二次函数综合(定值)问题与解析

二次函数综合(定值)问题与解析
二次函数综合(定值)问题与解析

成都市中考压轴题(二次函数)精选

【例一】.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;

(2)求证:AO=AM;

(3)探究:

①当k=0时,直线y=kx与x轴重合,求出此时的值;

②试说明无论k取何值,的值都等于同一个常数.

的长,然后代入计算即可得解;

,x+,再联立抛物线与直线解析式,

x

=AM==+==1x ,+==,+

=

取何值,++

【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限

内,且AB ,sin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;

(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;

(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ,△QNR

的面积QNR S ?,求QMN S ?∶QNR S ?的值.

解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,

AB =

sin OAB ∠=

sin 3BD AB OAB ∴=∠==. 又由勾股定理,

得6AD =

==.

1064OD OA AD ∴=-=-=.

点B 在第一象限内,

∴点B 的坐标为(43),.

∴点B 关于x 轴对称的点C 的坐标为(43)-,. ·

·················································· 2分 设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为

2(0)y ax bx a =+≠.

由11643810010054

a a

b a b b ?

=?+=-?????+=??=-??,.

∴经过O C A ,,三点的抛物线的函数表达式为215

84

y x x =

-. ····························· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形.

①点(43)C -,

不是抛物线215

84

y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .

则直线1CP 的函数表达式为3y =-. 对于215

84

y x x =

-,令34y x =-?=或6x =. 1143x y =?∴?=-?,;2263x y =??

=-?,

而点(43)C -,,1(63)P ∴-,

. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.

∴点1(63)P -,

是符合要求的点. ······································································· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =. 将点(43)C -,代入,得143k =-.13

4

k ∴=-

. ∴直线CO 的函数表达式为3

4

y x =-.

于是可设直线2AP 的函数表达式为13

4

y x b =-

+. 将点(100)A ,代入,得131004b -?+=.115

2

b ∴=.

∴直线2AP 的函数表达式为315

42

y x =-+.

由2231542

46001584y x x x y x x ?

=-+???--=?

?=-??

,即(10)(6)0x x -+=. 11100x y =?∴?=?,;22612x y =-??

=?,;

而点(100)A ,,2(612)P ∴-,

. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △

中,由勾股定理,得220AP ===.

而5CO OB ==.

∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.

∴点2(612)P -,是符合要求的点. ······································································ 1分

③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.

将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ?

+==?????+=-??=-?,

∴直线CA 的函数表达式为1

52y x =

-. ∴直线3OP 的函数表达式为1

2y x =.

由2212

1401584y x x x y x x ?=???-=?

?=-??

,即(14)0x x -=. 1100x y =?∴?=?,;22

147x y =??

=?,

. 而点(00)O ,,3(147)P ∴,

. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得

3OP =

==

而CA AB ==

∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.

∴点3(147)P ,是符合要求的点. ········································································ 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,

,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ······················································· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.

①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.

即2

2

310y ax akx ak =--2

234924a x k ak ?

?=-- ???

如图,过点M 作MG x ⊥轴于点G .

3(20)(50)02Q k R k G k ??

- ???

,,,,,,

22349(010)24N ak M k ak ??

-- ???

,,,,

3

||2||7||2

QO k QR k OG k ∴===,,,

22749

||||10||24QG k ON ak MG ak ===,,.

2311

7103522QNR S QR ON k ak ak ∴==??=△.

QNM QNO QMG ONMG S S S S =+-△△△梯形

111

()222

QO ON ON GM OG QG GM =

++- 222211493

1749210102242224k ak ak ak k k ak ??=??+?+?-?? ??? 331494921

2015372884

ak ak ??=++?-?= ???. 3321::(35)3:204QNM QNR S S ak ak ??

∴== ???

△△. ················································· 2分

②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .

同理,可得:3:20QNM QNR S S =△△. ································································· 1分 综上可知,:QNM QNR S S △△的值为3:20.

【例三】、 如图,在平面直角坐标系xOy 中,一次函数5

4

y x m =

+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2

y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;

(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;

(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究

2112

P P

M M M M ? 是否为定值,并写出探究过程.

