超顺磁性

超顺磁性
超顺磁性

基本定义

超顺磁性(superparamagnetism):如果磁性材料是一单畴颗粒的集合体,对于每一个颗粒而言,由于磁性原子或离子之间的交换作用很强,磁矩之间将平行取向,而且磁矩取向在由磁晶各向异性所决定的易磁化方向上,但是颗粒与颗粒之间由于易磁化方向不同,磁矩的取向也就不同。现在,如果进一步减小颗粒的尺寸即体积,因为总的磁晶各向异性能正比于K1V,热扰动能正比于kT(K1是磁晶各向异性常数,V是颗粒体积,k是玻尔兹曼常数,T是样品的绝对温度),颗粒体积减小到某一数值时,热扰动能将与总的磁晶各向异性能相当,这样,颗粒内的磁矩方向就可能随着时间的推移,整体保持平行地在一个易磁化方向和另一个易磁化方向之间反复变化。从单畴颗粒集合体看,不同颗粒的磁矩取向每时每刻都在变换方向,这种磁性的特点和正常顺磁性的情况很相似,但是也不尽相同。因为在正常顺磁体中,每个原子或离子的磁矩只有几个玻尔磁子,但是对于直径5nm的特定球形颗粒集合体而言,每个颗粒可能包含了5000个以上的原子,颗粒的总磁矩有可能大于10000个玻尔磁子。所以把单畴颗粒集合体的这种磁性称为超顺磁性[1]。

编辑本段特点

介绍

超顺磁性行为有两个最重要的特点:一是如果以磁化强度M为纵坐标,以H/T为横坐标作图(H是所施加的磁场强度,T是绝对温度),则在单畴颗粒集合体出现超顺磁性的温度范围内,分别在不同的温度下测量其磁化曲线,这些磁化曲线必定是重合在一起的。二是不会出现磁滞,即集合体的剩磁和矫顽力都为零。

重要性

对于磁性颗粒集合体来说,有两个物理量非常重要:一是出现超顺磁性的临界尺寸(直径)Dp。如果颗粒系统的温度保持恒定,则只有当颗粒尺寸D≤Dp才有可能呈现超顺磁性。该直径小于单畴颗粒的临界直径。二是截止温度TB,对于足够小的磁性颗粒,存在一特征温度TB,当温度T<TB时,颗粒呈现强磁性(铁磁性或亚铁磁性);T≥TB时,颗粒呈现超顺磁性。

超顺磁的必要条件有两个:一个是测MT曲线的零场冷(ZFC)和场冷(FC)曲线,两曲线会分叉,在ZFC曲线有一个峰值,对应超顺磁的冻结温度,并且该峰值会随着测量的频率变化而发生移动。这是个金标准;另一个是测量MH进行测量的话,没有磁滞和娇顽力,

并且磁化曲线不是饱和的。

要注意一点,即使是超顺磁态,是指的某一个温度区间内的状态。所以,从你的MH上来看,你的两个磁化曲线虽然都没有磁滞,但明显的已经达到饱和,所以在此温度下不是超顺磁态,是明显的铁磁状态。但并不能说你的颗粒在其它温度下不是超顺磁。所以,楼主应当先测量MT的ZFC和FC,先看是否满足第一个条件。如果满足的话,就是超顺磁,并确定超顺磁的冻结温度和颗粒的居里温度。在冻结温度和居里温度之间的才是超顺磁态。

