有机工艺学——常用指标

有机工艺学——常用指标
有机工艺学——常用指标

基本有机化工工艺学

第一章 化工生产中的常用指标与催化剂(1)

【考纲要求】掌握化工生产中的常用指标(转化率、产率、收率、消耗定额、空间速度、接触时间)的概念及其计算

【基本知识点】

1.转化率

(1)定义:转化率是( )。转化率越大,说明参加反应的原料量越( ),转化程度越( )。由于进行反应器的原料一般不会全部参加反应,所以转化率的数值( )1(填大于、小于或等于)。

(2)符号:( )

(3)表达式:( )

工业生产中有单程转化率和总转化率之分。

A.单程转化率

a.定义:表示反应物一次通过反应器,参加反应的反应物量与输入反应反应器的反应总量的百分比。

b.公式:单程转化率=进入反应器的反应物量

参加反应的反应物量×100% =

进入反应器的反应物量量-反应后剩余的反应物进入反应器的反应物量×100% c.习题巩固:以乙烷为裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,求乙烷的转化率。

B.总转化率

a.定义:表示输入到过程参加反应的反应物量与输入到过程的反应物的总量的百分数。 对于有循环和旁路的生产过程,常用总转化率。

b.公式:总转化率=量

进入到过程的反应物总物量过程中参加反应的反应×100% c.习题巩固:用乙烷作原料裂解生产乙烯,通入裂解炉的新鲜原料乙烷为5000 kg/h ,裂解气分离后,没有反应的乙烷2000kg/h 又返回了裂解炉进行反应,最终分析裂解气中含乙烷1500 kg/h ,求乙烷的总转化率。

2.产率(或选择性)

A.理论产量

(1)定义:理论产量是指( )。

(2)计算公式:

对于反应aA+bB====pP+qQ mp 理(A 反)=?

B.产率

(1)定义:产率( )。

即参加反应的原料有一部分被副反应消耗掉了,而没有生成目的产物。产率越高,说明参加反应的原料生成的目的产物越多( )。

(2)符号:( )

(3)公式:产率=参加反应的原料量

原料量生成目的产物所消耗的×100% (4)习题:用乙烷作裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量

为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,得到乙烯量为3332 kg/h ,求乙烯的产

率。

C.产率的实质:

a.主产率:定义( )

b.副产率:定义( )

c.产率的实质:主产率和副产率之和为( )。其实质是

( )

3.收率

(1)定义:( )。收率越高,说明进入反应器的原料中,消耗在生产目的产物上的数量越多。

(2)收率也有单程收率和总收率之分。 单程收率=进入反应器的原料量

原料量生成目的产物所消耗的×100% 总收率=新鲜原料量

原料量生成目的产物所消耗的×100% (3)用乙烷作裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,得到乙烯量为3332 kg/h ,求乙烯的收率。

4.消耗定额

(1)定义:消耗定额是指( )

(2)消耗定额=产品质量

原料质量 (注意:原料质量并不特指主要原料还指辅助原料及水电汽量,生产1t 产品所消

耗的原料量和水电汽的量)

(3)习题巩固:以乙烷为原料裂解生产乙烯,通入反应器的乙烷为7000 kg/h ,参加反应的乙烷量为4550 kg/h ,没有参加反应的乙烷的5%损失掉,其余都循环回裂解炉。得到乙烯3332kg/h ,求乙烯的原料消耗定额。

(4)说明:工厂中产品的消耗定额包括原料、辅助原料及动力的消耗情况。消耗定额的高低说明生产工艺水平和的高低和操作技术水平的好坏。生产中应选择先进的工艺技术,严格控制各操作条件,才能达到高产低耗,即低的消耗定额的目的。

5.空间速度和接触时间

(1)空间速度定义:空间速度是指(

)。(2)接触时间定义:()。(3)空间速度和接触时间的换算关系:

(4)空间速度对生产工艺的影响:

【真题拾贝】

1.表示反应物参加反应程度的指标是()

A转化率B产率C收率D消耗定额

2.乙烷裂解生产乙烯,在530℃,0.6MPa(表压)下反应,通入反应器的乙烯为1250kg/h,裂解气中未反应的乙烷为500kg/h,得到乙烯量为495kg/h,反应时间为10s。试求:

(1)乙烷的转化率;

(2)催化剂的选择性;

(3)空间速度。

3.下面说法错误的是()

A.只有反应物才有转化率

B.只有产物才有产率

C.空间速度与接触时间成正比关系

D.目的产物的实际产量比理论产量要少

4.主收率和副收率之和等于()

A.理论产量

B.主产率

C.副产率

D.转化率

5.空间速度(Sv)增大,一般对接触时间(τ)、转化率(X)和主产率(Y)的影响情况是()

A、τ减小,X减小,Y减小

B、τ减小,X增大,Y减小

C、τ减小,X减小,Y增大

D、τ减小,X增大,Y增大

6.转化率表示()