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

二次函数结合定值及等面积问题

二次函数结合定值及等面积问题 2 2 8 1.已知二次函数y =3x-3x+2的图像与x 轴交于A B 两点,A 在B 点的左边,与y 交 于点C ,点P 在第一象限的抛物线上,且在对称轴右边, S A PAC = 4,求点P 的坐标。 2.抛物线 y=-x 2 +bx+c 经过点 A B 、C,已知 A(- 1,0), C (0, 3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且S PBC =3,请求出此时点P 的坐标。 3.如图,已知直线 AB : y = kx+ 2k + 4与抛物线y= ^x 2 -^-A (1)直线AB 总经过一个定点 C,请直接写出点 C 的坐标 1 (2)当k 二时,在直线AB 下方的抛物线上求点 P ,使S A ABP = 5 2 4. 如图,抛物线y x 2 2x 3与x 轴交A B 两点(A 点在B 点左侧),直线l 与抛物线交 于A C 两点,其中C 点的横坐标为2。 (1 )求A B 两点的坐标及直线 AC 的函数表达式; (2) P 是线段AC 上的一个动点,过 P 点作y 轴的平行线交抛物线于 E 点,求△ EAC 面积的 最大值。 5. 如图,抛物线的顶点为 A (-3,-3 ),此抛物线交X 轴于O, B 两点 (1) 求此抛物线的解析式 (2) 求厶AOB 的面积 P C x O

(3) 若抛物线上另有一点P满足S B阳创,请求出P点的坐标 6.已知二次函数y x2 bx c,其图像抛物线交x轴的于点A (1, 0)、B (3, 0),交y 轴于点C. (1) 求此二次函数关系式; ⑵试问抛物线上是否存在点P(不与点B重合),使得S BCP 2S ABC ?若存在,求出P点 坐标;若不存在,请通过计算说明理由.

二次函数解析式的确定教案

二次函数解析式的确定教案 0.3二次函数解析式的确定 一.知识要点 若已知二次函数的图象上任意三点坐标,则用一般式求 解析式。 若已知二次函数图象的顶点坐标,则应用顶点式,其中为顶点坐标。 若已知二次函数图象与x轴的两交点坐标,则应用交点式,其中为抛物线与x轴交点的横坐标 二.重点、难点: 重点:求二次函数的函数关系式 难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。 三.教学建议: 求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。 典型例题 例1.已知某二次函数的图象经过点A,B,c三点,求其函数关系式。 分析:设,其图象经过点c,可得,再由另外两点建立

关于的二元一次方程组,解方程组求出a、b的值即可。 解:设所求二次函数的解析式为 因为图象过点c,「? 又因为图象经过点A, B,故可得到: ???所求二次函数的解析式为 说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由c可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。 例2.已知二次函数的图象的顶点为,且经过点 求该二次函数的函数关系式。 分析:由已知顶点为,故可设,再由点确定a的值即可解:,则 ???图象过点, 即: 说明:如果题目已知二次函数图象的顶点坐标,一般设,再根据其他条件确定a的值。本题虽然已知条件中已设,但我们可以不用这种形式而另设这种形式。因为在这种形式中,我们必须求a、b、c的值,而在这种形式中,在顶点已知的条件下,只需确定一个字母a的值,显然这种形式更能使我们快捷地求其函数关系式。

【中考数学压轴题专题突破01】二次函数中的定值问题

【中考压轴题专题突破】 二次函数中的定值问题 1.在平面直角坐标系xOy中,已知二次函数y=﹣的图象经过点A(2,0)和点B(1,),直线l经过抛物线的顶点且与y轴垂直,垂足为Q. (1)求该二次函数的表达式; (2)设抛物线上有一动点P从点B处出发沿抛物线向下运动,其纵坐标y1随时间t(t ≤0)的变化规律为y1=﹣2t.设点C是线段OP的中点,作DC⊥l于点D. ①点P运动的过程中,是否为定值,请说明理由; ②若在点P开始运动的同时,直线l也向下平行移动,且垂足Q的纵坐标y2随时间t的 变化规律为y2=1﹣3t,以OP为直径作⊙C,l与⊙C的交点为E、F,若EF=,求t 的值.

2.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B (3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S. (1)求二次函数y=﹣x2+bx+c的表达式; (2)若n=0,求S的最大值,并求此时t的值; (3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.

