摩擦焊工艺

摩擦焊工艺
摩擦焊工艺

1.接头设计

1)接头设计原则

(1)对旋转式摩擦焊,至少有一个圆形截面。

(2)为了夹持方便、牢固,保证焊接过程不失稳,应尽量避免设计薄管、薄板接头。

(3)一般倾斜接头应与中心线成30°~45°的斜面。

(4)对锻压温度或热导率相差较大的材料,为了使两个零件的锻压和顶锻相对平衡,应调整界面的相对尺寸。

(5)对大截面接头,为了降低摩擦加热时的扭矩和功率峰值,采用端面导角的办法可使焊接时接触面积逐渐增加。

(6)如要限制飞边流出(如不能切除飞或不允许飞边暴露时),应预留飞边槽。

(7)对于棒-棒、和棒-板接头,中心部位材料被挤出形成飞边时,要消耗更多的能量,而焊缝中心部位对扭矩和弯曲应力的承担又很少,所

以,如果工作条件允许,可将一个或两个零件加工成具有中心孔洞,

这样既可用较小功率的焊机,又可提高生产率。

(8)采用中心部位突起的接头,见图1,可有效地避免中心未焊合。

(9)摩擦面要避免采用渗碳、渗氮等。

(10)为了防止由于轴向力(摩擦力、顶锻力)引起的滑退,通常在工件后面设置挡块。

(11)工件伸出夹头的尺寸要适当,被焊工件应尽可能有相同的伸出长度。

图1

接头表面突起设计标准

2)摩擦焊接头的形式

表1是摩擦焊接头的基本形式。

表1

摩擦焊接头的基本形式

2. 连续驱动摩擦焊的焊接参数 1)主要的焊接参数

可以控制的主要焊接参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻延时、顶锻时间、顶锻力、顶锻变形量。其中,摩擦变形量和顶锻变形量(总和为缩短量)是其它参数的综合反映。

(1)转速和摩擦压力

转速和摩擦压力直接影响摩擦扭矩、摩擦加热功率、接头温度场、塑性层厚度以及摩擦变形速度等。

工件直径一定时,转速代表摩擦速度。实心圆截面工件摩擦界面上的平均摩擦速度是距圆心为2/3半径处的摩擦线速度。稳定摩擦扭矩与平均摩擦速度、摩擦压力的关系见图2。摩擦变形速度与平均摩擦速度、摩擦压力的关系见图3。转速对热影响区和飞边形状的影响见图4。

图2 摩擦扭矩与平均摩擦速度、摩擦压力的关系曲线

(低碳钢管φ19mm×3.15mm)

焊接工艺方案设计

T/P92钢焊接工艺方案设计 1 、T/P92钢焊接性简述 T/P92钢的标准化学成分和机械性能列入表1和表2。欧洲开发的新型马氏体耐热钢—E911钢属于T/P92钢。日本开发的新型马氏体耐热钢—NF616钢属于T/P92钢,已列入ASTM/ASME A 213 T91和ASTM/ASME A335 P92标准。 表1 T/P92钢的化学成分 表2 T/P92钢的机械性能 1.1 T/P92在T/P91钢的基础上加入了1.7%的钨(W),同时钼(Mo)含量降低至0.5%,用钒、铌元素合金化并控制硼和氮元素含量的高合金铁素体耐热钢,通过加入W元素,显著提高了钢材的高温蠕变断裂强度。在焊接方面,除了有相应的焊接材料,并由于W是铁素体形成元素,焊缝的冲击韧性有所下降外,其余对预热、层间温度、焊接线能量,待马氏体完全转变后随即进行焊后热处理以及热处理温度、恒温时间的要求都是比较相近的。 1.2 T/P92钢中有关C、S、P等元素含量低、纯净度较高,且具有高的韧性,焊接冷裂纹倾向大为降低,但由于其钢种的特殊性,仍存在一定的冷裂纹倾向,所以焊接时必须采取一些必要的预防措施。 1.3 T/P92钢中添加W元素,促进了δ铁素体的形成,使冲击韧性比

T/P91有所降低,所以焊缝的冲击韧性与其母材、HAZ和熔合线的韧性相比,也存在明显降低的问题。

1.4与T/P91钢相似,存在焊接接头热影响区“第四类”软化区的行为。焊接接头经过长期运行后,焊接断裂在远离焊缝区的软化带,此软化带强度明显降低。 2、 T/P92钢的应用 2.1 T/P92钢具有与T/P91优良的常温及高温力学性能。通过加入W 元素,显著提高了钢材的高温蠕变断裂强度,T/P92钢的工作温度比T/P91钢高,可达630℃。 2.2 T/P92钢中碳的含量保持在一个较低的水平是为了保证最佳的加工性能,高温蠕变断裂强度非常高,抗腐蚀性能好,提高了耐热钢的工作温度,减少了钢材的厚度,降低了钢材的消耗量,降低了管道热应力。在国内首台USC机组玉环电厂机组对主蒸汽管道的设计中,曾有两套方案,若采用P91钢材,其规格为φDn349×103mm;若采用P92钢材,由规格可减为φDn349×72mm。 2.3用于替代电厂锅炉的过热器和再热器的不锈钢(不锈钢焊接有严重的晶间腐蚀及与铁素体、珠光体钢等异种钢的焊接问题),用于极苛刻蒸汽条件下的集箱和蒸汽管道(主蒸汽和再热蒸汽管道),其热传导和膨胀系数也远优于奥氏体不锈钢。 2.4由于T/P92钢的含碳量低于T/P91钢材,是低碳马氏体钢,须在马氏体组织区焊接,其预热温度和层间温度可以大大降低,据国外资料研究,通过斜Y型焊接裂纹试验法测定的止裂预热温度为100-250℃左右。 3 、T/P92钢焊接接头质量的各种影响因素的分析 3.1影响T/P92焊接接头质量的主要因素及影响结果见表1