所以,你的这个或者是铁磁的;或者是超顺磁颗粒,但是在低于冻结温度以下的MH测量,只有这两种可能性的。

你需要测MT的ZFC和FC,否则单纯的上面图不能说明是不是超顺磁的。

磁性塑料的综述

1磁性塑料的介绍~~~~~~~ 磁性塑料是高分子磁性材料中的一种。高分子磁性材料是一种具有记录声、光、电等信息并能重新释放的功能高分子材料,是现代科学技术的重要基础材料之一。 有机高分子磁性材料作为一种新型功能材料,在超高频装置、高密度存储材料、吸波材料和微电子等需要轻质磁性材料的领域具有很好的应用前景。 磁性高分子材料的出现大大改善了烧结磁体的这些缺点,它具有重量轻、有柔性、加工温度不高、结构便于分子设计、透明、绝缘、可与生物体系和高分子共容、成本低等优点,但是磁性高分子材料的磁性能较低,如何提高其磁性能成为磁性高分子材料研究的主要热点。磁性高分子材料广泛应用于冰箱、冷藏柜、冷藏车的门封磁条,标识教材,广告宣传,电子工业以及生物医学等领域,是一种重要的功能材料 特点:有机磁性材料的优点:a、结构种类的多样性;b、可用化学方法合成;c、可得 到磁性能与机械、光、电等方面的综合性能;d、磁损耗小、质轻、柔韧性好、加工性能优越;用于超高频装置、高密度存储材料、吸波材料、微电子工业和宇航等需要轻质磁性材料的领域 2磁性塑料的分类及举例 高分子磁性材料分为结构型和复合型两种:结构型磁性材料是指高分子材料本身具有强性;复合型磁性材料是指以塑料或橡胶为黏结剂与磁粉混合黏结加工而制成的磁性体。 结构型磁性材料:结构型高分子磁性材料的种类主要有:高自旋多重度高分子磁性材料;自由基的高分子磁性材料;热解聚丙烯腈磁性材料;含富勒烯的高分子磁性材料;含金属的高分子磁性材料;多功能化高分子磁性材料等. 复合型磁性材料:复合型磁性塑料是指在塑料中添加磁粉和其他助剂,塑料起黏结剂作用。磁性塑料根据磁性填料的不同可以分为铁氧体类、稀土类和纳米晶磁类。根据不同方向磁性能的差异,又可以分为各向同性和各向异性磁性塑料。 3磁性材料的应用 3.1磁性橡胶 磁性橡胶铁氧体填充橡胶永磁体曾大量用于制造冷藏车、电冰箱、电冰柜门的垫圈。北京化工研究院曾研制出专用于风扇电机的磁性橡胶,应用于计算机散热风扇。日本铁道综合技术研究所开发出利用磁性橡胶的磁性复合型减振材料。德国大陆轮胎公司将磁粉混入轮胎侧胶料形成磁性胶条,再通过轮胎胎侧扭力测量装置采用传感器从旋转轮胎胎侧的磁性胶条上采集信号,以获取大量有关汽车和路面之间力的有用数据,有利于驾驶员在不同路况下对车的控制。 3.2磁性塑料 磁性塑料又称塑料磁铁,兼有磁性材料和塑料的特性。根据填充磁粉类型可分为铁氧体类磁性塑料和稀土类磁性塑料。由于磁性塑料机械加工性能好、易成型,且尺寸精度高、韧性好、重量轻、价格便宜、易批量生产,因此对电磁设备的小型化、轻量化、精密化和高性能化有重大意义。它可以记录声、光、电信息,因而广泛用于电子电气、仪器仪表、通讯、日用品等诸多领域,如制造彩色显像管会聚组件、微电机磁钢、汽车仪器仪表、分电器垫片和气动元件磁环等。 3.3医学、诊断学领域的应用 磁性高分子微球能够迅速响应外加磁场的变化,并可通过共聚赋予其表面多种功能基团(如

