH性能),成为了当前消费者越来越关注的目标,动力总成悬置,作为车辆的重要减震元件,在整车的NVH性能评价指标中,占据着非常重要的地位,在发动机日益小型化的基础上,高功率、高扭矩的实现,进一步恶化了发动机的振动水平,因此需要动力总成悬置与之进行很好的匹配,以此来提升车辆的舒适性能。 1概述: 1.1动总成悬置 汽车动力总成悬置是安装在动力总成与车架(或者车身)之间的弹性减振系统,由悬置元件,连接支架、动力总成组成。 1.2动力总成悬置的功能 汽车动力总成在工作状态下所受的力主要有静(力矩)、瞬态和周期性激振力(力矩),动力总成悬置系统的设计一般要满足以下几方面的要求; 1)支撑作用:保证动力总成姿态,需要合理分配各悬置的受力载荷,尽可能保持平均; 2)限位作用:动力总成进行动力输出时,会受到来自地面的反作用力,以及不同路面(颠簸、坑洼)的激振力,造成动力总成摇摆晃动,因此需要限制动力总成的位移,这就是限位; 3)隔振性能:分为两方面:一方面是动力总成传向车身等部件的激励/振动(主动隔振),另一方面是路面激励传给动力总成的振动(被动隔振);因此悬置系统必须具备主动隔振和被动隔振的双重作用; 右图,m代表动力总成质量,K代表悬置刚度,C 代表悬置阻尼,F代表发动机激振力,Fiso代表隔振力,X代表动力总成位移,Xf代表路面输入 图一 1)布置方式整体分为三点布置方式和四点布置方式,多数采用三点,部分日系车型采用四点,均为扭矩轴布置,(图一为常用布置方式:扭矩轴三点布置-拉杆式) 2)布置要求: ①左右悬置尽可能与扭矩轴重合,出现角度时,要求小于2°且左右应当放置在扭矩轴两侧。 ②悬置支架与动力总成距离小,保证模态,应该在500Hz以上,部分车型在700-800Hz; ③悬置安装点放置在发动机或车身(车架)节点位置。 2.2悬置系统解耦计算,

机械式停车库设计规范

1.总则 ,特别制定本规程。 ,其安全和性能均应符合该设备现行的国家和行业相关标准规定。 ,方便高效,并符合城市规划、交通、消防和环保以及停车信息发布等方面的要求。 ,应采用新技术、新设备和新工艺。 ,除应符合本规程外,尚应符合现行的国家和本市相关标准的规定。 2术语 parking garage(lot) 采用机械式停车设备存取停放车辆的停车库(场)。 underground mechanical parking garage 库内地坪面低于库外地坪面高度超过该层停车库净高一般的机械式停车库。 independent mechanical parking garage 单独设置的不依附于别的建筑物的机械式停车库。 dependent mechanical parking garage 附建于建筑物或包含在建筑物内的机械式停车库。 mechanical parking system 利用机械方法,将车辆作垂直、横向、纵向搬运,达到存放和取出车辆目的所使用的集机、电、仪一体化的全套设备。 parking place 停车库(停车设备)中车辆最终停放的位置。 turntable 通过回转动作,改变所载车辆纵轴方向的机械设备。 vehicle lift 依靠升降机械,改变车辆停放高度的机械设备。 3一般规定 ,并应符合现行相关标准和规范的规定。

以上的停车设备。 4建筑和结构 4.1建筑设计 ,应备置机房、控制室、管理办公室等辅助用房和必要的生活设施。 1 出入口宜为钢筋混凝土结构。 2 出入口门洞的宽度应符合本规程第,净空高度不应小于2.2m。 3 设置在停车设备周围的人行通道,其宽度应大于0.6m,净空高度应大于1.8m。 4 人员安全出口和车辆疏散出口应分开设置。 5 人员安全出口和车辆疏散出口处应设置醒目的标志。人员安全出口的疏散门应向疏散方向开启。 6 有车道(人)的停车库额每个防火分区内,其人员安全出口不应少于两个,但符合下列条件之一的可设一个:

汽车电器系统布置指南

整车技术部设计指南 100 第 10 章电器系统布置 10.1 概述 随着汽车技术的不断发展,汽车电子在整车性能及舒适性等方面所发挥的作用越来 越重要,而前舱布置了发动机、变速箱等重要系统,是整车各类系统的终端,同时工作 环境恶劣,因此电器系统在前舱中的布置要求很高,下面将详细介绍。 10.2 空调管路及冷凝器 空调是改善车内环境的系统,在前舱中有压缩机、冷凝器、干燥瓶及管路四个部件; 压缩机通过支架固定在发动机上,如图 10.1 图 10.1 图 10.2

整车技术部设计指南101 冷凝器是一个换热设备,一般布置在散热器前方,在车辆行驶时使风能够通过进气 隔栅吹到冷凝器表面;冷凝器的布置没有过多的要求,一般情况下与散热器集成为一个 系统布置在前保横梁后方,有时因前保隔栅通风孔比较大,在车外会透过前保隔栅看到 银色的冷凝器,不是很美观,只需令供应商将其涂成黑色即可;干燥瓶一般布置在冷凝 器附件,为的是减少干燥瓶到冷凝器的管路长度,干燥瓶与冷凝器均固定在车身上,因 此以硬铝管连接,目前应用与S18的过冷式 冷凝器 图10.3 冷凝器已将干燥瓶与冷凝器集成一体,减少了管路,布置时已不需要考虑干燥瓶; 空调的管路由高低压两根管路组成,高压管连接HVAC到干燥瓶,低压管连接HVAC 到压缩机,其中低压管中间部分采用橡胶管来滤除发动机的抖动;在总布置工作中,关 于空调管主要考虑布置后期的加注操作,如下图: 图10.4 空调管路走向的设计建议尽量 贴着钣金走,不要弯折过大的角 度,以免供应商的供货尺寸不精 准

整车技术部设计指南 102 一般的空调加注设备尺寸:R :20mm ,H :120mm ,在管路布置结束后需要校核加 注操作的可行性; 空调管路在前挡板上的接头处需要50mm 折管路,此处需注意管路和发动机的间隙要在以免发动机抖动碰撞到空调管路图 10.5 图 10.6 一般空调高压管全部采用硬管,需要添加两个固定点,低压管橡胶管距离发动机轮 系比较近,在设计时需考虑此处的间隙要大于 30mm ; 10.3 灯具与喇叭 大灯的法规性及安装性方面的校核是由电器专业工程师完成的,总布置方面的工作 主要是检查大灯调节及更换灯泡的便利性: 图 10.7 目前三院开发的小型乘用车因成本较低,采用的灯具均为手调大灯,在汽车出厂前 需要调节配光,如上图所示,在调节时需要保证工具能够伸入到红色的调节机构内,因

汽车库建筑设计规范-最新版要点

汽车库建筑设计规范 汽车最小转弯半径(Minimumturn radius of car 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 6.0.2 汽车库、修车库的每个防火分区内,其人员安全出口不应少于两个 6.0.3 汽车库、修车库的室内疏散楼梯应设置封闭楼梯间。建筑高度超过32m 的高层汽车库的室内疏散楼梯应设置防烟楼梯间,楼梯间和前室的门应向疏散方向开启。地下汽车库和高层汽车库以及设在高层建筑裙房内的汽车库,其楼梯间、前室的门应采用乙级防火门。疏散楼梯的宽度不应小于1.1m 。 6.0.6 汽车库、修车库的汽车疏散出口不应少于两个 6.0.11停车场的汽车疏散出口不应少于两个。停车数量不超过50辆的停车场可设一个疏散出口。 6.0.12汽车库的车道应满足一次出车的要求,汽车与汽车之间以及汽车与墙、柱之间的间距,不应小于表6.0.12的规定。 注:一次出车系指汽车在启动后不需调头、倒车而直接驶出汽车库。 消防给水和固定灭火系统 1、消防给水水源:市政给水管道、消防水池、天然水源供给 2、车库内设有消火栓、自动喷水、泡沫等灭火系统时,其室内消防用水量应按需要同时开启的灭火系统用水量之和计算。 3、车库应设室外消火栓给水系统,其室外消防用水量应按消防用水量最大的一座汽车库、修车库、停车场计算并不应小于下列规定: 7.1.5.1 Ⅰ、Ⅱ类车库20L/s;