摩擦焊工艺

1.接头设计 1)接头设计原则 (1)对旋转式摩擦焊,至少有一个圆形截面。 (2)为了夹持方便、牢固,保证焊接过程不失稳,应尽量避免设计薄管、薄板接头。 (3)一般倾斜接头应与中心线成30°~45°的斜面。 (4)对锻压温度或热导率相差较大的材料,为了使两个零件的锻压和顶锻相对平衡,应调整界面的相对尺寸。 (5)对大截面接头,为了降低摩擦加热时的扭矩和功率峰值,采用端面导角的办法可使焊接时接触面积逐渐增加。 (6)如要限制飞边流出(如不能切除飞或不允许飞边暴露时),应预留飞边槽。 (7)对于棒-棒、和棒-板接头,中心部位材料被挤出形成飞边时,要消耗更多的能量,而焊缝中心部位对扭矩和弯曲应力的承担又很少,所 以,如果工作条件允许,可将一个或两个零件加工成具有中心孔洞, 这样既可用较小功率的焊机,又可提高生产率。 (8)采用中心部位突起的接头,见图1,可有效地避免中心未焊合。 (9)摩擦面要避免采用渗碳、渗氮等。 (10)为了防止由于轴向力(摩擦力、顶锻力)引起的滑退,通常在工件后面设置挡块。 (11)工件伸出夹头的尺寸要适当,被焊工件应尽可能有相同的伸出长度。

图1 接头表面突起设计标准 2)摩擦焊接头的形式 表1是摩擦焊接头的基本形式。 表1 摩擦焊接头的基本形式 接头形式简图接头形式简图 棒-棒管-板 管-管管-管板 棒-管棒-管板 矩形和多边形型 棒-板 材-棒或板 2.连续驱动摩擦焊的焊接参数 1)主要的焊接参数 可以控制的主要焊接参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻延时、顶锻时间、顶锻力、顶锻变形量。其中,摩擦变形量和顶锻变形量(总和为缩短量)是其它参数的综合反映。

焊接工艺规程完整

手工电弧焊焊接工艺规程 ——编号HG—0001 目录 1、用途及说明 2、焊接设备及工辅具 3、焊接材料 4、焊工 5、焊接工艺 6、焊接质量检验 手工电弧焊工艺规程 (焊接说明书) 1 用途及说明 本工艺规程适合用于专业厂、生产车间生产的手工电弧焊总成,同时也是技术科、检查科、生产车间进行工艺设计、焊接质量检查及产品验收的依据。 2 焊接设备及工辅具 2.1 手工电弧焊电源种类 2.1.1 交流弧焊机 常用型号:BX-500、BX1-300、BX3-300等。 2.1.2 旋转式直流弧焊发电机 常用型号:AX1-500、AX3-300等。 2.1.3 弧焊整流器 常用型号:ZXG1-250、ZXG1-400等。 2.1.4 逆变弧焊整流器 常用型号:ZX7-250、ZX7-315等。 2.2 对设备的性能要求 2.2.1 要求弧焊电源具有良好的动特性及徒降的外特性。 2.2.2 应有较高的空载电压,使焊接过程中电弧燃烧稳定。 2.2.3 按GB8118-87规定要求,应具有一定的焊接电流可调围。 2.3 设备的选择依据 2.3.1 选择设备时要以产品图作为依据,根据焊接金属材质、焊条类型、焊接结构来选择弧焊电源的类型。 2.3.1.1使用酸性焊条焊低碳钢时,应优先考虑用交流焊机。 2.3.1.2使用碱性焊条焊接重要结构或合金钢、铸铁时,需选用弧焊整流器、弧焊发电机等直流电源。 2.3.1.3在弧焊电源数量有限,而焊接材料的类型又较多时,可选用通用性较强的交直流两用电源。 2.3.2 根据焊接结构所用材料、板厚围、结构形式等因素确立所需弧焊电源的容量,然后参照弧焊电源技术数据,选用相应的设备。

资料.摩擦焊工艺(数字)

摩擦焊工艺 1.接头设计 1)接头设计原则 (1)对旋转式摩擦焊,至少有一个圆形截面。 (2)为了夹持方便、牢固,保证焊接过程不失稳,应尽量避免设计薄管、薄板接头。 (3)一般倾斜接头应与中心线成30°~45°的斜面。 (4)对锻压温度或热导率相差较大的材料,为了使两个零件的锻压和顶锻相对平衡,应调整界面的相对尺寸。 (5)对大截面接头,为了降低摩擦加热时的扭矩和功率峰值,采用端面导角的办法可使焊接时接触面积逐渐增加。 (6)如要限制飞边流出(如不能切除飞或不允许飞边暴露时),应预留飞边槽。 (7)对于棒-棒、和棒-板接头,中心部位材料被挤出形成飞边时,要消耗更多的能量,而焊缝中心部位对扭矩和弯曲应力的承担又很少,所以,如果工作条件 允许,可将一个或两个零件加工成具有中心孔洞,这样既可用较小功率的焊机, 又可提高生产率。 (8)采用中心部位突起的接头,见图1,可有效地避免中心未焊合。 (9)摩擦面要避免采用渗碳、渗氮等。 (10)为了防止由于轴向力(摩擦力、顶锻力)引起的滑退,通常在工件后面设置挡块。 (11)工件伸出夹头的尺寸要适当,被焊工件应尽可能有相同的伸出长度。 图1 接头表面突起设计标准