磁性高分子材料的制备及应用

磁性高分子材料的制备及应用 摘要 磁性高分子材料分为复合型和结构型两类,分别阐述了复合型和结构型磁性高分子材料的研究和应用现状,强调了磁性高分子材料的发展意义,本文旨在探讨有关高分子磁性材料制备、性质及应用的最新研究成果。并对其理论和应用领域的开拓前景进行了展望。 关键字磁性高分子功能材料制备方法应用 前言 磁性材料是古老而用途十分广泛的功能材料,最早人们使用的磁性材料大多由天然磁石制成的,后来开始利用磁铁矿烧结成磁性材料,其中以含铁族和稀土元素为主,由于其资源丰富、价格低廉、磁性能好等原因,目前仍在工业电器以及电动设备中得到广泛应用,但是因其密度大、脆硬、变形大、难以制成精密制品等缺点,所以对高分子磁性材料的研究成为一个重要方向。近来对结构型磁性高分子材料的研究取得了进展,合成了许多有机磁性高分子材料磁性聚合物微球自70年代中后期以来便受到了国内外学者的普遍关注,有关磁性聚合物微球的制备和应用的研究论文逐年增加,国外学者针对磁性聚合物微球的制备及在生物医药工程靶向药物临床医学等领域的应用也申请了不少的专利,有些已经商品化。 磁性高分子材料的分类 磁性高分子材料通常可分为复合型和结构型两种。复合型磁性高分子材料是已实现商品化生产的重要磁性高分子材料,能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球磁性聚合物薄膜等。复合型磁性高分子材料中的磁性无机物主要是铁氧体类磁粉和稀土类磁粉。稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂主要用于柔性复合磁体的制造,但与塑料相比,一般成型加工困难。热固性粘结剂一般用环氧树脂、酚醛树脂。磁性高分子微球所采用的高分子材料主要是蛋白质、生物多糖、脂类等生物高分子和人工合成的接有各式各样功能基团的合成高分子。目前国内外研究较多的是以核径迹蚀刻膜为基板的纳米磁性材料,它实际上是采用模板法,以聚碳酸酷核径迹蚀刻膜为基体,在其中电沉积磁性粒子,利用其规整膜孔来控制得到的有序纳米磁性材料。 磁性高分子材料的研究现状 1复合型磁性高分子材料 复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型磁性高分子材料根据磁性填料的不同可以分为:铁氧体类、稀土类和纳米晶磁粒类。根据不同方向上的磁性能的差异,又可以分为各向同性和各向异性磁性高分子材料。能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球、

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

超顺磁性

基本定义 超顺磁性(superparamagnetism):如果磁性材料是一单畴颗粒的集合体,对于每一个颗粒而言,由于磁性原子或离子之间的交换作用很强,磁矩之间将平行取向,而且磁矩取向在由磁晶各向异性所决定的易磁化方向上,但是颗粒与颗粒之间由于易磁化方向不同,磁矩的取向也就不同。现在,如果进一步减小颗粒的尺寸即体积,因为总的磁晶各向异性能正比于K1V,热扰动能正比于kT(K1是磁晶各向异性常数,V是颗粒体积,k是玻尔兹曼常数,T是样品的绝对温度),颗粒体积减小到某一数值时,热扰动能将与总的磁晶各向异性能相当,这样,颗粒内的磁矩方向就可能随着时间的推移,整体保持平行地在一个易磁化方向和另一个易磁化方向之间反复变化。从单畴颗粒集合体看,不同颗粒的磁矩取向每时每刻都在变换方向,这种磁性的特点和正常顺磁性的情况很相似,但是也不尽相同。因为在正常顺磁体中,每个原子或离子的磁矩只有几个玻尔磁子,但是对于直径5nm的特定球形颗粒集合体而言,每个颗粒可能包含了5000个以上的原子,颗粒的总磁矩有可能大于10000个玻尔磁子。所以把单畴颗粒集合体的这种磁性称为超顺磁性[1]。 编辑本段特点 介绍 超顺磁性行为有两个最重要的特点:一是如果以磁化强度M为纵坐标,以H/T为横坐标作图(H是所施加的磁场强度,T是绝对温度),则在单畴颗粒集合体出现超顺磁性的温度范围内,分别在不同的温度下测量其磁化曲线,这些磁化曲线必定是重合在一起的。二是不会出现磁滞,即集合体的剩磁和矫顽力都为零。 重要性 对于磁性颗粒集合体来说,有两个物理量非常重要:一是出现超顺磁性的临界尺寸(直径)Dp。如果颗粒系统的温度保持恒定,则只有当颗粒尺寸D≤Dp才有可能呈现超顺磁性。该直径小于单畴颗粒的临界直径。二是截止温度TB,对于足够小的磁性颗粒,存在一特征温度TB,当温度T<TB时,颗粒呈现强磁性(铁磁性或亚铁磁性);T≥TB时,颗粒呈现超顺磁性。 超顺磁的必要条件有两个:一个是测MT曲线的零场冷(ZFC)和场冷(FC)曲线,两曲线会分叉,在ZFC曲线有一个峰值,对应超顺磁的冻结温度,并且该峰值会随着测量的频率变化而发生移动。这是个金标准;另一个是测量MH进行测量的话,没有磁滞和娇顽力,