A、反应物参加反应的程度

B、反应物参加主反应的程度

C、反应物参加副反应的程度

D、生产单位质量产品所消耗原料量

基本有机化工工艺学

基本有机化工工艺学习题 一、填空题: 1、基本有机化学工业是化学工业中的重要部门之一,它的任务是:利用自然界存在的煤、石油(天然气)和生物质等资源,通过各种化学加工的方法,制成一系列重要的基本有机化工产品。 2、(乙烯)的产量往往标志着一个国家基本有机化学工业的发展。 3、天然气主要由(甲烷)、乙烷、丙烷和丁烷组成。 4、天然气中的甲烷的化工利用主要有三个途径之一:在镍催化剂作用下经高温水蒸气转化或经部分氧化法制(合成气),然后进一步合成甲醇、高级醇、氨、尿素以及一碳化学产品。 5、石油主要由(碳)氢两元素组成的各种烃类组成。 6、石油中所含烃类有烷烃、(环烷烃)和芳香烃。 7、根据石油所含烃类主要成分的不同可以把石油分为烷基石油(石蜡基石油)、环烷基石油(沥青基石油)和(中间基石油)三大类。 8、根据不同的需求对油品沸程的划分也略有不同,一般分为:轻汽油、汽油、航空煤油、煤油、柴油、(润滑油)和重油。 9、原油在蒸馏前,一般先经过(脱盐)、(脱水)处理。 11、原油经过初馏塔,从初馏塔塔顶蒸出的轻汽油,也称(石脑油)。 12、石脑油是(催化重整)的原料,也是生产(乙烯)的原料。 14、催化裂化目的是将不能用作轻质燃料油的(常减压馏分油)加工成辛烷值较高的汽油等轻质原料。 15、直链烷烃在催化裂化条件下,主要发生的化学变化有:碳链的断裂和脱氢反应、(异构化反应)、环烷化和芳构化反应和叠合、 脱氢缩合等反应。 19、基本有机化学工业中石油加工方法有常减压蒸馏、催化裂化、催化重整、(加氢裂化)。 20、工业上采用的催化裂化装置主要有以硅酸铝为催化剂的(流化床催化裂化)和以高活性稀土Y分子筛为催化剂的提升管催化裂 化两种。 23、催化重整是使原油常压蒸馏所得的轻汽油馏分经过化学加工变成富含芳烃的高辛烷值汽油的过程,现在该法不仅用于生产高辛烷 值汽油,且已成为生产(芳烃)的一个重要来源。 24、催化重整常用的催化剂是( Pt/Al2O3 )。 25、催化重整过程所发生的化学反应主要有:(环烷烃脱氢芳构化)环烷烃异构化脱氢形成芳烃、烷烃脱氢芳构化、正构烷烃的异构 化和加氢裂化等反应。 27、从重整汽油中提取芳烃常用(液液萃取)方法。 28、催化重整的工艺流程主要有三个组成部分:预处理、催化重整、(萃取和精馏)。 30、环烷烃和烷烃的芳构化反应都是吸热反应,而催化重整是在绝热条件下进行的,为了保持一定的反应温度,一般催化重整反应器 (串联),中间设加热炉补偿反应所吸收的热量。 31、加氢裂化是炼油工业中增产航空喷气燃料和(优质轻柴油)常用的一种方法。 34、加氢裂化过程发生的主要反应有:烷烃加氢裂化生成分子量较小的烷烃、正构烷烃的异构化、多环环烷烃的开环裂化和(多环芳 烃开环裂化)。 35、煤的结构很复杂,是以(芳香核结构)为主具有烷基侧链和含氧、含硫、含氮基团的高分子化合物。 37、基本有机化学工业有关煤的化学加工方法有:煤的干馏、(煤的气化)和煤与石灰熔融生产电石。 38、烃类热裂解法是将石油系烃类经高温作用,使烃类分子发生(碳链断裂或脱氢)反应,生成分子量较小的烯烃、烷烃和其它分 子量不同的轻质和重质烃。 39、烃类热裂解制乙烯的工艺主要有两个重要部分:(原料烃的热裂解)和裂解产物的分离。 41、一次反应,即由原料烃类经热裂解生成(乙烯)和丙烯的反应。 42、二次反应,主要是指一次反应生成乙烯、(丙烯)的等低级烯烃进一步发生反应生成多种产物,甚至最后生成焦或碳。 43、烷烃热裂解的一次反应主要有:(脱氢反应)和断链反应。 45、从(分子结构中键能数值的大小)来判断不同烷烃脱氢和断键的难易。 46、烷烃脱氢和断链难易的规律:同碳原子数的烷烃,断链比脱氢(容易);烷烃的相对稳定性随碳链的增长降低。 48、烷烃脱氢和断链难易的规律:烷烃的相对稳定性随碳链的增长降低;烷烃的脱氢能力与烷烃的分子结构有关;带支链的烃较直链 烃(容易)断裂。 49、不论是脱氢反应或是断链反应,都是热效应很大的(吸)热反应。

有机合成作业(论文)

白藜芦醇的合成 摘要:白藜芦醇具有多种生物和药理活性,使其广泛应用于食品、医药、保健 品、化妆品等领域。白藜芦醇具有优良药理活性和保健功能其市场需求很大且与日剧增,目前已有大部分国家和地区都开发了白藜芦醇及其制品。白藜芦醇是一种含有芪类结构的非黄酮类多酚化合物。它不仅是植物遭受胁迫时产生的一种能提高植物抵抗病原性攻击和环境恶化的植物抗毒素, 还具有抗癌、抗氧化、调节血脂、影响寿命等多方面有益于人类健康的重要功能。以下对白藜芦醇的理化特性、合成、提取、纯化与检测方法进行了全面总结, 并在其作用的分子机制基础上, 对其生物学活性、基因工程研究及产业化情况进行了重点介绍。发现在传统育种的基础上, 借助于现代生物技术手段, 将白藜芦醇的天然活性保健作用应用于保健食品的开发、作物经济附加值的提高具有广阔的前景。 关键词:白藜芦醇;化学合成;研究进展 Abstract:Resveratrol has multiple biological and pharmacological activities, it is widely used in food, medicine, health products, cosmetics and other fields. Pharmacological activity of resveratrol has an excellent and great demand for health functions and with its market-increasing, there are most of the developed countries and regions of resveratrol and its products. Key words:resveratrol;chemical synthesis;progres 1 前言 白藜芦醇(Resveratro1),化学名为反式3,4ˊ,5-三羟基二苯乙烯(3,4ˊ,5-Trihydroxy-trans-stilbene),是一种存在于植物中的具有芪类结构的非黄酮类天然多酚化合物,其化学结构式如下所示。 白藜芦醇广泛存在于葡萄、虎杖、决明子和花生等天然植物中, 它是植物在受到生物或非生物威胁时产生的一种植物抗毒素。白藜芦醇生理活性显著, 高效低毒, 有抗肿瘤、抗炎、抗菌、抗氧化、抗自由基、保护肝脏、保护心血管和抗心肌缺血等功能,被喻为继紫杉醇之后又一新的绿色抗肿瘤药物;同时其保健功能也引起了欧美科学家的普遍兴趣, 被美国专著《抗衰老圣典》列为100种最热门有效抗衰老物质之一。由于白藜芦醇在医药和食品工业中的广泛应用, 导致白