2)摩擦焊接头的形式 表1是摩擦焊接头的基本形式。 表1 摩擦焊接头的基本形式 接头形式简图接头形式简图 棒-棒管-板 管-管管-管板 棒-管棒-管板 棒-板 矩形和多边形型材- 棒或板 2.连续驱动摩擦焊的焊接参数 1)主要的焊接参数 可以控制的主要焊接参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻延时、顶锻时间、顶锻力、顶锻变形量。其中,摩擦变形量和顶锻变形量(总和为缩短量)是其它参数的综合反映。 (1)转速和摩擦压力 转速和摩擦压力直接影响摩擦扭矩、摩擦加热功率、接头温度场、塑性层厚度以及摩擦变形速度等。 工件直径一定时,转速代表摩擦速度。实心圆截面工件摩擦界面上的平均摩擦速度是距圆心为2/3半径处的摩擦线速度。稳定摩擦扭矩与平均摩擦速度、摩擦压力的关系见图2。摩擦变形速度与平均摩擦速度、摩擦压力的关系见图3。转速对热影响区和飞边形状的影响见图4。

6156铝合金平板对接焊焊接工艺及夹具设计设计说明书

焊接课程设计 说明书 班级: : 学号: 专业

目录 设计任务书-------------------------------------------------------------------------------1第一部分焊接工艺设计 一、6156铝合金板焊接性分析-----------------------------------------------------2 二、焊接方法的选择-------------------------------------------------------------------3 三、MIG焊工作原理及工艺特点---------------------------------------------------4 四、、焊接工艺参数-------------------------------------------------------------------5 五、焊接注意事项----------------------------------------------------------------------7 六、外观检验---------------------------------------------------------------------------7 七、无损检测-----------------------------------------------------------------------------8第二部分夹具设计 一、夹具设计的目的意义及要求-------------------------------------------------8 二、定位------------------------------------------------------------------------------------8 三、夹具设计-----------------------------------------------------------------------------9 四、夹紧材料的设计-------------------------------------------------------------------12 五、夹紧尺寸公差及粗糙度---------------------------------------------------------14结论------------------------------------------------------------------------------------------14参考文献-----------------------------------------------------------------------------------15附录 焊接工艺卡-----------------------------------------------------------------------------装配图--------------------------------------------------------------------------------------零件图-----------------------------------------------------------------------------------

振动摩擦焊接工艺及汽车塑料件设计及应用

振动摩擦焊接工艺及汽车塑料件设计及应用 发表时间:2019-04-24T17:07:33.157Z 来源:《基层建设》2019年第3期作者:赵永伟[导读] 摘要:振动摩擦焊接:指在上下热塑性塑料件之间施加压力的状态下,通过上治具的左右振动所产生的摩擦执充分熔化树脂后,停止振动继续加压固化,使上下塑料件分子间重新结合,从而实现焊接的一种新型焊接方法。长城汽车股份有限公司徐水分公司河北保定 071000 摘要:振动摩擦焊接:指在上下热塑性塑料件之间施加压力的状态下,通过上治具的左右振动所产生的摩擦执充分熔化树脂后,停止振动继续加压固化,使上下塑料件分子间重新结合,从而实现焊接的一种新型焊接方法。本文主要介绍了基于振动摩擦焊接工艺的汽车塑料件设计及应用。 关键词:振动摩擦焊接;车灯塑料件;结构设计;模具设计 前言:与传统的塑料连接方式相比,振动摩擦焊接具有焊接速度快、强度高、密封性好、控制精确等特点,特别适合焊接尺寸较大、形状复杂的汽车塑料件产品。采用振动摩擦焊接不需要使用附加材料,如紧固件、嵌件、电磁感应预成型件、胶黏剂或溶剂等,这样可以提高产品质量、降低生产成本、减少环境污染。在汽车行业竞争日趋激烈的今天,被越来越多的汽车零部件生产企业所采用。 1、振动摩擦焊接工艺影响因素及优缺点 1.1振动摩擦焊接性能影响因素 1)Plastic结构;2)材质的熔融温度;3)硬度弹性;4)不同材质的特性;5)湿度;6)熔融速度;7)树脂添加剂。 1.2振动摩擦焊接的优点 1)焊接不规则,形状复杂的零件;2)可熔接大型的零件;3)熔接力强,接口可靠;4)能一次焊接多个零件;5)无需借助其它结合物质;6)无臭味,不会造成环保问题;7)对于受潮与含高量添加物之塑料有良好的熔接效果;8)耗电量低;9)快速,容易设定;10)模具替换性高。 1.3振动摩擦焊接的缺点 1)焊接面为10度以内的平面;2)产品要坚固,耐得住振动摩擦;3)若焊接结构的设计不合理,有时外观会有溢料产生。 2、基于振动摩擦焊接工艺的汽车塑料件结构设计 基于振动摩擦焊接工艺的汽车塑料件结构设计主要分为焊接接头设计和定位设计两部分,焊接接头是在振动摩擦焊接中塑料件熔融结合在一起的部位,定位机构主要是为了保证塑料件的精准焊接。 下面主要介绍了应用于汽车塑料件振动摩擦焊接的典型结构,如下: 设计结构1:常用于密封罐焊接。 设计结构2:典型应用位置狭窄,容器较大。 设计结构3:常用于阀盖的焊接两侧无溢料。

