(完整版)解析几何大题的解题技巧

(完整版)解析几何大题的解题技巧
(完整版)解析几何大题的解题技巧

目录

解析几何大题的解题技巧(只包括椭圆和抛物线) (1)

一、设点或直线 (1)

二、转化条件 (1)

(1)求弦长 (2)

(2)求面积 (2)

(3)分式取值判断 (2)

(4)点差法的使用 (4)

四、能力要求 (6)

五、补充知识 (6)

关于直线 (6)

关于椭圆: (7)

例题 (7)

解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————

一、设点或直线

做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在

抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求

的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次

项,所以直线设为或x=my+n联立起来更方便。

二、转化条件

有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂

直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。三、代数运算转化完条件只需要算数了。很多题目都要将直线与圆锥曲线联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都需要联立。

(1)求弦长解析几何中有的题目可能需要算弦长,可以用弦长公式

,设参数方程时,弦长公式可以简化为

(2)求面积

解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为AB 与x轴交于D,则(d是点O到AB的距离;第三个公式教材没有,解要用的话需要把下面的推导过程抄一下,理解一下。)。

如果考试允许使用课外知识的话,直接写

就可以了。(3)分式取值判断

解析几何题目的运算中可能需要求分式的取值范围,所以我这里也总结一下常见的六种类型分式取值范围的求法。,其中f(x)的次数为m,g(x)的次数为n。

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

(完整版)解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (1) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (2) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在 抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求 的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次 项,所以直线设为或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂 直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

解析几何种技巧(终审稿)

解析几何种技巧 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

本文节选自《试题调研》数学第2辑的“热点关注”,敬请品读(版权所有,转载请注明出处)。 陕西胡波 从近几年全国各省市新课标高考试题来看,解析几何主要考查直线与圆、直线与圆锥曲线的基本知识等,在选择题、填空题、解答题中都有出现,一般试卷出现3小题1大题.综合类试题多涉及函数、导数、方程、不等式、平面向量、平面几何等知识,所考查的知识点较多,试题难度中等偏上.试题往往会出现计算量较大的情况,怎样在解题中巧妙地降低计算量、减少运算错误是我们广大考生在学习中要体会和感悟的.下面通过一些典型例题的解析,说明解析几何中的解题技巧,以供读者参考学习. 1.活用定义返璞归真 圆锥曲线的定义是圆锥曲线的本质属性.许多性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简. 2.活用平几 峰回路转 解决解析几何问题时,往往需要求解涉及含多个参数的两个以上方程组成的方程组,运算较为复杂,这对于运算能力稍差的同学,很难准

确迅速求解.若能联想题目所涉及图形的几何性质,并利用相关性质来解决问题,常常可以峰回路转,达到巧妙解题的效果. 【点评】本题重点考查运算能力,这对考生提出了较高的要求.通过对比上述通法与巧法,读者很容易看出:运用平面图形的有关几何性质来解决一些解析几何问题,可以有效地避免复杂的代数运算,达到简捷解题的目的. 3.巧设坐标?水到渠成 【点评】本题如果按常规设点Q(x,y),必将得到一个二元二次方程组,这将加大计算量,使问题复杂化. 4.数形结合一目了然】 … 5.引进参数柳暗花明 … 6.设而不求欲擒故纵 … 7.整体代换绝处逢生 … 8.引入向量轻车熟路 … 更多有关解析几何的解题技巧详见《试题调研》第2辑—三角函数、平面向量、解析几何。本辑定会让你识得了三角、解得了几何、破得了向量,真正做到好题先体验,笑在百花前!

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

高中数学解析几何解题方法总结

高中数学解析几何解题方法总结 老师在讲题的时候,经常如未卜先知一般,就知道已知条件里经常存在着一个自己完全不知道的信息;或者分析着分析着,就突然来句:“这道题可以用反证法/数学归纳法……”解法是很精妙,但换你来做,你就是没有意识到要采用这样的方法。我也曾经问过老师,为什么你们当时会想到用这种方法?得到的也往往是“不知道”、“题目做多了就明白了”。 高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势: (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。 (2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近几年新教材高考对解析几何内容的考查主要集中在如下几个类型: ① 求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点题目(含切线题目);