3.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组” (1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由. (2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y =ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式; (3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

《二次函数解析式的确定》说课稿

《二次函数解析式的确定》说课稿 王焕义 尊敬的各位、老师: 大家好!很高兴能有这样一个机会与大家一起学习、交流,希望大家多多指教!今天,我说课的课题是《专题复习之二次函数解析式的确定》 教材分析:求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容 通过教学,让学生掌握:(1)已知图象上任意三点坐标的二次函数解析式;(2)已知图象的顶点和另一点的坐标的二次函数解析式;(3)已知图象与x轴的两个交点和另一点的坐标的二次函数解析式;(4)会通过对简单现实情境的分析,确定二次函数的解析式。 教学目标:

能根据具体情况确定二次函数的解析式,在学习过程中发展学生的转化、化归思维方式。 教学重点难点 重点:求二次函数的函数关系式 难点:如何选择合理的求函数解析式的方法。 4、突破重难点办法: 通过做题总结归纳待定系数法、顶点式适用的题目 二、学生分析(说学情) 从认知状况来说,学生在此之前已经学习了用待定系数法确定一次函数的关系式,对求函数解析式已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于顶点式和两根式,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。 三、教法分析(说教法) 本节课主要采用师生合作的学习方式,引导学生运用类比的方式,动手解决问题。 四、教学设计(说过程) 一、导入 1、本节课一起来学习二次函数解析式的确定。二次函数的确定是历年中考的一个重要考点,更

是有些二次函数的中考压轴题后续问题得以解决的先决条件,因此,希望通过这节课的学习,每个同学都能熟练的掌握确定二次函数解析式的方法。 二、自主学习,探究新知 (一)二次函数解析式常见的几种形式 1. 二次函数解析式常见的形式有哪些?各自有何特点?一般式,顶点式,交点式, 2、每种解析式各有几个待定系数,各需几个条件? 设计意图:通过表格回顾二次函数表示方法,为探究如何确定函数解析式服务。 (二) 典例分析 例题: 已知一个二次函数的图像经过A(-1,0)B(3,0)C(1,-4)三点,求此二次函数的解析式。 (1)学生自主完成并集体交流。 (2)学生可能有三种设法: 设一般式、设交点式、顶点式。 (3)通过比较分析发现一般式适用面广,但解法较复杂;交点式与两根式解法简单,但需要特

二次函数——定值问题

专题九:二次函数之定值问题 坐标为定值 例题 1 :抛物线y=x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y 轴交于点C. (1)如图1,若OB=2OA=2OC ①求抛物线的解析式; ②若M 是第一象限抛物线上一点,若cos∠MAC=,求M 点坐标. (2)如图2,直线 E F∥x轴与抛物线相交于E、F两点,P为 E F下方抛物线上一点,且P(m,﹣2).若∠EPF=90°,则 E F所在直线的纵坐标是否为定值,请说明理由.

练习1 .如图1,抛物线y=(x﹣m)2的顶点A在x轴正半轴上,交y轴于 B 点,S△OAB=1. 1)求抛物线的解析式; (2)如图2,P 是第一象限内抛物线上对称轴右侧一点,过P 的直线L与抛物线有且只有一个公共点,L交抛物线对称轴于C点,连PB交对称轴于 D 点,若∠ BAO=∠ PCD,求证:AC=2AD; (3)如图3,以 A 为顶点作直角,直角边分别与抛物线交于M、N 两点,当直角∠ MAN绕A点旋转时,求证:MN 始终经过一个定点,并求出该定点的坐标.

线段之和为定值 例题 1 :如图,抛物线 y = x 2 + bx + c 交 x 轴于 A 、 B 两点,其中点 A 坐 在抛物线上且满足 ∠PAB= 2∠ACO.求点 P 的 坐标; 3)如图②,点 Q 为 x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ 、BQ 分别交抛物线的对称轴于点 M 、N .请问 DM+ DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由 . 2)如图①,连接 AC ,点 P 1)求抛物线的函数表达 式; C(0,-3) .

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二次函数解析式的确定

二次函数解析式的确定(5) 1、已知抛物线y=ax2经过点A(1,1).求这个函数的解析式; 2.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0), 求此二次函数的解析式. 3.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点, 求抛物线的解析式. 4.已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象经过(1,3),求函数解析式. 5.已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1. 求a、b、c,并写出函数解析式. 6.已知二次函数为x=4时有最小值 -3且它的图象与x轴交点的横坐标为1, 求此二次函数解析式. 7.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.

8.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式. 25求二次函数解析式.9.二次函数y=x2-mx+m-2的图象的顶点到x轴的距离为, 16 2的最小值为1,求m的值. 10.已知二次函数m - =6 y+ x x 11.已知抛物线y=ax2经过点A(2,1). (1)求这个函数的解析式; (2)写出抛物线上点A关于y轴的对称点B的坐标; (3)求△OAB的面积; 12.若抛物线沿y轴向上平移2个单位后,又沿x?轴向右平移2个单位,得到的抛物线的函数关系式为y=5(x-4)2+3,求原抛物线的函数关系式. 13.已知一次函数y=-2x+c与二次函数y=ax2+bx-4的图象都经过点A(1,-1),二次函数的对称轴直线是x=-1,请求出一次函数和二次函数的表达式. 14.直线y=2x+3与抛物线y=ax2交于A、B两点,已知点A的横坐标是3,求A、B两点 坐标及抛物线的函数关系式.