摩擦力的方向判断与大小计算

摩擦力的方向判断及大小计算 一. 教学内容: 摩擦力大小、方向的确定 二、考点点拨 摩擦力是三种基本性质力中最难判定的力,它的大小和方向的确定是高中阶段的重点和难点,物体在各种运动状态下摩擦力的分析在每年的高考中都有所体现,是高考的必考内容。 三、跨越障碍 摩擦处处、时时存在,在初中我们知道,摩擦分为静摩擦、滑动摩擦和滚动摩擦三类,我们已知道了摩擦的基础知识,我们今天将进一步来研究摩擦的相关知识。 (一)滑动摩擦力 1、产生:两个相互接触的物体发生相对运动时产生的摩擦力。 2、产生条件:1)接触面粗糙 2)相互接触且有形变即相互间有弹力 3)物体间有相对运动 3、方向:跟接触面相切,并跟物体相对运动方向相反。 例1:一物体在水平面上向右运动,试确定其摩擦力的方向。 物体相对于地面的方向是水平向右,所以摩擦力方向水平向左 例2:A、B两物体叠放在一起,两物体都沿水平面向右运动,A的速度为,B的速度为, 并且<,问A、B两物体间的摩擦力的方向如何? 虽然A的速度方向水平向右,但由于<,所以A相对于和它接触的物体B而言,是向左运动的,即相对运动方向是向左的,故A受到的B对它的摩擦力是水平向右的。 注:1、由例2可以看到,物体的运动方向和相对运动方向是有区别的。 2、摩擦力是和相对运动方向相反,不是和运动方向相反,所以我们在判断滑动摩擦力的方向时,一定要先找出该物体相对于和它接触的物体的运动方向,才能判断滑动摩擦力的方向,不能仅凭运动方向来判断摩擦力方向。

例3:传送带顺时针方向运动,现将一物体静止地放上传送带,则物体在放上传送带的一段时间内所受滑动摩擦力的方向如何? 物体静止地放上传送带,传送带水平部分向右运动,则物体相对于传送的运动方向向左,所以受到的滑动摩擦力方向水平向右。 4、大小:经过试验,我们得出,物体受到的滑动摩擦力的大小和物体间的压力有关,还和物体间接触面的材料性质有关。 即f=μN μ是一个没有单位,小于1的常数,叫做动摩擦因数。它与两物体的材料性质,表面状况有关,和接触面积无关。 N是物体对接触面的正压力即垂直于接触面的弹力。 例4:一质量为5kg的物体在水平面上向右运动,它和水平面间的μ为0.6,则此时物体受到的滑动摩擦力多大? 解:此时物体对水平面的压力大小等于物体所受的重力 所以f=μN=0.6×50=30N 方向水平向左 注:这道例题中压力恰好等于重力的大小,但要特别注意,压力并不总等于重力,压力和重力是不相同的两个力。 5、作用效果:总是起着阻碍物体间相对运动的作用。 (二)静摩擦力 1、定义:两相对静止的相互接触的物体间,由于存在相对运动的趋势而产生的摩擦力。 2、静摩擦力产生的条件:1)两物体直接接触 2)接触处粗糙且相互间有弹力 3)两物体有相对运动的趋势 3、静摩擦力的方向:总是和接触面相切,并且总跟物体的相对运动趋势方向相反。 判断两物体间是否有相对运动的趋势,一般采用假设法,即假设接触面光滑,看相接触的两物体间是否有相对运动,如果有,此方向即为相对运动的趋势方向;如果没有,说明物体间无相对运动趋势。 例5:判断下面两个静止物体受到的静摩擦力的方向 (1)

焊接工艺课程设计

[文档标题]

焊接工艺课程设计 1绪论 1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环

境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 1.2.1对焊条的基本要求 (1)焊条的熔敷金属应具有良好的力学性能 (2)焊条的熔敷金属应具有规定的化学成分,以保证其使用性能的要求

Q235钢板焊接工艺设计说明书

焊接1531 王翔 Q235钢板的焊接工艺设计说明书 目录 1 母材的基本数据与焊接性 (2) 1.1 母材的基本数据 (2) 1.1.1 Q235钢的介绍 (2) 1.1.2 碳钢按含碳量的分类 (2) ......................................................................................................... 错误!未定义书签。 1.1.4 Q235钢的化学成分与基本力学性能 (3) 1.2 Q235钢的焊接性 (4) 1.2.1 碳当量分析 (5) ......................................................................................................... 错误!未定义书签。 1.2.3 焊接时存在的问题 (6) 2 焊接方法的选择 (7) 3 焊接工艺 (8) 3.1 焊前准备 (8) 3.1.2 工件表面的清理 (9) 3.1.3 焊条烘干 (9) 3.2 焊接工艺参数的制定 (9) 3.2.1 焊条直径的选择 (9) 3.2.2 焊接电流 (10) 3.2.3 焊接电压 (11) 3.2.4 焊接层数 (12)

3.2.5 焊接速度 (12) 3.2.6 电流极性的选择 (12) 3.2.7 反变形 (13) 4 操作要点及注意事项 (13) 4.1.1 引弧焊接前引燃电弧的过程叫做引弧。引弧常用划檫法和直击法。 (13) 4.1.2 运条 (13) 4.1.3 收尾 (14) 4.1.4 敲渣 (14) 5 常见缺陷及解决措施 (14) 5.1.1 气孔 (14) 5.1.2 残余应力与变形 (15) 5.1.3 冷裂纹 (15) 1 母材的基本数据与焊接性 1.1 母材的基本数据 1.1.1 Q235钢的介绍 Q235钢又称A3钢,是铁和碳的合金,碳钢中除了以碳作为合金元素外,还有少量的Mn和Si有益元素,还有少量的S、P等杂质。Q代表的是这种材质的屈服极限,235代表的是屈服值,由于这种材料的含碳适中,综合性能较好,强度、塑性和焊接等性能得到较好配合,用途最广泛。 1.1.2 碳钢按含碳量的分类 表1 碳钢按含碳量的分类