有机合成工艺学作业.doc

有机合成工艺学作业 一、单选题(共10 道试题,共100 分。) 1. 催化加氢是指有机化合物中一个或几个不饱和的官能团在催化剂的作用下与氢气发生加成反应;而催化脱氢是在催化剂的作用下,烃类脱氢生成二种或两种以上新物资,通过加氢和脱氢过程,可以合成氨、(甲醇)、丁二烯、苯乙烯等非常重要的基本有机化工产品。 2. 合成甲醇的产物中,除目的产物外,还含有二甲醚、异丁醇、甲烷等副产物。合成甲醇早期为高压法,由于它存在许多无法克服的缺点,被后来发展起来的低压法所取代,低压法的动力消耗为高压法的(60% )左右。 3. 催化脱氢可以生成高分子材料的重要单体,产量最大、用途最广的两个产品是苯乙烯和(丁二烯)。 4. 合成甲醇的技术自20世纪80年代来主要取得了(三)个新成果。 5. 正丁烯氧化脱氢制丁二烯过程中,主要的副反应有(六)个。 6. 丁二烯的用途较大,目前它的主要来源是裂解副产品混合C4通过特殊精馏得到,西欧和日本的全部、美国(80%)的丁二烯是通过这一途径得到的。 7. 合成甲醇的反应机理有许多学者进行了研究,也有很多报道,归结起来有(三)种假定。 8. 甲醇作为化工原料的用途越来越广,它既可以直接合成汽油,也可以作为无铅汽油的优质添加剂,它的主要原料是合成气,据统计,世界上(80% )的甲醇来源于天然气。 9. 乙苯脱氢制得苯乙烯的工艺进行不断改进,主要从(三)方面着手。 10. 苯乙烯是高分子材料的一种重要单体,由于市场需求旺盛,苯乙烯的产量不断增加,目前生产苯乙烯的主要方法是乙苯脱氢法,主要原料是(乙烯和苯)。 1. 催化自氧化反应的机理属于自由基机理,起决定作用的是(链引发)过程。 2. 氧化反应在化工领域中比较常见,它具有许多特征,综合起来有(四)大特征。 3. 烃类氧化过程中,氧化剂可以在空气、纯氧、过氧化氢和其他过氧化物中选择,目前最常用的是(空气和纯氧)。 4. 异丙苯法生产苯酚和丙酮的工艺流程中,从烷基化反应开始到反应混合物中产品的精制分离,一共需要经过(八)个单元。 5. 催化氧化的技术进展主要体现在(三)个方面。 6. 原料的纯度在生产上也是一个主要操作条件,工艺上用于生产乙醛的原料乙烯要求在(99.5% )以上。 7. 工业上乙烯氧化生成乙醛的过程容易发生爆炸,实际生产过程中,往往通过控制循环气中乙烯和氧气的量来预防爆炸发生,乙烯含量控制在65%左右,氧含量控制在(8%)左右。 8. 丙烯氨氧化制丙烯腈的工艺路线主要有(五)条。 9. 烃类氧化有完全氧化和部分氧化之分,目前全球生产的化学品中,(50%)是通过部分氧化得到的。 10. 在采用共氧化法生产环氧丙烷过程中,联产物量很大,所产联产物是异丁烯和(苯乙烯)。 1. 工业上生产醋酸的方法有(三)种。 2. 以丙烯为原料经羰基合成反应和加氢反应生成1,4-丁二醇的工艺已经由(美国)ARCO 公司实现工业化。 3. 影响氢甲酰化反应的因素很多,主要体现在(三)方面。 4. 由于羰基化反应的应用越来越广泛,它的发展趋势主要体现在(二)个方面。 5. 羰基合成的原料为烯烃和合成气,所得到的产品的碳原子数与原料烯烃的差为(1)。 6. 羰基合成在精细化工中的应用很广,主要在(香料)方面。 7. 甲醇低压羰基合成醋酸在技术经济上的优越性很大,它归纳起来大约有(八)个特点。

中小学常用的教学方法及其基本要求(五)

中小学常用的教学方法及其基本要求(五) 中小学常用的教学方法及其基本要求(五) ——以引导探究为主的方法 以引导探究为主的教学方法,是指教师组织和引导学生通过独立的探究和研究活动而获得知识的方法。这类方法的特点在于,在探索解决认识任务过程中,使学生的独立性得到高度发挥,进而培养和发展学生的探索能力、各种活动能力和创新能力。在这类方法中,教师的地位与前几类方法中的情况有较大不同。在这里,教师有意识地让学生有较大的活动自由,并且使自己作为成员参与到学生的探究活动中去。但这并不意味着可以离开教师的指导,反而由于学生探究活动的复杂化,要求教师的指导更加细致和全面。 由于学生的探究活动是在学校教学条件下进行的,所以教师在向学生提出探究性质的任务时,一定要考虑教学大纲的要求、学生在知识和能力方面的准备情况以及学生完成作业的时空条件等,否则,会影响教学的进程和效率。 以引导探究为主的教学方法主要包括发现法。

发现法,又称探索法、研究法,是指学生学习概念和原理时,教师只是给他们一些事例和问题,让学生自己通过阅读、观察、实验、思考、讨论、听讲等途径去独立探究,自行发现并掌握相应的原理和结论的一种方法,它的指导思想是在教师指导下,以学生为主体,让学生自觉地、主动地探索,掌握认识和解决问题的方法与步骤,研究客观事物的属性,发现事物发展的起因和事物内部的联系,从中找出规律,形成自己的概念。 发现法的基本过程是:(1)创设问题情境,向学生提出要解决或研究的课题;(2)学生利用有关材料,对提出的问题作出各种可能的假设和答案;(3)从理论上或实践上检验假设,学生中如有不同观点,可以展开争辩;(4)对结论作出补充、修改和总结。 发现法对于激发学生学习兴趣、培养学生解决问题的能力、发展学生创造性思维品质和积极进取的精神有较大的优越性。 这一方法多用于那些可以引出多种假设、原理的数理学科,尤其是在让学生形成概念、理论,找出现象间的因果关系和其他联系时,更为有效。但是,运用这种方法,花费时间多,不经济,而且需要学生具有相当的知识经验和一定的思维发展水平,还需要逻辑较严密的教材和素质较高的教师。对于太简单或太复杂的内容以及资料性的内容,不宜采用发现法。