7.1.5.2 Ⅲ类车库15L/s; 7.1.5.3 Ⅳ类车库10L/s。 4、室外消火栓的保护半径不应超过150m ,在市政消火栓保护半径150m 及以内的车库,可不设置室外消火栓。 5、高层汽车库和地下汽车库的室内消火栓的间距不应大于30m 。 6、汽车库、修车库室内消火栓超过10个时,室内消防管道应布置成环状,并应有两条进水管与室外管道相连接。 7、四层以上多层汽车库和高层汽车库及地下汽车库,其室内消防给水管网应设水泵接合器。水泵接合器的数量应按室内消防用水量计算确定,每个水泵接合器的流量应按10~15L/s计算。 水泵接合器应有明显的标志,并设在便于消防车停靠使用的地点,其周围 15~40m范围内应设室外消火栓或消防水池。 8、采用消防水池作为消防水源时,其容量应满足2.00h 火灾延续时间内室内外消防用水量总量的要求,但自动喷水灭火系统可按火灾延续时间1.00h 计算,泡沫灭火系统可按火灾延续时间0.50h 计算;当室外给水管网能确保连续补水时,消防水池的有效容量可减去火灾延续时间内连续补充的水量。 消防水池的补水时间不宜超过48h ,保护半径不宜大于150m 。 采暖通风和排烟 汽车库、停车场设计防火规范 5.1.9. 燃油、燃气锅炉、可燃油油浸电力变压器,充有可燃油的高压电容器和多油开关不宜设置在汽车库、修车库内。当受条件限制时,除液化石油气作燃料的锅炉以外的上述设备,需要布置在汽车库、修车库内时,应符合下列规定:

乘用车悬架系统台架试验标准规范

乘用车悬架系统台架试验规范 1 范围 本标准规定了乘用车悬架系统台架试验规范。 本标准适用于基础(新)底盘平台结构乘用车前、后悬架系统台架试验。对于在基础平台上延伸车型(如油改电),若轴荷增加<10%,悬架系统的强度及耐久性可视同原基础平台车,若轴荷增加≥10%,悬架系统的强度及耐久性可参照使用。 2 规范性引用文件 无 3 术语和定义 下列术语和定义适用于本标准。 3.1 麦弗逊悬架 mcPherson suspension 汽车独立悬架的一种结构类型,普遍应用于前悬架。由滑柱、控制臂、副车架及稳定杆等部件组成。 3.2 双叉臂悬架 double wishbone suspension 汽车独立悬架的一种结构类型,适应于前后悬架。由滑柱、上控制臂、下控制臂、副车架及稳定杆等部件组成。 3.3 多连杆悬架 multilink rear suspension 汽车独立悬架的一种结构类型,适应于后悬架。是指单边由三根或三根以上连接拉杆构成,能够提供多个方向的控制力,使轮胎具有更加可靠的行驶轨迹的悬架机构。 3.4 扭力梁后悬架 torsion beam rear suspension 汽车半独立悬架的一种结构类型,适应于后悬架。是通过一个扭力梁来平衡左右车轮的上下跳动,以减小车辆的摇晃,保持车辆的平稳性。 3.5 整体桥式非独立悬架 integral axle non independent suspension 汽车非独立悬架一种结构类型,在乘用车领域多用于偏重越野的SUV车型。通过一根硬轴将左右两个车轮相连。