摩擦力的求法

摩擦力的求法 求解物体所受的摩擦力,首先要弄清楚物体所受摩擦力的性质。即物体受到的是静摩擦力还是滑动摩擦力。 所谓静摩擦力,就是物体和与它接触的物体保持相对静止时所受到的摩擦力。此力产生 的条件有四:○ 1两个物体相互接触○2相互接触的物体之间有弹力○3接触面不光滑○4物体之间有相对滑动的趋势。 物体受到的静摩擦力是一个变力,它将随着外力的变化或随着物体运动状态的变化而变化。因此在计算物体所受到的静摩擦力大小时,要根据物体所处的不同状态利用不同的方法进行计算。 a) 如果物体处于静止或匀速直线运动状态,要根据共点力作用下物体的平衡条件进行求解。 b) 如果物体处于加速直线运动状态,则要根据牛顿第二定律进行求解。 例1、如图所示,放在水平地面上的物体在水平拉力F 作用下处于静止,则物体所受的摩擦力大小是多少?方向朝哪? 解:通过受力分析知:物体受到四个力的作用,重力;支持 力;拉力和摩擦力。根据共点力作用下物体的平衡条件知, 物体所受的摩擦力大小等于物体所受的拉力。即f = F 例2、如图所示,水平地面上的物体在斜向上与水平方 向成θ角的拉力作用下处于静止。求物体受到的摩擦力大小。 解:通过受力分析知,物体受到四个力的作用,重力;支持力; 拉力和摩擦力。由于物体处于静止状态,根据共点力作用下物 体的平衡条件知:???=+=G F N f F θθsin cos 因此物体所受的摩擦力等于Fcos θ = f 。 如果物体和与它接触的物体保持相对静止,而一起作加速运动时,要根据牛顿第二定律进行求解。 例3、质量为m 的物体放在质量为M 的另一物体上,在光滑的水平 面上一起向右作匀加速直线运动,它们运动的加速度大小为a ,求质量为 m 的物体所受的摩擦力是多大? 解:分析m 的受力情况知,m 受到三个力的作用,重力;支持力; 摩擦力。 其中重力和支持力在竖直方向上是一对平衡力,大小相等;而物体所受 的静摩擦力才是物体作匀加速直线运动的原因,根据牛顿第二定律知:f = ma 例4、质量为m 的物体放在一水平转台上,距中心转轴的距离为r ,当物 体随转台一起以角速度ω匀速成转动时,求物体受到的摩擦力大小? 解:分析物体受力知,物体受到三个力的作用。重力;支持力;和指向圆心的摩擦力。重力和支持力在竖直方向是一对平衡力,大小相等。而物体受到静摩擦力才是物体产生向心 加速度的原因。根据牛顿第二定律知:r m f 2 ω= 应当注意的是,物体所受到的静摩擦力跟物体间的正压力没有关系。 滑动摩擦力,是指物体相对于和它接触的物体有相对滑动时,在接触面处 产生的摩擦力。滑动摩擦力的产生应具备四个条件:○ 1两物体相接触○2相

目前最先进的焊接工艺 搅拌摩擦焊

目前最先进的焊接工艺,搅拌摩擦焊,你知道原理吗 搅拌摩擦焊是由英国焊接技术研究所于1991年发明的新型焊接技术,其原理如下图所示。 一根安装在主轴上的形状为蜗杆形式的搅拌针在一定压力下被插入焊缝位置,搅拌针的长度一般要比焊缝深度略浅,以此来保证主轴的轴肩能紧贴被焊接的工件表面。当工件与搅拌针和轴肩摩擦生热,焊缝附近的材料会因受热产生严重的塑性变形,但是,并不是熔化,只是成为一种“半流体”的状态,随着主轴带动搅拌针沿着焊缝的走向进给,搅拌针不断把已经处于“半流体”状态的材料搅拌到身后,当主轴离开后,这些材料将冷却固化,从而形成一条稳定的焊缝。

大家都知道,以铝合金和镁合金为代表的轻质合金是航空航天器的主要结构材料之一。然而这些轻质合金的可焊性都非常差,传统的各种熔焊工艺都无法从根本上杜绝热裂纹、气孔和夹渣等这些焊接缺陷的产生,需要靠操作者具有非常高超的技术和工艺才能保证焊接质量。并且,熔焊的高温会产生大量热量和有毒的烟气,这对操作者的身体健康也造成了很大的威胁。而搅拌摩擦焊的出现从根本上解决了这一系列问题。 其次,相较于传统熔焊工艺在焊缝附近形成重新铸造形态,搅拌摩擦焊由于主轴会给被焊接的工件部位施加一个很大的压力,所以在焊缝附近得到的是锻造形态,这种锻造形态组织比铸造形态组织致密得多,因而焊接后零件的机械性能也比传统熔焊工艺做出来的好得多。 而搅拌摩擦焊最大的优势体现在其本质是把机械能转化成焊接所需要的热能,所以可以用特定的公式相当准确的计算出焊接热及其引发的工件热变形的量,从而为事前的补偿和事后的纠正提供了几乎不依赖操作者经验的定量的依据,这是任何一种传统焊接工艺都望尘莫及的。

压力管道焊接工艺规范标准设计

压力管道设计说明书 设计题目:压力管道焊接工艺设计 设计参数: 2.1工作压力:5MPa 2.2工作温度:-10~80摄氏度 2.3外形:圆柱体 2.4工质:原油 2.5材料:L245管线钢 设计要求: 3.1压力管道结构受力分析 3.2强度计算,确定最小壁厚 3.3焊接工艺分析 3.4编写焊接工艺卡 3.5.编写热处理工艺卡 3.6绘制焊接工艺草图 一、总体概述 长输管道作为铁路、公路、海运、民用航空和长输管道五大运输行业之一,其输送介质除常见的石油、天然气外,还有工业用气体如氧气、二氧化碳、乙烯、液氧等介质。大部分输送介质管道在国内均有成功建设和运行业绩。 近几年,我国管道建设发展非常迅速。在管线的建设施工中,环焊缝焊接方法从传统的手工焊、管道下向手工焊、半自动下向焊到现在的全自动焊,管线的钢级从Q235 、16Mn、L290(X42)、L360(X52)、L415(X60)、L450(X65)和L485(X70)提高到目前的L550(X80),直径从200mm增加到1219 mm,水管线直径已超过2000 mm,壁厚从6 mm增加到30 mm,输送压力从4MPa增加到15MPa。 从广义上理解,压力管道是指所有承受内压或外压的管道,无论其管内介质如何。压力管道是管道中的一部分,管道是用以输送、分配、混合、分离、排放、计量、控制和制止流体流动的,由管子、管件、法兰、螺栓连接、垫片、阀门、其他组成件或受压部件和支承件组成的装配总成。