关于磁性纳米材料的研究应用

关于磁性纳米材料的研究应用 文献综述 姓名:于辉 学号:2013155048 学院:理学院 专业:材料化学 年级:2013级

关于磁性纳米材料的研究应用 【前言】 磁性纳米材料的应用可谓涉及在机械,电子,光学,磁学,化学和生物学领域的应用前景,纳米科学技术的诞生将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题。 下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品[1]。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 磁性纳米材料由于其独特的磁学性能、小尺寸效应,在化学设计与合成、表面功能化方法,及其在核磁共振成像、磁控治疗、磁热疗和生物分离等领域都有应用[2]。

【磁性纳米材料的发展历程和现状】 (一)关于磁性纳米材料 纳米材料又称纳米结构材料,是指在三维空间中至少有一维处于纳米尺度范围内的材料(1-100nm),或由它们作为基本单元构成的材料,是尺寸介于原子、分子与宏观物体之间的介观体系,因此,纳米磁性材料的特殊磁性可以说是属于纳米磁性,而纳米磁性材料和纳米磁性又分别是纳米科学技术和纳米物性的一个组成部分。 (二)关于颗粒磁性的研究 颗粒的磁性,根据磁畴理论与实验表明:当磁性微粒处于单畴尺寸时,矫顽力将呈现极大值[3]。铁磁材料,在应用上,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关,若尺寸进一步减小,颗粒将在一定的温度范围内将呈现出超顺磁性。利用微粒的超顺磁性,提出了磁宏观量子隧道效应的概念,并研制成了磁性液体。非晶态磁性材料的诞生为磁性材料增添了新的一页,也为纳米微晶磁性材料(纳米微晶软磁材料、纳米复合永磁材料)的问世铺平了道路。(三)磁性纳米材料的特点和制备方法[4] 磁性纳米材料有量子尺寸效应、小尺寸效应、宏观量子隧道效应的特点。 制备方法: <1>磁流体的制备方法 物理法:研磨法、热分解法、超声波法。 化学法:化学沉淀法、水热法。 <2>磁性微粒的制备方法 分散法、单体聚合法。 <3>纳米磁性微晶的制备方法 非晶化法、深度塑性变形法。 <4>纳米磁性结构复合材料的制备方法 溶胶-凝胶法、化学共沉淀法、磁控溅射法和激光脉冲沉积法。 (四)磁性纳米材料的应用范围[4] 磁记录方面的应用、纳米永磁材料方面的应用、纳米软磁材料方面的应用、纳米吸波材料领域的应用、生物医学领域的应用、金属有机高分子磁性材料方面的应用。

