放缩法证明数列不等式问题的方法

放缩法证明数列不等式问题的方法
放缩法证明数列不等式问题的方法

放缩法证明“数列+不等式”问题的两条途径

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。

1、 先放缩再求和

例1 (05年湖北理)已知不等式],[log 2

1131212n n >+++Λ其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2(Λ=n ,证明:]

[log 222n b b a n +<,Λ5,4,3=n 分析:由条件11--+≤

n n n a n na a 得:n a a n n 1111+≥- n

a a n n 1111≥-∴- )2(≥n

1111

21-≥---n a a n n (2)

11112≥-a a 以上各式两边分别相加得:

2

1111111++-+≥-Λn n a a n 2

111111++-++≥∴Λn n b a n ][log 2

112n b +> )3(≥n =b

n b 2][log 22+ ∴ ][log 222n b b a n +<

)3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。

例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n

(1)写出数列}{n a 的前三项1a ,2a ,3a ;

(2)求数列}{n a 的通项公式;

(3)证明:对任意的整数4>m ,有8

711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;

⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)

化简得:1122(1)n n n a a --=+-

2)1(2)1(11---=---n n n n a a ,]32)

1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以3

21+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3

n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3

n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=232451113111[]221212(1)

m m m a a a -+++=+++-+--L L ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:32322121121121+>++-, 43432121121121+<-++,因此,可将1

212-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时, m a a a 11154+++Λ)11()11(11654m

m a a a a a +++++=-Λ )2

12121(2321243-++++<

m Λ )2

11(4123214--?+=m 8321+<87=

(2)当m 是奇数)4(>m 时,1+m 为偶数,

8711111111165454<+++++<++++m m m a a a a a a a a ΛΛ 所以对任意整数4>m ,有m a a a 11154+++Λ87<。 本题的关键是并项后进行适当的放缩。

2、 先求和再放缩

例3(武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

证明:(1)对于*∈N n 恒有n n a a >+1成立。

(2)当*∈>N n n 且2,有11211+=-+a a a a a n n n Λ成立。 (3)111121

12006

212006<+++<-a a a Λ。 分析:(1)用数学归纳法易证。

(2)由12

1+-=+n n n a a a 得: )1(11-=-+n n n a a a

)1(111-=-∴--n n n a a a

… …

)1(1112-=-a a a

以上各式两边分别相乘得:

)1(111211-=--+a a a a a a n n n Λ,又21=a 11211+=∴-+a a a a a n n n Λ

(3)要证不等式111121

12006

212006<+++<-a a a Λ, 可先设法求和:2006

21111a a a +++Λ,再进行适当的放缩。 )1(11-=-+n n n a a a Θ

n

n n a a a 11111

1--=-∴+

1

11111---=∴+n n n a a a 2006

21111a a a +++∴Λ )1111()1111()1111(

200720063221---++---+---=a a a a a a Λ 1

11120071---=a a 2006

2111a a a Λ-=1< 又2006200612006212=>a a a a Λ

20062006212

1111->-∴a a a Λ ∴原不等式得证。

本题的关键是根据题设条件裂项求和。

2021年典型例题:用放缩法证明不等式

用放缩法证明不等式 欧阳光明(2021.03.07) 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证 143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab + b 2=a +b ,又a +b >0,得a +b >1,又ab <14 (a +b )2,而(a +b )2=a +b +ab <a +b +14 (a +b )2,即34(a +b )2<a +b ,所以a +b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: 证明:因为 a a b b a b b a b a b a b 22222 2342 22++= +++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。

所以 a a b b b b c c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证: 12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++> ,b a c b a b c +++>,c a b c a b c +++>,所以 a b c b a c c a b a a b c b a b c c a b c +++++>++++++++=1,又a ,b ,c 为三角 形的边,故b +c >a ,则a b c +为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c +++<2, 故a b c b a c c a b a a b c b a b c c a b c +++++++++=++<++2222. 综合得12<++<a b c b a c c a b +++。 三. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 131211<…+ +++。 证明:因为,则11213+ ++