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

二次函数结合定值及等面积问题

二次函数结合定值及等 面积问题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

二次函数结合定值及等面积问题 1. 已知二次函数23 8-322+=x x y 的图像与x 轴交于A 、B 两点,A 在B 点的左边,与y 交于点C ,点P 在第一象限的抛物线上,且在对称轴右边, 4=ΔPAC S ,求点P 的坐标。 2.抛物线y=-x 2+bx+c 经过点A 、B 、C ,已知A (-1, 0),C (0,3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且PBC S ?=3,请求出此时点P 的坐标。 3.如图,已知直线AB :42++=k kx y 与抛物线22 1x y =交于A 、B 两点 (1)直线AB 总经过一个定点C ,请直接写出点C 的坐标 (2)当2 1-=k 时,在直线AB 下方的抛物线上求点P ,使5=ΔABP S 4.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线线交 于A 、C 两点,其中C 点的横坐标为2。 (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求△EAC 面积的最大值。 5.如图,抛物线的顶点为A (-3,-3),此抛物线交X 轴于O ,B 两点 (1) 求此抛物线的解析式 (2) 求△AOB 的面积 (3) 若抛物线上另有一点P 满足S ?POB =S ?AOB ,请求出P 点的坐标 O x y A B C B C O A y x P

(完整版)二次函数解析式的确定(10种).docx

二次函数解析式的确定 2 〈一〉三点式。 1,已知抛物线 y=ax 2+bx+c经过A(3,0),B(2 3,0),C(0,-3)三点,求抛物线的解析式。 2,已知抛物线 y=a(x-1) 2+4,经过点A(2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线 y=x 2-2ax+a 2+b顶点为A(2,1),求抛物线的解析式。 2,已知抛物线y=4(x+a) 2-2a的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与x 轴两个交点分别为( 3 ,0 ),(5,0), 求抛物线 y=(x-a)(x-b)的解析式。 2,已知抛物线线与x 轴两个交点( 4, 0 ),(1,0 )求抛物线 y= 1 a(x-2a)(x-b) 的解析式。2 〈四〉定点式。 1,在直角坐标系中,不论 a 取何值,抛物线y 1 x25 a x 2a 2 经过x轴上一定点Q, 22直线 y (a 2) x 2 经过点Q,求抛物线的解析式。

1

2,抛物线 y= x 2 +(2m-1)x-2m与x轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。3,抛物线 y=ax 2+ax-2过直线y=mx-2m+2上的定点A,求抛物线的解析式。 〈五〉平移式。 1,把抛物线 y= -2x 2向左平移 2 个单位长度,再向下平移 1 个单位长度,得到抛物线 y=a( x-h) 2 +k, 求此抛物线解析式。 2,抛物线y x2x 3 向上平移,使抛物线经过点C(0,2), 求抛物线的解析式 . 〈六〉距离式。 1,抛物线 y=ax 2+4ax+1(a ﹥ 0) 与 x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线 y=m x 2+3mx-4m(m﹥0)与x轴交于A、B两点,与轴交于C点,且AB=BC,求此抛物线的解析式。 〈七〉对称轴式。 1、抛物线 y=x 2 -2x+(m 2-4m+4) 与 x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距

二次函数结合定值及等面积问题

二次函数结合定值及等面积问题 1. 已知二次函数23 8 -322+= x x y 的图像与x 轴交于A 、B 两点,A 在B 点的左边,与y 交于点C ,点P 在第一象限的抛物线上,且在对称轴右边,4=ΔPAC S ,求点P 的坐标。 y x

2.抛物线y=-x 2 +bx+c 经过点A 、B 、C ,已知A (-1,0),C (0,3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且PBC S =3,请求出此时点P 的坐标。

3.如图,已知直线AB :42++=k kx y 与抛物线2 2 1x y = 交于A 、B 两点. (1)直线AB 总经过一个定点C ,请直接写出点C 的坐标 (2)当2 1 -=k 时,在直线AB 下方的抛物线上求点P ,使5=ΔABP S