超顺磁性纳米颗粒治疗肿瘤的应用进展_李慧

中国组织工程研究与临床康复 第13卷 第51期 2009–12–17出版 Journal of Clinical Rehabilitative Tissue Engineering Research December 17, 2009 Vol.13, No.51 ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH 101331 Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China; 2 Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu Province, China Li Hui ★, Studying for master’s degree, Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China lh99beautiful@ https://www.360docs.net/doc/2c18735431.html, Correspondence to: Wang Da-xin, Doctor, Professor, Chief physician, Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China daxinw2002@ https://www.360docs.net/doc/2c18735431.html, Received: 2009-10-11 Accepted: 2009-11-21 超顺磁性纳米颗粒治疗肿瘤的应用进展★ 李 慧1,王大新1,顾 健2 Application of superparamagnetic nanoparticles for cancer treatment Li Hui 1, Wang Da-xin 1, Gu Jian 2 Abstract BACKGROUND: In recent years, nanoparticles has been rapidly developing in tumor hyperthermia, genophore research, and targeted drug therapy, particularly nanoparticle containing drug delivery systems will become another breach in tumor therapy. OBJECTIVE: To summarize the application and mechanism of superparamagnetic nanoparticles for cancer treatment in the medical field. METHODS: A computer-based online search was conducted in Medline for English language publications containing the key words of “superparamagnetic, nanoparticles, targeting” from January 2000 to October 2009. Relevant articles were also searched from CNKI with the same key words in Chinese from January 2005 to October 2009. RESULTS AND CONCLUSION: A total of 123 articles about targeting role of magnetic nanoparticles were included, and there were 24 in Chinese and 108 in English. Articles published earlier, duplicated, and similarly were excluded, and 30 references were finally included. Superparamagnetic nanoparticles characterized by targeting role under external magnetic field, and crystal of ferroso-ferric oxide did not has toxicity to cells. As a gene carrier and drug carrier, superparamagnetic nanoparticles were widely used in medical research and they also provided novel evidences for cancer treatment. By an external magnetic field, how to avoid a comprehensive system of phagocytic endothelial phagocytosis and prevent the course of treatment such as drug-induced thrombus is still inadequate. Li H, Wang DX, Gu J.Application of superparamagnetic nanoparticles for cancer treatment. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2009;13(51):10133-10136. [https://www.360docs.net/doc/2c18735431.html, https://www.360docs.net/doc/2c18735431.html,] 摘要 背景:近年来纳米颗粒在肿瘤热疗、基因载体研究、靶向药物治疗等方面得到迅速发展,特别是纳米颗粒载药系统已成为肿瘤治疗的又一突破口。 目的:对超顺磁性纳米颗粒在医学领域特别是肿瘤治疗方面的应用及其机制进行概述。 方法:应用计算机检索Medline 数据库(2000-01/2009-10),以“Superparamagnetic ,Nanoparticles ,Targeting ”为检索词;应用计算机检索中国期刊网(CNKI)(2005-01/2009-10),万方数据库(2005-01/2009-10),以“磁性、纳米颗粒、靶向”为检索词。 结果与结论:共收集123篇关于磁性纳米颗粒靶向作用的文献,中文24篇,英文108篇。排除发表时间较早、重复及类似研究,纳入30篇符合标准的文献。超顺磁性纳米颗粒是指具有磁响应性的纳米级粒子,其直径一般小于30 nm ,当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超磁性状态。超顺磁性纳米颗粒除了通过血液循环进入炎症肿瘤相关部位外,还可被广泛存在于肝脏、脾脏、淋巴结的网状细胞-内皮吞噬系统(reticulo -eneothelial system ,RES)的细胞所识别。研究发现经过表面修饰的载药纳米颗粒,可跨血脑屏障转运,其机制可能与血脑屏障的连接结构——毛细血管,其内皮细胞通过低密度脂蛋白介导的胞吞作用有关。目前合成生物相容性磁性纳米颗粒的方法有很多,但最常用的合成生物相容Fe 3O 4磁性纳米颗粒的方法为共沉淀法。超顺磁性纳米颗粒在外加磁场的作用下可具有靶向性,且四氧化三铁的晶体对细胞无毒,其作为基因载体及药物载体被广泛应用于医学研究,为肿瘤的治疗开辟了新的途径。但对于外置磁场,如何全面的避开内皮吞噬系统的吞噬,防止治疗过程中药物性血栓的生成等尚存在不足。 关键词:超顺磁性;四氧化三铁;纳米颗粒;靶向;生物材料 doi:10.3969/j.issn.1673-8225.2009.51.028 李慧,王大新,顾健.超顺磁性纳米颗粒治疗肿瘤的应用进展[J].中国组织工程研究与临床康复,2009,13(51):10133-10136. [https://www.360docs.net/doc/2c18735431.html, https://www.360docs.net/doc/2c18735431.html,] 综 述

磁体与磁场-练习

《磁体与磁场》专项练习 1.磁体上 叫做磁极,一个磁体具有 个磁极,它们分别是 极和 极。 2.把条形磁铁从中间断为两段,那么这两个断面再靠近时, 将 ;如图将喇叭上的圆形磁铁截断后,再让原 断处相对,两半磁铁之间将 (选填“相互吸引” 或“相互排斥”或“不发生相互作用”)。 3.具有软磁性、硬磁性或其它电磁特性的材料统称为磁性材料,磁性材料在现代生活 和科学技术中得到广泛应用,请你举两个例子(1) (2) 。 4.如图所示,磁铁吸住两根铁钉的一端, 那么这两根铁钉的另一端将 ( ) A .互相吸引,如图甲 B .互相排斥,如图乙 C .既不吸引也不排斥,如图丙 D .以上三种情况都有可能 5.两根缝衣针甲和乙,当把甲针用细线悬挂后,再用乙针尖端接近甲针尖端时,发现 甲针尖端向乙针尖端靠拢,由这个现象可以判断 ( ) A .甲针有磁性 B .乙针有磁性 C .两针都有磁性 D .两针中至少有一针有磁性 6.甲、乙两个磁极之间有一个小磁针,小磁针静止时的指向如图所示。那么( ) A .甲、乙都是N 极 B .甲、乙都是S 极 C .甲是N 极,乙是S 极 D .甲是S 极,乙是N 极 7.小明用水平放置的一根条形磁针的一端吸起一根较小的铁钉,如图所示,若他用一 根同样的条形磁铁的S 极与原来的磁铁N 极靠近合并时,将看到的现象是 ( ) A .铁钉的尖端被吸向右端磁铁 B .铁钉将落下 C .铁钉的尖端被向左端磁铁 D .铁钉被吸得更牢 8.如图,在弹簧测力计下端吊一块条形磁铁,将弹簧测力计 水平向右移动时,弹簧测力计的示数将 ( ) A .逐渐变大 B .逐渐变小 C .先变小后变大 D .先变大后变小 9.有一条形铁块,上面的标记已模糊不清,你能用两种方法判断它是否具有磁性吗试 试看。 甲 乙 甲 乙