压力管道具有以下特点: (1)、压力管道是一个系统,相互关联相互影响,牵一发而动全身。 (2)、压力管道长径比很大,极易失稳,受力情况比压力容器更复杂。压力管道内流体流动状态复杂,缓冲余地小,工作条件变化频率比压力容器高(如高温、高压、低温、低压、位移变形、风、雪、地震等都有可能影响压力管道受力情况)。 (3)、管道组成件和管道支承件的种类繁多,各种材料各有特点和具体技术要求,材料选用复杂。 (4)、管道上的可能泄漏点多于压力容器,仅一个阀门通常就有五处。 (5)、压力管道种类多,数量大,设计,制造,安装,检验,应用管理环节多,与压力容器大不相同。 运输管道承受着所运输介质的压力和温度的作用,同时还遭受所通过地带各种自然环境和人为因素的影响,对钢材的强度、韧性、以及可焊性提出了相当高的要求,在使用过程中可能发生各种破漏或断裂事故。为确保管道的安全运行和预防管道事故产生应从设计、施工和操作三方面这首,其中设计中的合理选择材料和焊接工艺是相当重要的。 二、受力分析内容: 参照标准:SHJ.41-91《石油化工企业管道柔性设计规范》 1.管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况 1)因应力过大或金属疲劳而引起管道破坏; 2)管道接头处泄漏; 3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行; 4)管道的推力或力矩过大引起管道支架破坏。 2.分析步骤: 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计

焊接工艺

焊接工艺 5.1 焊接工艺评定 5.1.1 焊接工艺评定的依据 1.《建筑钢结构焊接技术规程》 JGJ81-2002 2.《钢结构工程施工质量验收规范》 GB50205-2001 3.设计图纸及设计总说明 5.1.2 焊接工艺评定分析

5.1.3 ****二期焊接工艺评定方案(表18) 序号材质 试件厚 度(mm) 覆盖厚 度(mm) 接头 形式 焊接 方法 焊接 位置 备注 1 Q345C 30 22.5~45 对接埋弧焊平焊 2 Q345C 60 45~90 对接埋弧焊平焊 3 Q345C 30 22.5~45 对接CO2焊平焊 4 Q345C 60 45~90 对接CO2焊平焊 5 Q345C 30/30 22.5~45 角接CO2+双丝 埋弧焊 平焊 6 Q345C 60/60 45~90 角接CO2+双丝 埋弧焊 平焊 7 Q345C 20/20 15~40 十字形CO2焊立焊 8 Q345C 60/60 45~90 十字形CO2焊立焊 9 Q345C 30/60 15/33~ 30/66 T形电渣焊立焊 10 Q345C 80/80 40~88 十字形CO2焊/电 渣焊 立焊 11 Q345C Φ19× 200/δ40 20~80 T形栓钉焊平焊 5.2 焊工培训及焊工资格 从事本工程焊接工作的焊工、焊接操作工及定位焊工,必须是按照 JGJ81-2002《建筑钢结构焊接技术规程》的有关规定经考试合格,取得相应项目合格证且在合格证在有效期内的焊工。 在焊工上岗前,应针对本工程的箱型构件焊接接头多的特点,着重对手工操作焊工进行针对性地的复训与考核,从施焊人员的素质方面保证工程焊接质量等级达到优良。拟考试的接头型式及焊接位置如下,具体考试方案经监理同意后实施: (1)板材对接接头焊接位置示意:

高一物理摩擦力教学设计{模板}

第4.3节摩擦力 【教学设计思想】 在课堂上创设生活情景,引出生活难题,引导学生独立思考,尝试去解决问题,使学生对本节课产生极大的兴趣, 【教材分析】 教材出处:鲁科版《高中物理》必修一第四章第三节 摩擦力是力学中的三大性质力之一,是高中力学的一个重点,也是难点。正确认识摩擦力对整个力学知识框架的搭建起着至关重要的作用。在摩擦力这节课中,重点是研究滑动摩擦力,要求会计算其大小和判断其方向;难点是静摩擦力,尤其是静摩擦力方向的判断。教师要试图将学生初中学过的相关概念与本节的内容有机地融合在一起。教学中要力图从两种摩擦力的区别与联系出发,让学生从摩擦力产生的条件、影响摩擦力大小的因素、范围及其计算来理解两种摩擦力的异同,通过探究实验去加深巩固。 本节课也是一节科学探究课,教材从生活中的摩擦现象引入,以探究静摩擦力和滑动摩擦力与哪些因素有关为主线,安排了学生猜想、设计实验、实验探究、合作交流等教学过程,让学生经历探讨两种摩擦力与接触面粗糙程度、压力关系的过程。很好地体现了新教材让学生在体验知识的形成与发展过程中,主动获取知识的精神。同时,本节课的内容与学生的实际生活联系十分密切,教材的编写突出了这一点。在通过实验得出摩擦力的有关知识后,注重引导学生运用所学的知识去分析解释大量生活生产中的摩擦现象,并能运用这些知识解决实际生活中遇到的问题。 【学情分析】 学习者是高中一年级学生,目前还没有学习力的合成与分解相关知识,只是在初中阶段简单的了解了一下摩擦力的性质。所以在讲述新课的时候要充分考虑学生的接受能力,要让他们在已掌握知识的基础上逐渐学习新课程,避免跨越式教学。 一、教学目标 (一)知识与技能 1.认识静摩擦、滑动摩擦力,和它们的产生条件及其作用效果,会判断它们的方向。 2.根据物体的平衡条件简单地计算静摩擦力的大小。 3.能运用滑动摩擦力公式来计算滑动摩擦力 (二)过程与方法