3.6 验证样件 validation sample 试验过程中需要验证的工程样件,应是正式工装制造的样件。验证样件经过一项台架耐久试验循环后不可重复使用。 3.7 非验证样件 nonvalidation sample 试验过程中不需要验证的样件,在试验中可重复使用。 4 符号(代号、缩略语) 下列符号(代号、缩略语)适用于本文件。 g——重力加速度,单位为m/s2。 G——满载条件下车轮轮荷。 5 试验设备及工装要求 试验设备采用双通道柔性耐久试验台。试验设备载荷传感器应第三方校准,符合试验要求。试验过程中加载方向应与试验要求保持一致;耐久性试验中加载方式应采用连续加载方式,最大载荷的误差范围应在±5%以内;试验中连接部位所用的工装的刚度应不小于样件刚度的10倍。 6 耐久性能要求 6.1 纵向力耐久 按照8.1进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%;40万次不允许出现严重塑性变形或断裂现象(裂纹超过10mm)。 6.2 侧向力耐久 按照8.2进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%;40万次不允许出现严重塑性变形或断裂现象(裂纹超过10mm)。 6.3 同向垂直力耐久 按照8.3进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%;40万次不允许出现严重塑性变形或断裂现象(裂纹超过10mm)。 6.4 异向垂直耐久 对于独立悬架结构如麦弗逊前悬架、双叉臂悬架及多连杆后悬架等:按照8.4进行试验,悬架系统各验证零部件(除胶套外)在20万次试验后,不允许出现裂纹;紧固件不允许出现松动,松脱力矩大于初始拧紧力矩70%。

汽车动力总成悬置系统研究综述

汽车动力总成悬置系统研究综述 汽车动力总成悬置装置的性能对车辆NVH表现有很大的影响。本文通过单自由度模型对悬置系统的隔振原理进行分析,阐述了悬置系统的发展过程,并对不同类型的隔振垫进行了介绍和比较。 动力总成是汽车主要的噪声和振动源,主要的激励可分为两类:一是汽缸燃烧而产生的震爆力;二是发动机曲轴旋转运动时不平衡而产生的惯性力。为了保证驾乘的舒适性,工程师设计了动力总成隔振装置用以隔离动力总成产生的振动。常见的轿车隔振装置在空间布置上可以分为: 1.底部布置,即将隔振装置安装在机舱底部的副车架上。这种布置安装空间比较自由,但是隔振效果不理想。 2.悬置布置,即将隔振装置安装在动力总成扭矩轴上。这种布置隔振效果好,但是安装空间受到限制,而且通常需要1~2个扭拉杆或者隔振垫以限制动力总成在横向的转动角度。 在本文中,主要分析对象是悬置布置的动力总成隔振垫,即动力总成的悬置系统。动力总成悬置系统工作原理 动力总成悬架装置用于连接动力总成与车身结构,是汽车动力总成的重要组成部分,其主要功能可以归纳为如下两点: 1.支撑与限位。悬置系统的首要功能即连接动力总成与车身结构,因此悬置系统不仅要在静止状态下将动力总成定位并支撑在设计的位置,而且需要保证动力总成在不同工况下与机舱或其他部件不发生碰撞或干涉,将动力总成的位移限制在合理的一个区域内。 2.隔离振动。发动机的激振是汽车的主要振源之一,为了保证驾乘的舒适性,悬置系统需要尽可能减少由发动机传向车身和底盘的振动;另一方面,由于道路不平等原因,悬置系统也需要尽量隔离来自悬架和车轮的振动,防止该激振传递至动力总成,以保护发动机和变速器的正常工作。 由于悬置系统需要承载整个动力总成的重量以及发动机所产生的扭矩,这决定悬置系统需要足够大的刚度以保证动力总成的位置在合理的区域内。若刚度不足则可能导致动力总成与其他部件发生干涉或碰撞;另一方面,要获得较小的振动传递率,就需要更大的频率比,这就要求悬置系统的刚度尽可能小。阻尼方面,在低频区域时,大阻尼可以有效降低振动幅值;随着频率增大,在隔振区内,大阻尼会放大传递的振动幅值。因此,理想的悬置系统需要在低频时具有大刚度和大阻尼而在高频区域需要小刚度和小阻尼。 悬置系统的分类 在早期的汽车设计中,动力总成用螺栓刚性地与车身连接。这种连接方式不仅无法隔离动力总成所产生的振动,由悬架系统传递到车身的振动也会因为没有任何隔振措施而直接传递到动力总成,致使动力总成的寿命和可靠性都受到影响。随后设计师逐渐开始使用软木等软性材料来隔离振动。目前,动力总成的隔振垫可主要分为被动隔振垫,半主动隔振垫和主动隔振垫。其中,半主动隔振垫和主动隔振垫由于其尺寸庞大,结构复杂,一般较少使用;被动隔振垫是现代汽车所广泛使用的隔振方式。 被动悬置 被动悬置构造较简单,没有额外的控制单元,仅依靠材料的本身特性和不同的结构设计来完成隔振。主要可以分为橡胶悬置和液阻悬置。 橡胶悬置早在20世纪30年代就出现并广泛应用在汽车上。由于橡胶部件的结构和橡胶特性是一定的,所以橡胶悬置的刚度和阻尼要么同时设计得很大,要么同时设计得很小。根据前文所述,当悬置的刚度和阻尼都较大时,悬置系统比较适合冲击隔离,在低频工作区域