纳米结构高分子材料综述

纳米结构高分子材料的制备、表征、应用前景 花生 (湖南工程学院化学化工学院湖南湘潭 411104) 摘要:纳米结构高分子材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料。本文综述了纳米结构高分子材料的结构、性能和表征技术,并对其 应用进行了讨论。 关键字:纳米结构高分子材料插层复合溶胶-凝胶纳米改性 Preparation ,Characterization, Application of Nano-structural Polymer Materials huasheng (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering,Xiangtan Hunan 411104,China ) Abstract:Nano-structural polymer materials are a class of composite materials which are Compound from polymer and nano-materials. This article introduces nano-structured polymer materials as follow: structure , properties , characterization techniques and its applications . Key word:Nano-structural polymer materials intercalation solution-gel modification of polymer 纳米结构聚合物材料由于具有独特的性能而在机械、光、电、 磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方 面具有广阔的应用前景,近年来掀起了对纳米结构聚合物材料研究的 热潮。各国学者分别在化学分子设计、结构分析、组装方法和应用等 方面进行了广泛的研究。我国的科学工作者也对其开展了许多卓有成 效的工作。关于纳米结构超薄膜的综述文献已有很多,本文主要就

磁体磁场知识点

磁体磁场知识点 一、认识磁体 1.磁性:物体具有吸引_____、_____、______等物质的性质,就说此物体具有磁性 2.磁体:有磁性的物体叫做________。 磁体可分为____ ___磁体和__ ___磁体。 3.磁极:磁体上___________的部分叫做磁极。 注:任何磁体都有个磁极,一个叫______,也叫极;一个叫_______,也叫极。磁体具有指向_________的性质。__________就是根据磁体的指向性原理工作的。 南极(S极):。北极(N极):。 4.磁极之间的作用规律:同名磁极互相_______,异名磁极相互________. 5.磁化:______________________________________________________________. 磁化后不能保留磁性的物质叫做_______磁性物质,磁化后能够保留磁性的物质叫做___磁性物质。我们常用_____制造永磁体。 二、用小磁针探究磁体周围的磁场 1.磁场:是一种______、_______的特殊物质,它是_____存在的。 磁体间的相互作用是通过传递的。 磁场的基本性质 ....就是对放入其中的磁体产生磁的作用。 2.磁场的基本性质:磁场对放入其中的______会产生______的作用。 磁场具有方向性,物理学中规定,小磁针静止后,小磁针极的指向为点的磁场方向。 3.磁场的方向:规定小磁针______时,_____极的指向就是该点的磁场方向。 ▲活动:用小磁针探究磁体周围的磁场 现象:在磁体周围不同的位置放上很多小磁针,不同位置小磁针的指向不同 说明:磁场中不同位置的磁场方向是________(填“相同”或“不同”) 【我们怎样知道磁体周围更多点的磁场方向?】 ▲活动:用铁屑探究磁体周围的磁场 现象:用铁屑代替小磁针探究条形磁体(蹄形磁体、同名磁极、异名磁极间)的磁场。 归纳。引入磁感线:形象地描述空间磁场分布和方向的曲线。 1.磁感线的方向:在磁体外部,磁感线从磁体_____极出发回到磁体_____极。 2.磁场越强的地方,磁感线分布越密集,磁感线上任意一点的切线方向表示该点的____方向.活动九:用磁感线描述条形磁体、蹄形磁体、同名磁极和异名磁极间的磁场。 (三)地磁场:地球本身是一个巨大的磁体, 地球周围空间存在的磁场叫做______场. 地磁北极在地理____极附近,地理南极在地磁_____极附近 阅读:地磁两极和地理两极并不重合(磁偏角);我国宋代学者是最早发现磁偏角存在的人