③与曲线有关的最(极)值题目; ④与曲线有关的几何证实(对称性或求对称曲线、平行、垂直); ⑤探求曲线方程中几何量及参数间的数目特征; 高中数学解析几何解题方法: (3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。 (4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。 在近年高考中,对直线与圆内容的考查主要分两部分: (1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类: ①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目; ②对痴光目(包括关于点对称,关于直线对称)要熟记解法; ③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔. 以及其他“标准件”类型的基础题。 (2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。 预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

高三数学解析几何解题技巧

高三数学解析几何解题技巧 解析几何是现在高考中区分中上层学生数学成绩的一个关键考点。能顺利解答解析几何题是数学分数跃上新台阶的重要条件。在解决此类问题时的要点主要有:用运动观点看待条件;挖掘出其中隐含的几何量之间关系;用代数语言(通常即是方程或不等式)翻译几何量之间关系;注意根据题设条件分类讨论。其中对能力的要求主要体现在如何选择变量和合理的运算路径上。三种运算:坐标、向量和运用几何性质推理,如何选择?依据的不是必然的逻辑推理,而是根据经验获得的合情推理。 解析几何的学科特征是“算”,它的第一步是把几何条件转化为代数语言,转换的桥梁大致有三类:①与线段长度有关,用距离公式;②与线段比有关的用向量、坐标之间关系转换;③与角度有关用斜率或用向量夹角公式处理。一经转化,解析几何问题就转化为方程或函数问题。如讨论一元二次方程根的情况,解方程组,求代数式的最大值或最小值等等。 常见翻译方法: 距离问题:距离公式212212)()(||y y x x AB -+-= 几个特殊转换技巧: ①若一条直线上有若干点,如D C B A ,,,等,它们之间距离存在比例关系,如满足条件,||||||2BC CD AB =?则可根据它们分别在两坐标轴之间距离关系,利用平行直线分线段成比例之关系转换为坐标关系:,)(||||2C B D C B A x x x x x x -=-?-当然也可转化为向量关系再转换为坐标关系等。 ②利用向量求距离。 ③角度问题:若条件表述为所目标角A 是钝角、直角或锐角,则用向量转化为简洁,即AC AB ?的值分别是小于零、等于零或大于零。一般角度问题转化为向量夹角公式即:| |||cos b a ?= θ④面积问题:主要是三角形面积公式:在OAB ?中(O 是原点) )2 ())()((21sin 21c b a p c p b p a p p ah C ab S O ++=---=== ||2 1A B B A y x y x -== ⑤特殊地,若三角形中有某条线段是定值,则可把三角形分解为两个三角形来分别求面积。如椭圆12 2=+b y a x 的左右焦点分别为,,21F F 过左焦点直线交椭圆于),,(11y x A ),,(22y x B 则|||)||(|||2 121212121212y y c y y F F S S S F BF F AF ABF -=+=+=??? ⑥三点共线问题:一般来说,可直接写出过其中两点的直线方程,再把另一点的坐标代入即可,但在具体问题中,用两点之间斜率相等(有时是用向量共线,可不用讨论斜率存在情况)更合适。 最后,针对广东高考命题特点,请同学们记住一句话:心中有数,不如心中有图,心中有图,不如会用图。 【例题训练】 1.(本小题满分14分)

解析几何综合运用练习题含答案

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知直线 1:210 l ax y ++=与直线2:(3)0 l a x y a --+=,若12//l l,则a 的值为() A.1 B.2 C.6 D.1或2 2.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与 直线x+y+3=0相切,则圆C的方程为( ) A.(x+1)2+y2=2 B.(x-1)2+y2=1 C.(x+1)2+y2=4 D.(x-2)2+y2=4 3.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆 过点(0,2),则C的方程为( ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 4.双曲线x21( ) A. B. m≥1 C.m>1 D. m>2

二、填空题(题型注释) 5.经过圆x 2+2x +y 2 =0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2 =4x 的焦点F 恰好是双曲线22x a -2 2y b =1(a>0,b>0)的右顶点,且双曲线的渐近线方程为y =±3x ,则双曲线方程为________. 三、解答题(题型注释) 7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程. 8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0). (1)试求顶点P 的轨迹C 1的方程; (2)若动点C(x 1,y 1)在轨迹C 1上,试求动点Q 11,322x y ?? ??? 的轨迹C 2的方程.

相关文档
最新文档