摩擦焊

摩擦焊 1摩擦焊接概述: 摩擦焊接是在轴向压力与扭矩作用下,利用焊接接触端面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热使接触面及其近区达到粘塑性状态并产生适当的宏观塑性变形,然后迅速顶锻而完成焊接的一种压焊方法。 摩擦焊的分类 2摩擦焊原理简介: 摩擦焊是利用金属焊接表面摩擦生热的一种热压焊接法。摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。

摩擦焊接是一种优质、高效、节能的固态连接技术,被广泛应用于航空、航天、石油、汽车等领域中。在摩擦焊接过程中,主轴转速、焊接压力、焊接时间以及焊接变形量是影响焊接质量的重要工艺参数。对这些参数实现精确的检测和控制,是获得优质焊接接头的保障。因此,研制一套控制精度高、响应速度快、具有丰富的数据处理能力且易于升一级和扩充的开放式控制系统具有重要意义。 摩擦焊流程示意图 摩擦焊具有下列优点: (1)焊接质量好而稳定。由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。(2)摩擦焊不仅能焊接黑色金属、有色金属、同种异种金属, 而且还能焊接非金属材料, 如塑料、陶瓷等。 (3)对具有紧凑的回转断面的工件的焊接,都可用摩擦焊代替闪光焊、电阻焊及电弧焊。并可简化和减少锻件和铸件, 充分利用轧制的棒材和管材。 (4)焊件尺寸精度高。采用摩擦焊工艺生产的柴油发动机预燃烧室, 全长最大误差为士0.1毫米。专用的摩擦焊机可以保证焊件的长度公差为士0.2 毫米, 偏心度小于0.2毫米 (5)焊接生产率高, 易实现机械化、自动化, 操作技术简单。 (7)焊接费用低。由于摩擦焊节省电能、金属变形量小(焊接缩短量少)、接头焊前不需要清理、焊接时不需要填料和保护气体、接头上的飞边有时可以不必去除, 所以焊接费用显著降低。 (8)工作场地卫生, 无火花、弧光及有害气休。适于和其它先进的金属加工方法一起列入自动生产线。

焊接工艺设计

焊接工艺设计级生产大作业 学院:材料科学与工程学院 专业班级:焊接1301班 小组成员:马永亮(130200814) 徐壮(130200812) 孙建(130200116) 何星池(130200112) 郝绪文(130200101) 汪颖(130200525) 马鸣檀(130200530) 经戌末(130200109) 陈诗函(130200802) 作业时间: 2016年11月01日

12mm板厚Q345真空电子束焊接工艺 一、发展背景 电子束的发现迄今已100多年的历史。电子束焊接技术起源于德国,1948年前西德物理学家K.H.Steigerwald首次提出电子束焊接的设想;1954年法国的J.A.Stohr博士成功焊接了核反应堆燃料包壳,标志着电子束焊接金属获得成功;1957年11月,在法国巴黎召开的国际原子能燃料元件技术大会上公布了该技术,电子束焊接被确认为一种新的焊接方法;1958年开始,美国、英国、日本及前苏联开始进行电子束焊接方面的研究,20世纪60年代后,我国开始从事电子束焊接研究。 电子束焊接(EBW)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法。它具有其它熔焊方法难以比拟的优势和特殊功能:其焊接能量密度极高,容易实现金属材料的深熔透焊接、焊缝窄、深宽比大、焊缝热影响区小、焊接残余变形小、焊接工艺参数容易精确控制、重复性和稳定性好等。 随着航空航天、微电子、核能、交通运输及国防工业的飞速发展,各种高强度、高硬度、高韧性的铝合金、镁合金、钛合金和耐高温合金等金属材料以及复合材料广泛应用,加之构件形状日趋复杂化,对焊接工艺、加工精度和表面完整性提出了更高的要求。传统的焊接工艺难以适应高技术制造领域的发展趋势,对这些材料采用包括电子束焊接在内的高能束焊接技术优势较大。 正是由于电子束焊接的上述优点,使该技术获得长足发展,已经成功地应用于各种工业领域,并广泛应用在各种材料上。厚大截面不锈钢的电子束焊接由于能够节约成本且满足质量要求而得到青睐。有许多文献已经证明电子束焊接在航空和医药钛合金上得到了成功应用。有色金属如铜、镍及其合金的电子束焊接以及运输工业中异种材料的电子束焊接正迅猛增长。 二、目的 为了巩固所学常用特种焊接方法与设备的知识,熟悉有关资料,掌握焊接参数的选择和焊接设备的使用与维护,安排了为期一周的课程设计。通过本次焊接工艺设计,锻炼学生们的分析问题的能力,提高焊接操作技能。

焊接工艺学课程设计

课程设计论文(说明书) 课程:焊接工艺学课程设计 题目:09MnD钢焊接性试验设计 院、系:材化学院 学科专业:金属材料工程 学生: / 学号: / 校对: / 指导教师: / 2012年 11月