高分子有机磁性材料

高分子有机磁性材料 1 引言 磁性材料是一簇新兴的基础功能材料。虽然早在3000多年前我国就已发现磁石相互吸引和磁石吸铁的现象, 并在世界上最先发明用磁石作为指示方向和校正时间的应用, 在《韩非子》和东汉王充著的《论衡》两书中所提到的“司南”就是指此, 但毕竟只是单一地应用了天然的磁性材料。人类注意于磁性材料的性能特点、制造、应用等的研究、开发的发展历史尚不到100年时间。经过近百年的发展, 磁性材料已经形成了一个庞大的家族,按材料的磁特性来划分, 有软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来划分, 有合金磁性材料, 铁氧体磁性材料, 分类情况如下: 上述材料尽管种类繁多, 庞杂交叉, 但都属于无机物质的磁性材料或以无机物质为主的混合物质磁性材料。 近年来, 由于一种全新的磁性材料的面世, 使磁性材料家族喜添新成员, 这就是高分子有机磁性材料,其独特之处在于它属于纯有机物质的磁性材料。过去

一般认为, 有机高分子化合物是难于具有磁性的, 因此本身具有磁性的有机高分子化合物的出现, 就是高分子材料研究领域的一个重大突破。有机高分子磁性材料的发现被国内外专家认为是80年代末科学技术领域最重要的成果之一, 它的发现在理论和应用上可与固体超导和有机超导相提并论。有可能在磁性材料领域产生一系列新技术。 2高分子有机磁性材料的主要性能特点 由于高分子有机磁性材料既属于高分子有机材料, 又属于磁性材料, 对这类材料的研究属于交叉科学,人们对这类新型材料的研究和认识尚处于起步阶段,因此尽管专家们已对其进行了多方面的测量、试验和分析、研究, 但对其特性的认识仍很不系统、很不准确、很不全面。从现已了解到的一些测试数据和分析情况可以初步看出其主要的性能特点: (1) 该材料是采用与过去所有磁性材料的制备方法完全不同的高分子化工工艺制成的高分子有机物质,是高分子有机物再加上二茂铁的络合物, 分子量高达数千。该类材料和元件制备的主要工艺流程如图1。 有机物的主要构成元素是碳、氢、氮,结构和化学性能十分稳定。将磁粉加工

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

磁性纳米材料的研究进展

磁性纳米材料的研究进展 Progress of magnetic nanoparticles 李恒谦﹡贾雪珂李艳周康佳 (合肥工业大学,安徽宣城) (Hefei University of Technology, Xuancheng, Anhui, China) 摘要:纳米技术是近年来发展起来的一个覆盖面极广、多学科交叉的科学领域。而磁性纳米材料因其优异的磁学性能,也逐渐发挥出越来越大的作用。随着科学工作者在制备、应用领域的拓展逐渐深入,也使得纳米材料的外形、尺寸的控制日趋完善。因此,磁性纳米材料在机械、电子、化学和生物学等领域有着广泛的应用前景。文章综述磁性纳米材料的制备方法、性能及其近年来在不同领域的应用状况。 关键词:磁性;纳米;制备;性能;应用 Abstract: Nanotechnology is developed in recent years as a kind of science with wide coverage and multidisciplinary. Magnetic nanoparticles also play an increasing role due to its excellent magnetic properties.As scientists research take them deeper along the aspects of synthesis and application.the control of shape and dimensions of magnetic nanoparticles has become more mature.Therefore, magnetic nanoparticles have wide application propects in machinery, electronics, chemistry, biology, etc. In this paper,the synthesis method is discussed, the character is mentioned and the application of magnetic nanoparticles is summarized. Keywords:magnetic;nanoparticles;synthesis;character; application 1.引言 磁性纳米材料的特性不同于常规的磁性材料,其原因是关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。 纳米表征技术是高新材料基础理论研究与实际应用交叉融合的技术。对我国高新材料产业的发展有着重要的推动作用,其在全国更广泛的推广应用,能加速我国高新材料研究的进程,为我国高新技术产业的发展作出更大的贡献。在纳米表征技术下,磁性纳米材料的应用日显勃勃生机。例如磁性材料与信息化、自动化、机电一体化、国防,国民经济的方方面面紧密相关,磁记录材料至今仍是信息工业的主体。 磁性纳米材料的应用可谓涉及到各个领域。在机械,电子,光学,磁学,化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生将对人类社会产生深远的影响。并有可能从根本上解决人类面临的许多问题。特别是能源,人类健康和环境保护等重大问题。下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品。已出现可喜的苗头,具备了形成下一世纪经济新增长点的基础。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 2.制备 在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。目前可选作磁性微粒的仅有少数几种,主要为金属氧化物,如三氧化二铁(Fe2O3)、MFe2O4(M为Co,Mn,Ni)、四氧化三铁(Fe3O4),二元和三元合金,如金属铁、钴、镍及其铁钴合金、镍铁合金,以及钕