4.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。 (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求△EAC 面积的最大值。

5.如图,抛物线的顶点为A(-3,-3),此抛物线交X轴于O,B两点 (1)求此抛物线的解析式 (2)求△AOB的面积 (3)若抛物线上另有一点P满足S?POB=S?AOB,请求出P点的坐标

6.已知二次函数c bx x y ++=2,其图像抛物线交x 轴的于点A (1,0)、B (3,0),交y 轴于点C. (1)求此二次函数关系式; (2)试问抛物线上是否存在点P(不与点B 重合),使得2BCP ABC S S ??=?若存在,求出P 点坐标;若不存在,请通过计算说明理由. (第26题图)

二次函数距离与定值

定值与距离问题探究 主讲——周文春 【知识点拨】 1、 点与点距离 2、 点与直线距离 3、 讲线段与图形问题转化为距离问题 4、 熟记各种演化公式 【例1 二次函数与直线、距离、面积问题】 如图,已知直线与抛物线交于两点. (1)求两点的坐标; (2)求线段的垂直平分线的解析式; (3)如图2,取与线段等长的一根橡皮筋,端点分别固定在两处.用铅笔拉着这根橡皮筋使笔尖在直线上方的抛物线上移动,动点将与构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时 12y x =- 21 64 y x =-+A B ,A B ,AB AB A B ,P AB P A B ,P 图2 图1

【变式练习.成都】 如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC 的面积S △ABC =15,抛物线y=ax 2+bx+c (a≠0)经过A 、B 、C 三点. (1)求此抛物线的函数表达式; (2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为?若存在, 求出点M 的坐标;若不存在,请说明理由. 【例2二次函数中的线段面积最值问题】 如图,抛物线与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。交Y 轴于C (1)求该抛物线的解析式与△ABC 的面积。 (2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标。若没有,请说明理由 (3)若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂 直,交BC 于F ,设E 点横坐标为x.EF 的长度为L ,求L 关于X 的函数关系式?关写 出X 的取值范围?当E 运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标? (4)在(3)的情况下直线BC 与抛物线的对称轴交于点H 。当E 点运动到什么位置时,以点E 、F 、H 、D 为顶点的四边形为平行四边形? (5)在(4)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大? c bx x y ++-= 2

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

确定二次函数的解析式

§5.7 确定二次函数的解析式 高密市姜庄中学 曹桂芹 一、教学目标: 1、通过确定二次函数解析式的过程,让学生体会求二次函数表达式的思想方法,培养学生数学应用意识。 2、会利用待定系数法求二次函数的解析式。 二、教学重点: 能够利用待定系数法求二次函数的解析式. 三、教学难点: 会根据已知条件,选择恰当的方法确定二次函数解析式 四、教学过程: (一)知识回顾: 二次函数的两种形式 两种函数形式:{22(()(y ax bx c y a x h k =++=-+一般式) 顶点式) (二)探索新知: 例1:已知抛物线2y ax bx c =++过(-1,0),(3,0),(0,3-2 )三点,求此抛物线的解析式。 分析:要求二次函数解析式,已知三个点的坐标,可是一般式,列出一个三元一次方程组求 出a 、b 、c 的值即可。 教法:教师在黑板上完整的完成这个例题的解答过程,目的是为学生做好示范。 (三)练习: 1 、二次函数的图像如图所示,这个函数的解析式为( ) 2222:-23 -2-3 :--23 :-23 A y x x B y x x C y x x D y x x =++==+=--: 2、二次函数2y x bx c =++的图像经过A(-2,-3)与B(2,5). 求:①这个二次函数的解析式 ②这个二次函数图像对称轴方程。 例2:二次函数的图像的顶点坐标是(-1,-6),并且图像经过点(2,3),求这个函数的解 析式。 分析:此题已知顶点坐标,可设顶点式,再代入求值即可。 教法:由学生上黑板板演,对照学生的解答过程,教师再补充完善,让学生清楚此类题目的 解答方法。 (四)对应练习: 1、已知二次函数y ax bx c =++2的图象的顶点为(1,-92 ),且经过点

二次函数几种解析式的求法

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2 -3x+5. 这种方法是将坐标代入y=ax 2 +bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2+bx+c. 二、交点型 例2 已知抛物线y=-2x 2 +8x-9的顶点为A ,若二次函数y=ax 2 +bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2 +8x-9的 顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y= x x 23 212 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2 +k.在本题中可设y=a(x+1)2 +4.