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab +b 2=a +b ,又a +b >0,得a +b >1,又ab <14(a +b )2,而(a +b )2=a +b +ab <a +b +14(a +b )2,即34(a +b )2<a +b ,所以 a + b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() 证明:因为a ab b a b b a b a b a b 222 22 234 2 22++=+++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。 所以a ab b b bc c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++>,b a c b a b c +++>,c a b c a b c +++>,所以

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

导数应用于不等式证明之放缩法一例

导数应用于不等式证明之放缩法一例 的单调区间; 求轴垂直,处的切线与,在点(曲线是自然对数的底数),为常数,已知函数)()1())1(1)(...718.2(),2(ln )(.21x f y f x f y e k k x e x f x ==-=- 2)()1(,0)1(ln 1)(2-+<+>+-=x x x e e x g x x e x x x g 证明:,对任意)设( ()()()】式成立。证毕。恒成立,【所以所以)递增 ,)递减,在(,在(划分单调区间如下:解得令】 【只需证再用放缩法 , )即证明()(】,只需证 ,要证【)() (),所以(放缩,由于以下对】 【证明:结论20)(011132 ln 2)(0)(,,0ln 3)(,ln 31ln 2)(2),0(,0ln 2x )(,0ln 2x ln 1x 1 )]1(ln 1[)1(1)], 1(ln 1[1)1(11)1(1)1()(111),1()()]1(ln 1[1)0(,)1(ln 11323232332 3333min 33322222222222222222>>-=+-=+-=+-=++==∞+>>+='+=? ++='>>++=>+++?-->+++?+->+++-?+>++++≥++≥+≥+<+-?+?>+<+-?+?------------------------x h e e e e e e e e e e e e e e h h e e x h e x x x h x x x x x h x e x x x h x e e x x x x x x e e x x e x x x x e x e x e e x e x e e e e x x x x e e e x x x x x x x x x x x

用用放缩法证明与数列和有关的不等式

用放缩法证明与数列和有关的不等 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 a a ,又由条

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

放缩法证明数列不等式问题的方法

放缩法证明“数列+不等式”问题的两条途径 数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。 1、 先放缩再求和 例1 (05年湖北理)已知不等式],[log 2 1131212n n >+++Λ其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2(Λ=n ,证明:] [log 222n b b a n +<,Λ5,4,3=n 分析:由条件11--+≤ n n n a n na a 得:n a a n n 1111+≥- n a a n n 1111≥-∴- )2(≥n 1111 21-≥---n a a n n (2) 11112≥-a a 以上各式两边分别相加得: 2 1111111++-+≥-Λn n a a n 2 111111++-++≥∴Λn n b a n ][log 2 112n b +> )3(≥n =b n b 2][log 22+ ∴ ][log 222n b b a n +< )3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。 例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n

(1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8 711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2; ⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+- 2)1(2)1(11---=---n n n n a a ,]32) 1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以3 21+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3 n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3 n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=232451113111[]221212(1) m m m a a a -+++=+++-+--L L ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:32322121121121+>++-, 43432121121121+<-++,因此,可将1 212-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时, m a a a 11154+++Λ)11()11(11654m m a a a a a +++++=-Λ )2 12121(2321243-++++< m Λ )2 11(4123214--?+=m 8321+<87=

用放缩法证明不等式Word版

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333 n n n S a +=-?+,1,2,3, n =。设2n n n T S =,1,2,3, n =,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 1 1 131131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12n +≥ 。 证明:(I )111 111 1()23 2212 2n n T T n n n n n n +-= +++ -++++++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II ) 112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++ 由(I )可知n T 递增,从而12222n n T T T --≥≥ ≥,又11217 ,1,212T S T ===, 12211222n n n S T T T T S --∴=+++++21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式 教学目标: 知识与技能:利用裂项求和,等比数列求和,二项式定理结合放缩法证明常规数列型不等式; 过程与方法:通过本节的学习,掌握利用放缩法证明常规数列型不等式; 情感、态度与价值观:通过实例探究放缩法解决数列型不等式的过程,体会知识间的相互联系的观点,提高思维能力. 教学重、难点: 1.掌握证明数列型不等式的四种放缩技巧。 2.体会用放缩法证明不等式时放大或缩小的“度”。 教学过程: 一、高考背景: 压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。而处理数列型不等式最重要要的方法为放缩法。但近几年的广东高考对数列的考查难度有所降低,对放缩法的要求上回归到常规题型中。 二、常见放缩方法: 1.裂项放缩 {}{}. 1:n ,)1(1.1<+= n n n n n S S a n n a a 求证,项和为的前且的通项公式为已知数列例 小结:可求和先求和,先裂项后放缩。