1.前言 09MnD属于无镍低温钢,常用于石油、化工技术和压力容器设备,用于制造使用温度在-50℃的压力容器构件、重要锻件,石油化工中的压力容器。含碳量为0.2%,硅含量在0.17%到0.35%之间,锰含量在0.95%到1.35%之间,磷含量和硫含量均小于0.25%,钒含量小于等于0.03%。其化学成分见:表1.1,其机械性能见:表1.2。 牌号化学成分(质量分数)(%) C Si Mn P S V 09MnD ≤0.12 0.17-0.35 0.95-1.35 ≤0.025 ≤0.025 ≤0.03 表1.1 09MnD的化学成分 牌号抗拉强度/MPa 屈服强度/MPa 伸长率(%)冲击功/J 09MnD 400-540 ≥240 ≥26 ≥21 表1.2 09MnD的机械性能 本实验主要通过熔化极混合气体保护焊对焊接材料为09MnD厚度为10mm 板材的焊接性及焊接特点进行探索,在制出实验试板后,根据国家的一系列标准对此次焊接工艺进行焊后组织及力学性能进行评定,进而分析09MnD的焊接性能。 2.焊接工艺 2.1 09MnD的焊接特点 焊接材料的选择应保证接头与母材有同样的低温性能,焊条、焊丝、焊剂都必须保证焊缝中的油含杂质S、P、N、O最少。焊接时需要最大限度地减小过热程度,防止出现粗大的铁素体或粗大的马氏体组织。 2.2 焊接方法及焊丝的确定 低温钢的焊接方法可选焊条电弧焊、埋弧焊及熔化极气体保护焊。采用含Ni低温焊条电弧焊,虽可保证低温韧性,但成本高、生产效率低且焊缝成形差。故选用普通的焊丝H08Mn2SiA,用混合气体保护半自动焊,其生产成本为焊条电弧焊的55%-60%,生产率高2-3倍。焊材选择见:表2.2.1。

目前最先进的焊接工艺——搅拌摩擦焊

目前最先进的焊接工艺,搅拌摩擦 焊,你知道原理吗 搅拌摩擦焊是由英国焊接技术研究所于1991年发明的新型焊接技术,其原理如下图所示。 一根安装在主轴上的形状为蜗杆形式的搅拌针在一定压力下被插入焊缝位置,搅拌针的长度一般要比焊缝深度略浅,以此来保证主轴的轴肩能紧贴被焊接的工件表面。当工件与搅拌针和轴肩摩擦生热,焊缝附近的材

料会因受热产生严重的塑性变形,但是,并不是熔化,只是成为一种“半流体”的状态,随着主轴带动搅拌针沿着焊缝的走向进给,搅拌针不断把已经处于“半流体”状态的材料搅拌到身后,当主轴离开后,这些材料将冷却固化,从而形成一条稳定的焊缝。 大家都知道,以铝合金和镁合金为代表的轻质合金是航空航天器的主要结构材料之一。然而这些轻质合金的可焊性都非常差,传统的各种熔焊工艺都无法从根本上杜绝热裂纹、气孔和夹渣等这些焊接缺陷的产生,需要靠操作者具有非常高超的技术和工艺才能保证焊接质量。并且,熔焊的高温会产生大量热量和有毒的烟气,这对操作者的身体健康也造成了很大的威胁。而搅拌摩擦焊的出现从根本上解决了这一系列问题。 其次,相较于传统熔焊工艺在焊缝附近形成重新铸造形态,搅拌摩擦焊由于主轴会给被焊接的工件部位施加一个很大的压力,所以在焊缝附近得到的是锻造形态,这种锻造形态组织比铸造形态组织致密得多,因而焊接后零件的机械性能也比传统熔焊工艺做出来的好得多。 而搅拌摩擦焊最大的优势体现在其本质是把机械能转化成焊接所需要的热能,所以可以用特定的公式相当准确的计算出焊接热及其引发的工件热变形的量,从而为事前的补偿和事后的纠正提供了几乎不依赖操作者经验的定量的依据,这是任何一种传统焊接工艺都望尘莫及的。

知识讲解_摩擦力(基础)

摩擦力 【学习目标】 1.知道滑动摩擦产生的条件,会正确判断滑动摩擦力的方向 2.会用公式f=μN计算滑动摩擦力的大小,知道影响动摩擦因数的大小因素 3.知道静摩擦力的产生条件,能判断静摩擦力的有无以及大小和方向 4.理解最大静摩擦力.能根据二力平衡条件确定静摩擦力的大小 【要点梳理】 要点一、摩擦力 要点诠释: 1.定义:当相互接触且相互挤压的物体之间有相对运动或相对运动趋势时,接触面间产生的阻碍相对运动或相对运动趋势的力,称为摩擦力.固体、液体、气体的接触面上都会有摩擦作用. 2.分类:分为滚动摩擦(初中已经学习过)、滑动摩擦力和静摩擦力 要点二、滑动摩擦力 要点诠释: 1.产生:一个物体在另一个物体表面上相对于另一个物体发生相对滑动时,另一个物体阻碍它相对滑动的力称为滑动摩擦力. 2.产生条件:①相互接触且相互挤压;②有相对运动;③接触面粗糙. 说明: 1)两个物体直接接触、相互挤压有弹力产生. 摩擦力与弹力一样属接触作用力,但两个物体直接接触并不挤压就不会出现摩擦力.挤压的效果是有压力产生.压力就是一个物体对另一个物体表面的垂直作用力,也叫正压力,压力属弹力,可依上一节有关弹力的知识判断有无压力产生. 2)接触面粗糙.当一个物体沿另一物体表面滑动时,接触面粗糙,各凹凸不平的部分互相啮合,形成阻碍相对运动的力,即为摩擦力.凡题中写明“接触面光滑”、“光滑小球”等,统统不考虑摩擦力(“光滑”是一个理想化模型). 3)接触面上发生相对运动. 特别注意:“相对运动”与“物体运动”不是同一概念.“相对运动”是指受力物体相对于施力物体(以施力物体为参照物)的位置发生了改变;而“物体的运动”一般指物体相对地面的位置发生了改变.

相关文档
最新文档