《同底数幂的乘法》典型例题

《同底数幂的乘法》典型例题
《同底数幂的乘法》典型例题

《同底数幂的乘法》典型例题

例1 计算:

(1)32a a a ??;

(2)32)()(y x y x +?+;

(3))()(232x x x -??-;

(4)212)2()2()2(+--?-?-m m y x y x y x

例2 计算题:

(1));2

1()21()21(65-?-?- (2)101010103158???; (3)865)()()(x x x -?-?--。

例3 计算:

(1)333343)()(x x x x x x x x ?-?-+??+?;

(2)76254)3(33333-?+?-?;

(3)423211)()(--+--?-+?+?n n n n n x x x x x x 。

例4 计算题:

(1))()()(43x y y x y x ---; (2)323)()(a a a ---;

(3)32)2()2(x y y x -?-。

例5 化简:2212122)()()()(-+---?-++--?-+n n n n b a c c b a b a c c b a

例6 (1)已知m x =+22,用含m 的代数式表示x 2;

(2)已知32=a ,62=b ,122=c ,求a 、b 、c 之间的关系。

参考答案

例1 分析: 在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式。例如(1)中的a ,(3)中的x ,(2)中的)(y x +,(4)中的)2(y x -。指数可以是自然数,也可以是代表自然数的字母。

解:(1)632132a a a a a ==??++

(2)53232)()()()(y x y x y x y x +=+=+?++

(3)7232232232)()()(x x x x x x x x -=-=-??=-??-++

(4)212)29)2()2(+--?-?-m m y x y x y x

32)

2()1(2)2()2(+++-+-=-=m m m y x y x

说明:(1)中a 的指数是1,不是0;(2)要注意区别2)(x -与)(2x -的不同,222)(x x x =?-,而221x x ?-=-;(4)指数中含有自然数和字母,相加时要合并同类项化简。

例2 分析:由同底数幂相乘的法则知,能运用它的前题必须是“同底”,注意最后结果中的底数不能带负号,如3)(x -不是最后结果,应写成3x -才是最后结果。

解:(1))21()21()21(65-?-?-;2

1)21()21(1212165=-=-=++ (2) 101010103158???;10102713158==+++

(3)865)()()(x x x -?-?--.)()(1919865x x x =--=--=++

例3 分析:此题为混合运算,应先根据同底数幂的运算性质进行乘法运算,再进行加减运算。

解:(1)原式 33133143+++++++=x x x

777x x x ++=

73x =

(2)原式716254333+++--=

889333--=

88

8

8833)113(3333=--=--?=

(3)原式 )42(3)2()1()1(-+-++-+-+=n n n n n x x x

121

21212----=-+=n n n n x x x x

说明:(2)中用到88193333?==+,是逆向使用运算公式。

例4 分析:运用同底数幂相乘的法则要求必须“同底”,注意22-与2)2(-的不同,它们的底不同,必须变成相同的底数之后再运算。

解:(1)原式843)()()()(y x y x y x y x --=----=;

(2)原式8323)(a a a a =--=;

(3)原式532)2()2()2(x y x y x y -=-?-=。

说明:分别把x y y x --2,,看作一修整一,第一个是三个同底数幂相乘,但必须把2)2(y x -转化为2)2(x y -,或者把3)2(x y -转化为3)2(y x --,其实质是相同的,因为互为相反数的奇次幂仍是互为相反数。

例5 解:原式12122)()]([)(+--++-+-?-+=n n n c b a c b a c b a 22)]([--+-?n c b a

)()()()(1414)

22()12()12(2=-++-+-=-++-+-=---++-+n n n n n n c b a c b a c b a c b a

说明:1)1(,1)1(2212=--=---n n

例6 分析:此题可以逆用同底数幂相乘的运算法则,m x x =?=+22222,从而达到化简的目的。

解:(1)m x =+22 ,∴ m x =?24,∴m x 4

12=。 (2)显然2623122?=?=,故22222223122+=?=?==a a c ,

122226122+=?=?==b b c ,故2+=a c ,1+=b c ,故32++=b a c 。 说明:此题答案并不惟一,如由12222362+=?=?==a a b 得1+=a b ,又由1+=b c ,故c a b +=2。