再将点(1,2)代入求得a=-21 ∴y=-, 4)1(21 2++x 即y=-.27 2 12+ -x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数 ,122 +-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(2 2 --=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2 +bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d= a ?就本题而言,可由对称性求得两交点坐标为A (1,0),B (3,0)。再应用交点式或顶点式求得解析式为y=-2x 2 +8x-6. 六、识图型

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数中考压轴题(定值问题)解析精选

二次函数中考压轴题(定值问题)解析精选 【例1】(2013?南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2) 两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0. (1)求b的值; (2)求证:点(y1,y2)在反比例函数的图象上; (3)求证:x1?OB+y2?OA=0. 考点:二次函数综合题 专题:压轴题. 分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值; (2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1?y2=64,即点(y1,y2)在反比例函数的图象上; (3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2) 得y1?y2=64,又易得x1?x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明 △AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1?OB+y2?OA=0. 解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣, ∴△OCD的面积S=(﹣)?b=﹣. ∵kS+32=0, ∴k(﹣)+32=0,

求二次函数解析式的几种方法

沁乐教育沁心学习乐在其中 2015年秋季九年级数学辅导资料第二讲函数图像性质及应用 学校:姓名:

二次函数的图象与基本性质 (一)、知识点回顾 【知识点一:二次函数的基本性质】 【知识点二:抛物线的图像与a、b、c关系】 (1)a决定抛物线的开口方向:a>0,开口向________ ;a<0,开口向________ (2)c决定抛物线与________的位置:c>0,图像与y轴的交点在___________;

c=0,图像与y 轴的交点在___________;c<0,图像与y 轴的交点在___________; (3)a ,b 决定抛物线对称轴的位置,我们总结简称为:___________; (4)△=b 2-4ac 决定抛物线与________交点情况: △=b 2-4ac ?? ? ??<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000 【知识点三:二次函数的平移】 设0,0>>n m ,将二次函数2 ax y =向右平移m 个单位得到___________;向左平移m 个 单位得到___________;向上平移n 个单位得到___________;向下平移n 个单位得到___________。简单总结为___________,___________。 (注意:要用以上方法对二次函数图象进行平移,要先化成顶点式再操作) 【知识点四:二次函数与一元二次方程的关系】 二次函数)0(2 ≠++=a c bx ax y ,当0=y 时,即变为一元二次方程 )0(02≠=++a c bx ax ,从图象上来说,二次函数)0(2≠++=a c bx ax y 的图象与x 轴的 交点的横坐标x 的值就是方程)0(02 ≠=++a c bx ax 的根。 【知识点五:二次函数解析式的求法】 (1) 知抛物线三点,可以选用一般式:c bx ax y ++=2,把三点代入表达式列三元一次 方程组求解; (2) 知抛物线顶点或对称轴、最大(小)值可选用顶点式:k h x a y +-=2 )(;其中抛 物线顶点是),(k h ; (3) 知抛物线与x 轴的交点坐标为)0,(),0,(21x x 可选用交点式:

二次函数结合定值及等面积问题

二次函数结合定值及等面积问题 1. 已知二次函数238-322+=x x y 的图像与x 轴交于A 、B 两点,A 在B 点的左边,与y 交于点C ,点P 在第一象限的抛物线上,且在对称轴右边, 4=ΔPAC S ,求点P 的坐标。 2.抛物线y=-x 2+bx+c 经过点A 、B 、C ,已知A (-1,0), C (0,3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且PBC S ?=3,请求出此时点P 的坐标。 3.如图,已知直线AB :42++=k kx y 与抛物线221x y =交于A 、B 两点. (1)直线AB 总经过一个定点C ,请直接写出点C 的坐标 (2)当2 1-=k 时,在直线AB 下方的抛物线上求点P ,使ΔABP 4.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交 于A 、C 两点,其中C 点的横坐标为2。 (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求△EAC 面积的最大值。 5.如图,抛物线的顶点为A (-3,-3),此抛物线交X 轴于O ,B 两点 (1) 求此抛物线的解析式 (2) 求△AOB 的面积 (3) 若抛物线上另有一点P 满足,请求出P 点的坐标 O x y A B C B C O A y x P

6.已知二次函数c bx x y ++=2,其图像抛物线交x 轴的于点A (1,0)、B (3,0),交y 轴于点C. (1)求此二次函数关系式; (2)试问抛物线上是否存在点P(不与点B 重合),使得2BCP ABC S S ??=?若存在,求出P 点坐标;若不存在,请通过计算说明理由.

相关文档
最新文档