基本有机化工工艺学总复习题

基本有机化工工艺学总复习题标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

化工工艺学概论 基本有机化工工艺部分总复习题 一、填空题: 1、基本有机化学工业是化学工业中的重要部门之一,它的任务是:利用自然界存在的(煤、石油天然气)和生物质等资源,通过各种化学加工的方法,制成一系列重要的基本有机化工产品。 2、(乙烯)的产量往往标志着一个国家基本有机化学工业的发展。 3、天然气主要由(甲烷)、乙烷、丙烷和丁烷组成。 4、天然气中的甲烷的化工利用主要有三个途径之一:在镍催化剂作用下经高温水蒸气转化或经部分氧化法制(合成气),然后进一步合成甲醇、高级醇、氨、尿素以及一碳化学产品。 5、石油主要由(碳、氢)两元素组成的各种烃类组成。 6、石油中所含烃类有烷烃、(环烷烃)和芳香烃。 7、根据石油所含烃类主要成分的不同可以把石油分为烷基石油(石蜡基石油)、环烷基石油(沥青基石油)和(中间基石油)三大类。 8、根据不同的需求对油品沸程的划分也略有不同,一般分为:(轻汽油、汽油、航空煤油、煤油、柴油、润滑油)和重油。 9、原油在蒸馏前,一般先经过(脱盐)、(脱水)处理。 10、原油经过初馏塔,从初馏塔塔顶蒸出的轻汽油,也称(石脑油)。 11、石脑油是(催化重整)的原料,也是生产(乙烯)的原料。 12、催化裂化目的是将不能用作轻质燃料油的(常减压馏分油)加工成辛烷值较高的汽油等轻质原料。 13、直链烷烃在催化裂化条件下,主要发生的化学变化有:(碳链的断裂和脱氢反应、异构化反应)、环烷化和芳构化反应和叠合、脱氢缩合等反应。14、基本有机化学工业中石油加工方法有常减压蒸馏、催化裂化、催化重整、(加氢裂化)。 15、催化重整是使原油常压蒸馏所得的轻汽油馏分经过化学加工变成富含芳烃的高辛烷值汽油的过程,现在该法不仅用于生产高辛烷值汽油,且已成为生产(芳烃)的一个重要来源。 16、催化重整常用的催化剂是( Pt/Al2O3 )。 17、催化重整过程所发生的化学反应主要有:(环烷烃脱氢芳构化)环烷烃异构化脱氢形成芳烃、烷烃脱氢芳构化、正构烷烃的异构化和加氢裂化等反应。 18、煤的结构很复杂,是以(芳香核结构)为主具有烷基侧链和含氧、含硫、含氮基团的高分子化合物。 19、基本有机化学工业有关煤的化学加工方法有:煤的干馏、(煤的气化、煤的液化)和煤与石灰熔融生产电石。 20、烃类热裂解法是将石油系烃类经高温作用,使烃类分子发生(碳链断裂或脱氢)反应,生成分子量较小的烯烃、烷烃和其它分子量不同的轻质和重质烃。 21、烃类热裂解制乙烯的工艺主要有两个重要部分:(原料烃的热裂解)和裂解产物的分离。 22、一次反应,即由原料烃类经热裂解生成(乙烯)和丙烯的反应。

中小学英语常用教学方法之利弊谈

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 中小学英语常用教学方法之利弊谈中小学英语常用教学方法之利弊谈众所周知,方法对于做事情的重要性和必要性,而做好事情不仅需要有正确、科学的方法,还必须有这些方法的正确、合理地选择和恰到好处地使用,也就是要有策略意识。 本文就常见的英语教与学中的常用方法使用中的不良现象、方法的本质分析以及具体方法的科学使用建议和成功案例逐个加以阐述。 一、一味强调背诵 1.背诵的好处在学习过程中,某些基础知识需要精确记忆,这就要靠背诵熟记下来。 背诵下来的东西,是久而不忘的。 许多治学有成就的人都下过背诵的功夫。 学校从少儿入学开始,就强调学生要熟读一定数量的课文。 背诵有以下几点好处: ①促进理解、内化。 某些材料背诵下来,反复揣摩,就能逐步深刻理解,融会贯通,变成自己的东西。 ②利于应用。 背熟记牢了的东西,运用起来就得心应手。 ③利于创造。 背诵并非消极地贮存前人或别人的经验知识,头脑中积存的材料多了,经过加工,就可以产出新产品。 1 / 10

2.背诵常见的不良情形不言而喻,背诵也是广泛用于中小学英语课内或课外的手段和任务。 常见的不良情形是: 每学一篇对话或课文都要求背诵;在教师刚教了几遍,学生还不能熟读,就要求学生为完成背诵任务而背诵;在课上让学生花大量时间用于背诵,在部分教师看来,学生能背会是学习英语的终极目标。 结果是: 学生即使会背了,也只能是牵强附会地、生硬地背诵,没有个人对内容的感悟与理解,更不会在适当的情景中正确、得体地使用,如:有的学生在和别人交流时对于自己的真实个人信息输出也往往用背过的书中的内容,不会转换有关信息,从而生成自己的表达内容;及时背诵了很多内容,但成绩仍然不理想,殊不知,现行英语课程标准规定的英语教学的总目标是培养学生的综合运用语言能力,解决实际问题。 而目前的中小学英语考试也越来越重视和倾向于对语言运用能力的考查,要由课本内容提供的语境走向接近真实生活的语境,逐步取代对所学内容的纯记忆考查。 因此,学生即使勉强会背了,但不会将所背的东西活用,也很难实现预期的目标。 3.提高背诵效率的做法要想提高背诵的效率,应该做到以下几点: ①选择背诵内容要得当。

制药工艺学试题及习题答案

《化学制药工艺学》第一次作业 一、名词解释 1、工艺路线: 一个化学合成药物往往可通过多种不同的合成途径制备,通常将具有工业生产价值的合成途 径称为该药物的工艺路线。 2、邻位效应: 指苯环内相邻取代基之间的相互作用,使基团的活性和分子的物理化学性能发生显著变化的 一种效应。 3、全合成: 以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得化学合成 药物,这种途径被称为全合成。 4、半合成: 由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得化学合成药物的途径。 5、临时基团: 为定位、活化等目的,先引入一个基团,在达到目的后再通过化学反应将这个基团予以除去,该基团为临时基团。 6、类型合成法: 指利用常见的典型有机化学反应与合成方法进行合成路线设计的方法。 7、分子对称合成法: 由两个相同的分子经化学合成反应,或在同一步反应中将分子相同的部分同时构建起来,制得具有分子对称性的化合物,称为分子对称合成法。 8、文献归纳合成法: 即模拟类推法,指从初步的设想开始,通过文献调研,改进他人尚不完善的概念和方法来进行药物工艺路线设计。 二、问答题 1、你认为新工艺的研究着眼点应从哪几个方面考虑? 答: (1)工艺路线的简便性, (2)生产成本因素, (3)操作简便性和劳动安全的考虑, (4) 环境保护的考虑, (5) 设备利用率的考虑等。 2、化学制药工艺学研究的主要内容是什么? 答: 一方面,为创新药物积极研究和开发易于组织生产、成本低廉、操作安全和环境友好的 生产工艺;另一方面,要为已投产的药物不断改进工艺,特别是产量大、应用面广的品种。研究和开发更先进的新技术路线和生产工艺。 3、你能设计几种方法合成二苯甲醇?哪种路线好? 答:

基本有机化工工艺学考试

1、(B)产量往往标志着的一个国家基本有机化学工业的发展。 A、甲烷 B、乙烯 C、苯 D、丁二烯 2、天然气主要由(A)、乙烷、丙烷和丁烷组成。 A、甲烷 B、乙烯 C、苯 D、丁二烯 3、石油主要由(C)氢两元素组成的各种烃类组成。 A、氧 B、氮 C、碳 D、硫 4、石油中所含烃类有烷烃、( B )和芳香烃。 A、烯烃 B、环烷烃 C、炔烃 D、二烯烃 5、根据石油所含烃类主要成分的不同可以把石油分为烷基石油(石蜡基石油)、环烷基石油(沥青基石油)和( B ) 三大类。 A、芳香基石油 B、中间基石油 C、直链基石油 D、支链基石油 6、原油在蒸馏前,一般先经过(A)处理。 A、脱盐、脱水 B、脱硫、脱盐 C、脱蜡、脱水 D、脱盐、脱硫 7、原油经过初馏塔,从初馏塔塔顶蒸出的轻汽油,也称(A)。 A、石脑油 B、柴油 C、航空煤油 D、煤油 8、(A)是催化重整装置生产芳烃的原料,也是生产乙烯的原料。 A、石脑油 B、柴油 C、航空煤油 D、煤油 9、根据不同的需求对油品(A)的划分也略有不同,一般分为:轻汽油、汽油、航空煤油、煤油、柴油、润滑 油和重油。 A、沸程 B、密度 C、黏度 D 特性因数 10、根据不同的需求对油品沸程的划分也略有不同,一般分为:轻汽油、汽油、航空煤油、煤油、柴油、(C) 和重油。 A、减压渣油 B、胶质 C、润滑油 D、重柴油 11、催化裂化目的是将( B )加工成辛烷值较高的汽油等轻质原料。 A、减压渣油 B、常压馏分油 C、润滑油 D、重柴油 12、直链烷烃在催化裂化条件下,主要发生的化学变化有:碳链的断裂和脱氢反应、(A)、环烷化和芳构化反应 和叠合、脱氢缩合等反应。 A、异构化反应 B、烷基化反应 C、聚合反应 D、脂化反应 13、直链烷烃在催化裂化条件下,主要发生的化学变化有:碳链的断裂和脱氢反应、异构化反应、环烷化和芳构化 反应( B )等反应。 A、烷基化反应 B、叠合、脱氢缩合 C、聚合反应 D、脂化反应 14、基本有机化学工业中石油加工方法有( B )、催化裂化、催化重整和加氢裂化。 A、烷基化反应 B、常减压蒸馏 C、催化氧化 D、脂化反应 15、基本有机化学工业中石油加工方法有常减压蒸馏、催化裂化、催化重整( B )。 A、烷基化反应 B、加氢裂化 C、催化氧化 D、脂化反应 16、工业上采用的催化裂化装置主要有以硅酸铝为催化剂的(A)和以高活性稀土Y分子筛为催化剂的提升管催 化裂化两种。 A、流化床催化裂化 B、加氢裂化 C、催化氧化 D、脂化反应 17、催化重整是使(A)经过化学加工变成富含芳烃的高辛烷值汽油的过程,现在该法不仅用于生产高辛烷值汽 油,且已成为生产芳烃的一个重要来源。 A、常压蒸馏所的轻汽油馏分 B、减压蒸馏所的柴油 C、常压渣油 D、减压渣油 18、催化重整是使原油常压蒸馏所得的轻汽油馏分经过化学加工变成富含(A)的高辛烷值汽油的过程。 A、芳烃 B、甲烷 C、环氧乙烷 D、脂肪酸 19、(C)不仅用于生产高辛烷值汽油,且已成为生产芳烃的一个重要来源。 A、常减压蒸馏 B、催化裂化 C、催化重整 D、催化氧化 20、催化重整常用的催化剂是(A)。

有机合成工艺优化.doc

有机合成工艺优化方法学---心得 1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位

中小学常用的教学方法及其基本要求五

中小学常用的教学方法及其基本要求五 中小学常用的教学方法及其基本要求(五) ——以引导探究为主的方法 以引导探究为主的教学方法,是指教师组织和引导学生通过独立的探究和研究活动而获得知识的方法。 这类方法的特点在于,在探索解决认识任务过程中,使学生的独立性得到高度发挥,进而培养和发展学生的探索能力、各种活动能力和创新能力。在这类方法中,教师的地位与前几类方法中的情况有较大不同。在这里,教师有意识地让学生有较大的活动自由,并且使自己作为成员参与到学生的探究活动中去。但这并不意味着可以离开教师的指导,反而由于学生探究活动的复杂化,要求教师的指导更加细致和全面。 由于学生的探究活动是在学校教学条件下进行的,所以教师在向学生提出探究性质的任务时,一定要考虑教学大纲的要求、学生在知识和能力方面的准备情况以及学生完成作业的时空条件等,否则,会影响教学的进程和效率。 以引导探究为主的教学方法主要包括发现法。 发现法,又称探索法、研究法,是指学生学习概念和原理时,教师只是给他们一些事例和问题,让学生自己通过阅读、观察、实验、思考、讨论、听讲等途径去独立探究,自行发现并掌握相应的原理和结论的一种方法,它的指导思想是在教师指导下,以学生为主体,让学生自觉地、主动地探索,掌握认识和解决问题的方法与步骤,研究客观事物的属性,发现事物发展的起因和事物内部的联系,从中找出规律,形成自己的概念。 发现法的基本过程是:(1)创设问题情境,向学生提出要解决或研究的课题;(2)学生利用有关材料,对提出的问题作出各种可能的假设和答案;(3)从理论上或实践上检验假设,学生中如有不同观点,可以展开争辩;(4)对结论作出补充、修改和总结。 发现法对于激发学生学习兴趣、培养学生解决问题的能力、发展学生创造性思维品质和积极进取的精神有较大的优越性。 这一方法多用于那些可以引出多种假设、原理的数理学科,尤其是在让学生形成概念、理论,找出现象间的因果关系和其他联系时,更为有效。但是,运用这种方法,花费时间多,不经济,而且需要学生具有相当的知识经验和一定的思维发展水平,还需要逻辑较严密的教材和素质较高的教师。对于太简单或太复杂的内容以及资料性的内容,不宜采用发现法。 运用以引导探究为主的方法的要求如下。