{}{}. 2:n ,1.12<=n n n n n S S a n a a 求证,项和为的前且的通项公式为已知数列变式 小结:不能求和先放缩,后裂项求和,再放缩。 4 7)2013(2< n S 上,同广东变式? 小结:放大不宜过大,缩小不宜过小,把握放缩的“度”。 2.等比放缩 例2【2012广东】设数列{}n a 的前n 项和为n S ,{} n n n a a 231n -=的通项公式为 证明:对一切正整数n ,有2 3< n S 小结:先放缩构造成等比数列,再求和,最后二次放缩实现目标转化。

不等式证明放缩法.doc

不等式的证明(放缩法) 1.设x 0, y 0 , A x y , B x x y ,则 A, B 的大小关系是() 1 x y 1 1 y A. A B B. A B C. A B D. A B 2.已知三角形的三边长分别为a, b, c ,设 M a b , N c , Q a b , 1 a 1 b 1 c 1 a b 则M,N与Q的大小关系是() A.MNQ B. MQN C. QNM D. N Q M 3.设不等的两个正数a, b 满足a3 b3 a2 b2,则a b 的取值范围是() A. (1, ) B. (1, 4 C. [1, 4 D. (0,1] ) ] 1 1 1 3 1 3 4.设A L ,则 A 与1的大小关系是. 210 210 1 210 2 211 1 5.设S 1 1 1 L 1 ,则 S 的整数部分为. 2 3 100 6.已知a,b,c均为正数,且a2 b2 c2 ,求证:c3 a3 b3 c3 . 2 7.设n N 1 1 1 1 . ,求证:L (2n 1)2 4 9 25 8.设n N 1 1 1 L 1 1 . ,求证: n 1 n 2 2n 2 9.设n N 1 1 L 1 1. ,求证: 42 (2 n)2 22 10.设S n 1 2 2 3 L n ( n 1) ,求证:不等式n( n 1) S n (n 1)2 2 2 对 所有的正整数n 都成立.

简答: 1. B 提示: A x y x y x y B 1 x y 1 x y 1 x y 1 x 1 y 2. D 提示:由 a b c ,得 1 1 , 1 a 1 a b 1 c 1 1 1 a b c b a b c c 3. B 提示:由条件得 a 2 ab b 2 a b ,所以 (a b)2 a 2 a b b 2 a b ,故 a b 1 . 又 ( a b) 2 0 ,可得 3(a 2 ab b 2 ) 4( a 2 ab b 2 ) ,从而 3( a b)2 4( a b) ,所以 a b 4 ,故 1 a b 4 . 3 3 4. A<1 5. 18 提示:因为 n 2 时, n n 1 2 n n n 1 ,所以 2 1 2 ,即 2( n 1 n ) 1 n 1) n n 1 n n n 2( n 1 n 故18 1 2( 101 2) 1 1 1 L 1 1 2( 100 1) 19 2 3 100 所以所求整数部分为 18. 6.解:由已知可知, 0 a c,0 b c, a b a 2 b 2 c 2 c, ab 2 ,所以 2 3 3 2 2 2 2 3 3 3 2 ab 2 2 c 2 ) c 3 a b aga bgb c(a b ) c ,a b (a b)(a b ) c(c 2 2 所以原不等式得证 . 7.提示:由 1 4k 2 1 1 4k 1 (1 1 ) ,累加即得 . (2 k 1)2 4k 1 4k 2 4 k k 1 8.提示: 1n 1 1 L 1 1 1 L 1 1 1 L 1 n 1. 2 2n 2n 2n 2n n 1 n 2 2n n n n n 9.提示: 1 1 1 1) 1 1 ,累加即得 . (2 n)2 n 2 n(n n 1 n