曲线运动典型例题

一、选择题 1、一石英钟的分针和时针的长度之比为3:2,均可看作是匀速转动,则() A.分针和时针转一圈的时间之比为1:60 B.分针和时针的针尖转动的线速度之比为40:1 C.分针和时针转动的角速度之比为12:1 D.分针和时针转动的周期之比为1:6 2、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大 C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大 3、 A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球的轨道半径的2倍,A的转速为30 r/min,B 的转速为r/min,则两球的向心加速度之比为:() A.1:1 B.6:1 C.4:1 D.2:1 4、两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示,则a、b两小球具有相同的 A.角速度B.线速度C.向心力D.向心加速度 5、关于平抛运动和匀速圆周运动,下列说法中正确的是() A.平抛运动是匀变速曲线运动B.平抛运动速度随时间的变化是不均匀的 C.匀速圆周运动是线速度不变的圆周运动D.做匀速圆周运动的物体所受外力的合力做功不为零 6、在水平面上转弯的摩托车,如图所示,提供向心力是 A.重力和支持力的合力B.静摩擦力C.滑动摩擦力D.重力、支持力、牵引力的合力 7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则() A.物块始终受到三个力作用 B.只有在a、b、c、d四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先减小后增大 D.从b到a,物块处于失重状态

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

《简单的轴对称图形》典型例题1(1)(答案)

《简单的轴对称图形》典型例题 例1 想一想等边三角形的三个内角各是多少度,它有几条对称轴。 例2 如图,已知ABC ?是等腰三角形,AC AB 、都是腰,DE 是AB 的垂直平分线,12=+CE BE 厘米,8=BC 厘米,求ABC ?的周长. 例3 AC AB ABC =,:中在已知? _____ ,100)3(____,30)2(___ __,,70)1(00为则它的另外两内角分别若一角为为则它的另外两内角分别若一个角为则若=∠=∠=∠C B A ο 例 4 如图,已知:在ABC ?中,AC AB =,?=∠110ACD ,求ABC ?各内角的度数.

例5 如下图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE. 例6如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数.

参考答案 例1 分析:由等腰三角形的性质易知等边三角形三个内角相等都是60°,它有三条对称轴。 解:三个内角都是60°,它有三条对称轴。 说明:等边三角形是等腰三角形的特例,所以等腰三角形的性质对其都是适用的,在数学的学习时这样的情况是会经常出现的。 例2 分析:本题依据线段垂直平分线的性质可以得到. 解:DE Θ是AB 的垂直平分线 ∴BE AE = ∴12=+CE AE 厘米AC = ABC ?Θ是等腰三角形 ∴12==AC AB 厘米 ∴ABC ?的周长是3281212=++=++BC AC AB 厘米 例3 分析:注意到题中所给的条件AB =AC ,得到三角形为等腰三角形。利用等腰三角形的性质对问题(1)可得οο55,55=∠=∠C B ;对问题(2)考虑到所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为ο180可得此等腰三角形的顶角只能为ο100这一种情况。 略解:(1)οο55,55=∠=∠C B (2)另外两内角分别为:οοοο120,30;75,75(3)οο40,40 说明:通过题目中的(2)、(3)渗透分类思想,训练思维的严密性。

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

2019高考物理练习(曲线运动)经典例题(带解析)

2019高考物理练习(曲线运动)经典例题(带解析) 1、关于曲线运动,以下说法中正确的选项是〔AC〕 A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动可能是匀变速运动 D.变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,那么可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,假设突然撤去F1,而保持F2、F3不变,那么质点〔A〕 A、一定做匀变速运动 B、一定做直线运动 C、一定做非匀变速运动 D、一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,那么撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,那么撤去F1后,质点可能做直线运动〔条件是F1的方向和速度方向在一条直线上〕,也可能做曲线运动〔条件是F1的方向和速度方向不在一条直线上〕。 3、关于运动的合成,以下说法中正确的选项是〔C〕 A.合运动的速度一定比分运动的速度大 B.两个匀速直线运动的合运动不一定是匀速直线运动 C.两个匀变速直线运动的合运动不一定是匀变速直线运动 D.合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定那么可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如下图, 求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x轴上的分运 动是匀加速直线运动,在y轴上的分运动是匀速直线运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。那么物体所受的合力F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为v x0=0,v y0=4m/s,故物体的初速度

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

简单的轴对称图形练习习题

欢迎阅读 页脚内容 A B C N O 图3 轴对称复习练习题1.已知等腰三角形的一个角为42 0,则它的底角度数_______. 2.下列10个汉字:林 上 下 目 王?田 天 王 显 吕,其中不是轴对称图形的是______有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________. 3.如图,镜子中号码的实际号码是___________. 4.等腰三角形的两边长分别是3和7,则其周长为______. 5.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 6.在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于 7 8的长915和6________________________. D.2..三条角平分线的交点 345.如图3,已知△ABC 中,AC+BC=24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )A .12 B .24 C .36 D .不确定 6.如图4所示,Rt △ABC 中∠C=90°,AB 的中垂线 DE 交BC 于D ,交AB 于点E .当∠B=30°时,图中不一定相等的线段有( )A .AC=AE=BE B .AD=BD C .CD=DE D .AC=BD 7.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30o B .40o C .45o D .36o 8.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交 AC 于点E ,则△BEC 的周长为( )A .13 B .14 C .15 D .16 9.如图,AB =AC,BD =°,则∠ABD 的度数是( ) A D E