有机工艺学——常用指标

基本有机化工工艺学 第一章 化工生产中的常用指标与催化剂(1) 【考纲要求】掌握化工生产中的常用指标(转化率、产率、收率、消耗定额、空间速度、接触时间)的概念及其计算 【基本知识点】 1.转化率 (1)定义:转化率是( )。转化率越大,说明参加反应的原料量越( ),转化程度越( )。由于进行反应器的原料一般不会全部参加反应,所以转化率的数值( )1(填大于、小于或等于)。 (2)符号:( ) (3)表达式:( ) 工业生产中有单程转化率和总转化率之分。 A.单程转化率 a.定义:表示反应物一次通过反应器,参加反应的反应物量与输入反应反应器的反应总量的百分比。 b.公式:单程转化率=进入反应器的反应物量 参加反应的反应物量×100% = 进入反应器的反应物量量-反应后剩余的反应物进入反应器的反应物量×100% c.习题巩固:以乙烷为裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,求乙烷的转化率。 B.总转化率 a.定义:表示输入到过程参加反应的反应物量与输入到过程的反应物的总量的百分数。 对于有循环和旁路的生产过程,常用总转化率。

b.公式:总转化率=量 进入到过程的反应物总物量过程中参加反应的反应×100% c.习题巩固:用乙烷作原料裂解生产乙烯,通入裂解炉的新鲜原料乙烷为5000 kg/h ,裂解气分离后,没有反应的乙烷2000kg/h 又返回了裂解炉进行反应,最终分析裂解气中含乙烷1500 kg/h ,求乙烷的总转化率。 2.产率(或选择性) A.理论产量 (1)定义:理论产量是指( )。 (2)计算公式: 对于反应aA+bB====pP+qQ mp 理(A 反)=? B.产率 (1)定义:产率( )。 即参加反应的原料有一部分被副反应消耗掉了,而没有生成目的产物。产率越高,说明参加反应的原料生成的目的产物越多( )。 (2)符号:( ) (3)公式:产率=参加反应的原料量 原料量生成目的产物所消耗的×100% (4)习题:用乙烷作裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量 为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,得到乙烯量为3332 kg/h ,求乙烯的产 率。

有机合成工艺小试到中试放大之关键

有机合成工艺小试到中试放大之关键 在生产过程中凡直接关系到化学合成反应或生物合成途径的次序,条件(包括物料配比、温度、反应时间、搅拌方式、后处理方法及精制方法等)通称为工 艺条件。 一、研发到生产的三个阶段 1、小试阶段:开发和优化方法 2、中试阶段:验证和使用方法 3、工艺验证/商业化生产阶段:使用方法,并根据变更情况以绝对是否验证 注:批量的讨论:中试批量应不小于大生产批量的十分之一 二、小试阶段 对实验室原有的合成路线和方法进行全面的、系统的改革。在改革的基础上通过实验室批量合成,积累数据,提出一条基本适合于中试生产的合成工艺路线。小试阶段的研究重点应紧紧绕影响工业生产的关键性问题。如缩短合成路线,提高产率,简化操作,降低成本和安全生产等。 1、研究确定一条最佳的合成工艺路线:一条比较成熟的合成工艺路线应该 是:合成步骤短,总产率高,设备技术条件和工艺流程简单,原材料来源充裕而 且便宜。 2、用工业级原料代替化学试剂:实验室小量合成时,常用试剂规格的原料 和溶剂,不仅价格昂贵,也不可能有大量供应。大规模生产应尽量采用化工原料和工业级溶剂。小试阶段应探明,用工业级原料和溶剂对反应有无干扰,对产品的产率和质量有无影响。通过小试研究找出适合于用工业级原料生产的最佳反应 条件和处理方法,达到价廉、优质和高产。 3、原料和溶剂的回收套用:合成反应一般要用大量溶剂,多数情况下反应 前后溶剂没有明显变化,可直接回收套用。有时溶剂中可能含有反应副产物,反应不完全的剩余原料,挥发性杂质,或溶剂的浓度改变,应通过小试研究找出回收处理的办法,并以数据说明,用回收的原料和溶剂不影响产品的质量。原料和溶剂的回收套用,不仅能降低成本,而且有利于三废处理和环境卫生。

基本有机化工工艺学整理

基本有机化工工艺学 Ch1.化工工艺学 1化工工艺学? 研究如何将原料转化为产物的一门学科 2 工艺? 由原料生成产物的过程 3 天然气? 以甲烷为主要气体的燃气 4 .天然气的利用主要有三条途径? 转化氧化裂解 5 石油加工的主要途径? 蒸馏、催化裂解、加氢精制、焦化、催化重整、脱蜡、溶剂抽提 6 炼厂气 炼油厂所有产物的气体统称 7 辛烷值 正庚烷的辛烷值为零,异庚烷的辛烷值为100,指异庚烷所占的百分比 8 有机化工的主要原料 三烯(乙烯、丙烯、丁二烯),三苯(苯、甲苯、二甲苯),一萘(萘),一炔(乙炔) Ch2.烃类热裂解 1烃类热裂解与催化裂解的区别 有无催化剂,温度高低,原料的选择面 2热裂解的主要反应 断裂和脱氢,环烷化和芳构化,异构化,聚合和缩合 3裂解深度的几种表示方法 转化率,出口温度,乙烯收率,动力学深度函数 4温度、时间、压力的影响 温度—停留时间效应 (1).裂解温度与停留时间是相互依赖,相互制约的。没有高温,停留时间无论怎样变化都不能提高乙烯的收率。同样,如果没有适当的停留时间,温度再高也不能有好的收率。(2).缩短停留时间,便可以允许提高温度。 压力 (1).从压力平衡分析 从热力学分析,烃类裂解(一次反应)是分子增多的反应,而二次反应是分子减少的反应,降压有利。 (2).从动力学分析 一是减压操作 二是采用惰性气体作稀释剂,降低分压 (3).稀释剂的降压作用 要求:具有稳定性→(热稳定、化学稳定),要易分离