磁体与磁场教案

总第课时 课题磁体与磁场(一) 教学目标: 一、知识与技能 (1)通过磁铁等磁性物质,感知物质的磁性和磁化现象。 (2)认识磁场及其方向性,初步知道磁体的磁场分布状况; (3)能探究出磁极间的相互作用。 二、过程与方法 (1)学会通过观察实验,得出科学结论的方法; (2)通过观察物理现象的过程,能简单描述观察到的物理现象的主要 特征,增强观察能力; (3)学会利用铁屑、小磁针来研究磁场,从而进一步抽象出磁感应线 描述磁场的方法。 三、情感态度与价值观 (1)培养学生养成实事求是、尊重自然规律的科学态度; (2)让学生在解决问题中增强克服困难的信心和决心; (3)激发学生民族自豪感与振兴科学的民族责任感。 教学重点: 磁极间相互作用;磁场;探究磁场分布的过程。 教学难点: 探究磁场分布的过程、磁场的理解. 教学方法: 实验探究、分析讲解、自主训练 教学器具: 玻璃水盆一只、马蹄形磁体、几张纸。 教学过程: 一、自主检查(实验) 生甲:磁体能够吸引大头针、硬币等物体。 师:能吸引铁、钴、镍等物质的性质称为磁性。 生乙:磁体的两端吸引的大头针多,说明 师:我们把磁体上磁性最强的两端称为磁极,一端叫北(N 端叫南(S)极。

生丙:把两个北(N)极或两个南(S)极靠近,发现它们相互排斥, 把一个北(N)极和一个南(S)极靠近,发现他们相互吸引。师:我们能不能用一句话来概括它们的相互作用规律呢? 生丙:同名磁极相互排斥,异名磁极相互吸引。 师:用被磁体吸引过的大头针去靠近别的大头针会发现什么现象?生齐答:相吸。 师:像大头针这样原来没有磁性的物体获得磁性的过程叫做磁化。师:磁体对物体发生作用一定要直接接触吗? 生齐答:不要。 师:那磁体靠什么物质传递力的作用呢? 生:磁场。 师:磁场是一种存在于磁体周围,看不见也摸不着的物质,我们用什么方法可以探知它的存在、它的强弱呢? 师:请你将小磁针放在条形磁体的不同位置,观察小磁针N极的指向一致吗?有什么规律? 生:磁场中不同位置小磁针N极指向不同,说明磁场是有方向的。师:磁场的方向就用放在该处的小磁针静止时N极的指向表示 小结:怎样判断物体是否具有磁性? 二、自主检查 1.l.7万吨海南沙子用于北京奥运会沙滩排球场地。“磁选”是对沙子进行处理的工序之一,“磁选”是选走沙子中的: A.粗的沙子和小石块 B.铁钉、铁片 C.玻璃和塑料碎片 D.铜、铝碎片 2.如下图所示,一条形磁铁的周围放着能自由转动的小磁针 甲、乙、丙、丁,这四根磁针静止时磁极指向画错的是(磁针的黑端表示N极) () A.磁针甲B.磁针乙C.磁针丙D.磁针丁 3.判断两根钢条甲和乙是否有磁性时,可将它们的一端靠近小磁针的N极或S极.当钢条甲靠近时,小磁针自动远离;当钢条乙靠近时,小磁针自动接近.由此可知() A.两根钢条均有磁性B.两根钢条均无磁性

相关文档
最新文档