汽车库设计防火规范

汽车库修车库停车场设计防火规范 GB500067-97 主编部门:中华人民共和国公安部 批准部门:中华人民共和国建设部 施行日期:1998年5月1日 关于发布国家标准《汽车库、修车库、停车场设计防火规范》的通知 建标号[1997]280号 根据国家计委计综合[1997]280号文的要求,由公安部会同有关部门共同修订的《汽车库、修车库、停车场设计防火规范》,已经有关部门会审。现批准《汽车库、修车库、停车场设计防火规范》GB50067-97为强制性国家标准,自一九九八年五月一日起施行。原《汽车库设计防火规范》(GBJ67-84)同时废止。 本规范由公安部负责管理,其具体解释等工作由上海市消防局负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九七年十月五日 1 总则 1.0.1 为了防止和减少火灾对汽车库、修车库、停车场的危害,保护人身和财产的安全,制定本规范。 1.0.2 本规范适用于新建、扩建和改建的汽车库、修车库、停车场(以下统称车库)防火设计,不适用于消防站的车库防火设计。 1.0.3 车库的防火设计,必须从全局出发,做到安全适用、技术先进、经济合理。 1.0.4 车库的防火设计除应执行本规范外,尚应符合国家现行的有关设计标准和规范的要求。 2 术语

2.0.1 汽车库garage 停放由内燃机驱动且无轨道的客车、货车、工程车等汽车的建筑物。 2.0.2 修车库motor repair shop 保养、修理由内燃机驱动且无轨道的客车、货车、工程车等汽车的建(构)筑物。 2.0.3 停车场parking area 停放由内燃机驱动且无轨道的客车、货车、工程车等汽车的露天场地和构筑物。 2.0.4 地下汽车库under ground garage 室内地坪面低于室外地坪面高度超过该层车库净高一半的汽车库。 2.0.5 高层汽车库high-rise garage 建筑高度超过24m的汽车库或设在高层建筑内地面以上楼层的汽车库。 2.0.6 机械式立体汽车库mechanical and steteoscopic garage 室内无车道且无人员停留的、采用机械设备进行垂直或水平移动等形式停放汽车的汽车库。 2.0.7 复式汽车库compound garage 室内有车道、有人员停留的,同时采用机械设备传送,在一个建筑层里叠2 ~ 3层存放车辆的汽车库。 2.0.8 敞开式汽车库open garage 每层车库外墙敞开面积超过该层四周墙体总面积的25%的汽车库。 3 防火分类和耐火等级 3.0.1 车库的防火分类应分为四类,并应符合表3.0.1的规定。 车库的防火分类 表3.0.1

发动机悬置设计

整车技术部设计指南73 发动机悬置设计 5.1 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传 递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 5.2、悬置系统功能介绍 5.2.1 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位 移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 5.3 动力总成悬置系统设计方法 5.3.1 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

相关文档
最新文档