5水蒸气作稀释剂的优点 易得、热容大;易分离;清焦作用 6 SRT型炉的演变过程 反应初期要解决传热问题,采用多股小管径增加传热面积;反应后期多股变成一股,采用粗管径堵塞的可能,使物料在炉内流动先慢后快,停留时间先长后短。 7如何判别清焦 进口压力是否增加;乙烯含量是否增加;炉管上光亮点的大小 8间接急冷工业解决结焦的方法.能量回收的途径 方法:控制停留时间;控制出口温度高于裂解气的入口温度 途径:高温裂解气;热油;烟道气 9酸性气体的脱除 酸性气体指CO2、H2S及少量有机硫化物。 危害:1)腐蚀管路与设备 2)影响催化剂的寿命 3)堵塞管路——干冰 10脱水、分子筛吸附规律、再生步骤 脱水方法:冷冻法;固体干燥法 要求:a.干燥度要高b.生产能力大,吸附量大c.能重复使用d.强度和稳定性分子筛吸附规律: 吸附小于其孔径的分子。 极性吸附剂。它对极性分子有较大的亲和力。 分子的不饱和度越大,越容易被吸附。 沸点越低,越不易被吸附。 再生步骤:a.放油——防止气化→要带压放油 b.增湿——用水替代烃类 c.逆流加热——确保干燥度 11油吸收与深冷的区别 深冷分离的原理:利用裂解气中各组分的相对挥发度不同,在低温下将裂解气中除了甲烷和氢以外的其它组分全部地冷凝下来。然后再用精馏的方法将各组分逐一分开。 油吸收分离的原理:利用溶剂对裂解气中各组分的不同吸收能力,将裂解气中除了甲烷和氢以外的其它组分全部吸收下来。然后再用精馏的方法将各组分逐一分开。 区别:脱甲烷和氢气的形式不同 12 脱甲烷过程 两个重要指标: 1.甲烷对乙烯的相对挥发度α α↗分离易 2.尾气中的乙烯含量含量↗收率↘ 13乙烯精馏 1.侧线采出2. 中间再沸 Ch3.芳烃转化 1.芳烃转化 (1)cat能提供质子(H+),而质子只有一个正电荷,所以转移速度很快,容易接近其它极性分子中带负电的一端,形成化学键,同时因质子半径小,呈现很强的电场强度,极化接近它的分子,形成新键。

制药工艺学课后答案

第二章化学制药工艺路线的设计和选择 2-1工艺路线设计有几种方法,各有什么特点?如何选择? 答:(1)类型反应法,类型反应法是指利用常见的典型有机化学反应与合成方法进行合成工艺路线设计的方法。类型反应法既包括各类化学结构的有机合成通法,又包括官能团的形成,转换或保护等合成反应。对于有明显结构特征和官能团的化合物,通常采用类型反应法进行合成工艺路线。 (2)分子对称法,药物分子中存在对称性时,往往可由两个相同的分子片段经化学合成反应制得,或在同一步反应中将分子的相同部分同时构建起来。该法简单,路线清晰,主要用于非甾体类激素的合成。 (3)追溯求源法,从药物分子的化学结构出发,将其化学合成过程一步步逆向推导,进行寻源的思考方法,研究药物分子化学结构,寻找出最后一个结合点,逆向切断链接消除重排和官能团形成与转化,如此反复追溯求源直到最简单的化合物,即期始原料为止,即期始原料应该是方便易的,价格合理的化学原料或天然化合物,最后是各步的合理排列与完整合成路线的确定。 2—2工艺路线评价的标准是什么?为什么? 答:原因:一个药物可以有多条合成路线,且各有特点,哪条路线可以发展成为适合于工业生产的工艺路线则必需通过深入细致的综合比较和论证,从中选择出最为合理的合成路线,并制定出具体的实验室工艺研究方案。 工艺路线的评价标准:1)化学合成途径简捷,即原辅材料转化为药物的路线简短;2)所需的原辅材料品种少并且易得,并有足够数量的供应; 3)中间体容易提纯,质量符合要求,最好是多不反应连续操作; 4)反应在易于控制的条件下进行,如无毒,安全; 5)设备要求不苛刻; 6)“三废”少且易于治理; 7)操作简便,经分离,纯化易达到药用标准; 8)收率最佳,成本最低,经济效益好。 第五章氯霉素生产工艺 5-2、工业上氯霉素采用哪几种合成路线?各单元步骤的原理是什么?关键操作控制是什么? 答:工业上氯霉素采用具有苯乙基结构的化合物原料的合成路线;