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

排列组合典型例题

排列组合典型例题 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

三年级轴对称图形练习题

三年级数学下册轴对称图形练习题 一、填空。 1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。 2、圆的对称轴有()条,半圆形的对称轴有()条。 3、在对称图形中,对称轴两侧相对的点到对称轴的()相等。 4、()三角形有三条对称轴,()三角形有一条对称轴。 5、正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。 6、如果把一个图形沿着一条直线折过来,直线两侧部分能够完全重合,那么这个图 形就叫做___________,这条直线叫做________. 7、对称轴_______连结两个对称点之间的线段. 8、宋体的汉字“王”、“中”、“田”等都是轴对称图形,?请再写出三个这样的汉字:_________. 9、长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴. 10、如图是一种常见的图案,这个图案有_____条对称轴,请在图上画出对称轴. 11、右图是从镜中看到的一串数字,这串数字应为 . 12、下列图形中是轴对称图形的在括号里画“√”。二、选择题。 1、下列英文字母中,是轴对称图形的是() A、S B、H C、P D、Q 2、下列各种图形中,不是轴对称图形的是() 3、下图是一些国家的国旗,其中是轴对称图形的有() A、4个 B、3个 C、2个 D、1个 4、下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称 图形的有() A、2个 B、3个 C、4个 D、5个 5、下列图形中,对称轴最多的是()。 A、等边三角形 B 、正方形 C 、圆 D、长方形 6、下面不是轴对称图形的是()。 A、长方形 B、平行四边形 C、圆 D、半圆 7、要使大小两个圆有无数条对称轴,应采用第()种画法。8题)

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

高一物理曲线运动重难点解析及典型例题

第五章 曲线运动 第五节 圆周运动 第六节 向心加速度 二. 知识要点: 1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。理解匀速圆周运动是变速运动。 2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。能够运用向心加速度公式求解有关问题。 3. 运用极限法理解线速度的瞬时性。掌握运用圆周运动的特点如何去分析有关问题。体会有了线速度后。为什么还要引入角速度。运用数学知识推导角速度的单位。 三. 重难点解析: 1. 线速度 (1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。它描述质点沿圆周运动的快慢。 (2)大小: t l v ??= 单位:m/s (3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。 2. 匀速圆周运动 (1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。 (2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。 3. 角速度 (1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。描述质点转过圆心角的快慢。匀速圆周运动是角速度不变的圆周运动。 (2)大小: t ??= θω,单位:rad /s 4. 周期T 、频率f 和转速n 定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。 做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。1 Hz=11 -S 。 做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。用n 表示,单位为转每秒(r /s ),或转每分(r /min )。 周期频率和转速都是描述物体做圆周运动快慢的物理量。 5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。 v= rω。 (2)线速度与周期的关系。 T r v π2= 。 (3)角速度与周期的关系。

高中数学排列组合题型总结与易错点提示25587汇编

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1 m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1 m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合 要求的元素占了这两个位置. 先排末位共有13 C C 1 4 A 3 4 C 1 3 然后排首位共有14 C 最后排其它位置共有34 A 由分步计数原理得113434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花

不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素, 同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 2 2 480A A A 种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈 节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55 A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46 A 不同的方法,由分步计数原理,节目的不同顺序共有5456 A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单, 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列 ,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

七年级数学下册《轴对称图形典型例题》

轴对称图形典型例题 例1 如下图,已知,PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP. 证明:∵PB⊥AB,PC⊥AC,且PB=PC, ∴∠P AB=∠P AC(到角两边距离相等的点在这个角平分线上),∵∠APB+∠P AB=90°,∠APC+∠P AC=90°, ∴∠APB=∠APC, 在△PDB和△PDC中, ∴△PDB≌△PDC(SAS), ∴∠BDP=∠CDP. (图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等) 注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.

已知如下图(1),在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°. (1) 证法一:过D作DE⊥AB交BA的延长线于E,DF⊥BC于F, ∵BD平分∠ABC,∴DE=DF, 在Rt△EAD和Rt△FCD中, (角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.) ∴Rt△EAD≌Rt△FCD(HL), ∴∠C=∠EAD, ∵∠EAD+∠BAD=180°, ∴∠A+∠C=180°. 证法二:如下图(2),在BC上截取BE=AB,连结DE,证明△ABD ≌△EBD可得.

证法三:如下图(3),延长BA到E,使BE=BC,连结ED,以下同证法二. (3) 注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法. 例3 已知,如下图,AD为△ABC的中线,且DE平分∠BDA交AB于E,DF 平分∠ADC交AC于F. 求证:BE+CF>EF. 证法一:在DA截取DN=DB,连结NE、NF,则DN=DC,在△BDE 和△NDE中,

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

相关文档
最新文档