几种常见的放缩法证明不等式的方法

For personal use only in study and research; not for commercial use 几种常见的放缩法证明不等式的方法 一、 放缩后转化为等比数列。 例1. {}n b 满足:2111,(2)3n n n b b b n b +≥=--+ (1) 用数学归纳法证明:n b n ≥ (2) 1231111...3333n n T b b b b = ++++++++,求证:12n T < 解:(1)略 (2) 13()2(3)n n n n b b b n b ++=-++ 又 n b n ≥ 132(3)n n b b +∴+≥+ , *n N ∈ 迭乘得:11132(3)2n n n b b -++≥+≥ *111,32 n n n N b +∴≤∈+ 234111111111...2222222n n n T ++∴≤ ++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味! 二、放缩后裂项迭加 例2.数列{}n a ,1 1(1)n n a n +=-,其前n 项和为n s 求证:2n s < 解:2111111...234212n s n n =- +-++-- 令12(21) n b n n =-,{}n b 的前n 项和为n T

当2n ≥时,1111()2(22)41n b n n n n ≤=--- 2111111111111()()...()2123043445641n n s T n n ∴=≤ +++-+-++-- 71104n =-< 点评:本题是放缩后迭加。放缩的方法是加上或减去一个常数,也是常用的放缩手法。值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。 例3.已知函数()(0)b f x ax c a x =++>的图象在(1,(1))f 处的切线方程为 1y x =- (1)用a 表示出,b c (2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围 (3)证明:1111...ln(1)232(1) n n n n + +++>+++ 解:(1)(2)略 (3)由(II )知:当)1(ln )(,2 1≥≥≥x x x f a 有时 令).1(ln )1(21)(,21≥≥-==x x x x x f a 有 且当.ln )1(21,1x x x x >->时 令)],1 11()11[(21]11[211ln ,1+--+=+--<++=k k k k k k k k k x κ有 即.,,3,2,1),1 11(21ln )1ln(n k k k k k =++<-+ 将上述n 个不等式依次相加得 ,) 1(21)13121(21)1ln(++++++< +n n n 整理得 .) 1(2)1ln(131211+++>++++n n n n 点评:本题是2010湖北高考理科第21题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。

放缩法在不等式的应用

放缩法在不等式的应用 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12< ++<a b c b a c c a b +++。 三. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+ ?=Λ,

放缩法证明数列不等式

数列微专题——放缩法证明数列不等式 一、常见的放缩变形: (1) ()()211111n n n n n <<+-, ()()22111111111211n n n n n n ?? <==- ?--+-+?? , ()()22 211411111412121221214 n n n n n n n ??<==- ?--+-+??- (2 =, 从而有: 22 -= < << (3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m ++>>>>>>>>++ (4) () ()()()()()() 1 2 1 22222121212221212 1n n n n n n n n n n n --=<=------- ()1112,21 21 n n n n N * -=- ≥∈-- 可推广为: () ()()()()()() 1 2 1 111111n n n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,1 1 n n n k k n N k k * -=- ≥≥∈-- 二、典型例题: 例1:已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a = (1)求证:数列{}n a 是等差数列,并求出{}n a 的通项公式 (2 )设n b =,数列{}n b 的前n 项和为n T ,求证:32 n T <

例2:设数列{}n a 满足:111,3,n n a a a n N * +==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠, 112,n n b b S S n N *-=?∈ (1)求数列{}{},n n a b 的通项公式 (2)求证:对任意的n N *∈且2n ≥,有2233 11 13 2 n n a b a b a b ++ + <--- 例3:已知正项数列{}n a 的前n 项和为n S ,且1 2,n n n a S n N a *+ =∈ (1)求证:数列{} 2 n S 是等差数列 (2)记数列3 12 111 2,n n n n b S T b b b == +++ ,证明:312n T <≤-

相关文档
最新文档