我从事有机合成工艺研发工作三年的体会

我从事有机合成工艺研发工作三年的体会 作者:ttyhhecheng(优化合成) 时间过得真快!转眼之间我已经在Bristol-Myers Squibb从事有机合成工艺优化(process R&D)工作三年了,这三年,感谢公司的栽培,我顺利完成了从学校毕业生到有机合成工艺优化专家的转变。因为此前我一直都在学校读书,这个转变对我个人而言也是真正实现学以致用的开端,我在此把三年来的经历和体会作个总结,兴许新的有机合成化学毕业生看了能有所得。 2004年三月,我刚入公司第一天,我就被安排做新API的路线优化和第一批临床原料的合成,虽然这只是一个四步的合成工艺,但在不到三个月的时间,我完成了从最佳工艺路线的挑选,建立各步合成反应中控标准,定型API分离方案,下车间放大生产(1.5kg, 50L) 的所有工作,就这样在很短的时间内对工艺优化所牵涉到的各方面问题有了全面接触,例如如何挑选API路线(我学到的第一课是最短的不一定是最好的),如何运用统计学原理迅速地优化多变量反应,如何运用自下而上的原理帮助确定分离方案,如何处理收率和质量的关系,如何检验工艺的可重复性,等等。。。 现在回想起来,这是一个学习强度非常高的时期,一方面我得做大量实验优化各步工艺,提高我运用合成化学理论知识解决实际问题的能力;另一方面我得迅速熟悉PR&D各部门间交流对话的机制和快节奏的决策过程,定出符合FDAcGMP工业标准的生产放大方案并付诸实施。从我这最初三个月的经历来看,我们部门实行的是通过压担子--在完成任务的同时完成对新人的培养的策略,我个人的成长经历说明这一策略是非常成功的。当然,成功实施这一策略的前提条件是部门内有很好的团队精神,新手能及时地得到资源上,人际关系上的帮助。在此我一方面要感谢公司对我的信任,让我直接负责新API的工艺研发,另一方面,我也要向我的很多同事致以由衷的谢意!我能迅速胜任重担是和他们对我的无私的指导和帮助分不开的。从我个人成长来说,我深切体会到不管在哪里,多做少说是新手树立良好第一印象适应公司氛围的关键,不管是老中老美,大家总还是尊重勤恳干活的人的。 在完成了第一个项目后,领导征询我的意见是否愿意领兵做一个重要的中间体工艺放大工作。这个项目和第一个完全不同,反应了有机合成工艺优化工作的极具挑战性的另一侧面,即如何啃下硬骨头。第一个项目事务繁杂但技术难度并不大,其中的挑战性在于如何依据实际情况分清工作主次,在有限的时间内作出合理决策。这第二个项目的核心内容是技术攻关,即如何将一个非常复杂的化学反应优化放大,完成三百公斤规模的生产。值得一提的是,这个放大生产是要在外包商的车间完成,这其中就还牵涉到如何顺利完成技术转移的任务。当时我工作了还不到四个月,确实并没有体察到完成这个任务所要求的方方面面的能力,只因为对这任务的技术上的挑战性充满兴趣,二话没说就接受了。现在回想起来,那时真有点不知天高地厚,豪气干云的意思,根本没想过万一做不下来会如何如何。 这个中间体的合成包括了三个主要步骤:先是高温(140摄氏度)下进行三加二环加成反应得到消旋产物的dimer,然后将dimer转化成消旋性产物,最后将消旋性产物拆分成所需的旋光性对映体。在我接手之前,通过多批次的办法已经合成过40公斤,这时的平均收率在16%左右。但我的任务是要生产300公斤。从前的工艺是行不通的。主要的问题有:高温下的环加成反应重复性差,收率和立体选择性变化幅度大;需进行两步分离,而消旋性产物盐的分离有极大难度(当时用了两天的离心时间);最后拆分工艺也不稳定,析出的晶体的旋光纯度随结晶时间的延长而逐步下降。所以要顺利实现这个放大,我必需解决这三个技术难题:1,如何确保高温反应的高收率和重现性;2,如何解决中间体的分离难题或者更进一步干脆省略中间体的分离步骤;3,如何建立稳定的拆分工艺。而这三个难题实际上是相关的,第一个难题的解决是解决第二个和第三个难题的基础。明确这个关系后,我们三人攻关小组现聚焦第一关。我们利用了在线红外波谱仪详细研究了高温下环加成反应机理,搞清了反应物配比,浓度,溶剂成分,温度和升温速率等变量对主反应和几个副反应的影响,把反应实时收率从80%提高到95%左右,同时实现了高重复性。第一步的高收率也意味着在这一步产生较低杂质,这样为省略中间体的分离(纯化)步骤奠定了基础,也为建立起稳定的拆分工艺提供了良好原料。就这样,我们用了近五个月的时间,把一个两步分离,平均收率16%的工艺改进成一步分离,单反应罐操作,平均收率30%的稳定工艺,并顺利地实现了对外包商的技术转移和规模生产。 在优化这一复杂反应过程中,方法论方面我有两点重要体会,第一,在技术攻关时,一定要站在战略性的高度来详尽分析各个矛盾,找到主要矛盾,集中所有资源先解决主要矛盾,只有这样才能高屋建瓴,

基本有机化工实用工艺学总复习题

实用文档 化工工艺学概论 基本有机化工工艺部分总复习题 一、填空题: 1、基本有机化学工业是化学工业中的重要部门之一,它的任务是:利用自然界存在的(煤、石油天然气)和生物质等资源,通过各种化学加工的方法,制成一系列重要的基本有机化工产品。 2、(乙烯)的产量往往标志着一个国家基本有机化学工业的发展。 3、天然气主要由(甲烷)、乙烷、丙烷和丁烷组成。 4、天然气中的甲烷的化工利用主要有三个途径之一:在镍催化剂作用下经高温水蒸气转化或经部分氧化法制(合成气),然后进一步合成甲醇、高级醇、氨、尿素以及一碳化学产品。 5、石油主要由(碳、氢)两元素组成的各种烃类组成。 6、石油中所含烃类有烷烃、(环烷烃)和芳香烃。 7、根据石油所含烃类主要成分的不同可以把石油分为烷基石油(石蜡基石油)、环烷基石油(沥青基石油)和(中间基石油)三大类。 8、根据不同的需求对油品沸程的划分也略有不同,一般分为:(轻汽油、汽油、航空煤油、煤油、柴油、润滑油)和重油。 9、原油在蒸馏前,一般先经过(脱盐)、(脱水)处理。 10、原油经过初馏塔,从初馏塔塔顶蒸出的轻汽油,也称(石脑油)。 11、石脑油是(催化重整)的原料,也是生产(乙烯)的原料。 12、催化裂化目的是将不能用作轻质燃料油的(常减压馏分油)加工成辛烷值较高的汽油等轻质原 料。 13、直链烷烃在催化裂化条件下,主要发生的化学变化有:(碳链的断裂和脱氢反应、异构化反应)、 环烷化和芳构化反应和叠合、脱氢缩合等反应。 14、基本有机化学工业中石油加工方法有常减压蒸馏、催化裂化、催化重整、(加氢裂化)。 15、催化重整是使原油常压蒸馏所得的轻汽油馏分经过化学加工变成富含芳烃的高辛烷值汽油的过 程,现在该法不仅用于生产高辛烷值汽油,且已成为生产(芳烃)的一个重要来源。 16、催化重整常用的催化剂是( Pt/Al 2O 3 )。 17、催化重整过程所发生的化学反应主要有:(环烷烃脱氢芳构化)环烷烃异构化脱氢形成芳烃、 烷烃脱氢芳构化、正构烷烃的异构化和加氢裂化等反应。 18、煤的结构很复杂,是以(芳香核结构)为主具有烷基侧链和含氧、含硫、含氮基团 的高分子化合物。

相关文档
最新文档