锅炉高温腐蚀和低温腐蚀资料

锅炉高温腐蚀和低温腐蚀资料

高温腐蚀:锅炉受热面管子,在高温情况下,烟气侧和蒸汽侧均有发生腐蚀的可能性。烟气对管壁的高温腐蚀,主要是灰中的碱金属在高温下升华,与烟气中的SO3生成复合硫酸盐,在550—710℃范围内呈液态凝结在管壁上,破坏管壁表面的氧化膜,即发生高温腐蚀。另外,灰中的钒在高温下升华,并生成V2O5,在550—660℃时凝结在管壁上起催化作用,使烟气中的SO2及O2生成Na2SO4及原子氧(O),对管壁也有强烈的腐蚀作用。高温腐蚀是反复进行的,它将氧化膜破坏、生成、再破坏,管壁逐渐减薄,最后导致爆管。

低温腐蚀:锅炉尾部受热面(省煤器、空气预热器)的硫酸腐蚀,因为尾部受热面区哉的烟气和管壁温度较低。燃料中的硫燃烧生成二氧化硫(S+O2→SO2),二氧化硫在催化剂的作用下进一步氧化生成三氧化硫(2SO2+O2→2SO3),SO3与烟气中的水蒸气生成硫酸蒸气。硫酸蒸气的存在使烟气的露点显著升高。由于空气预热器下部空气的温度较低,预热器下部的烟气温度不高,壁温常低于烟气露点。硫酸蒸气会凝结在预热器受热面上,造成了硫酸腐蚀。低温腐蚀常发生在空气预热器上,但是当燃料含硫量较高,过量空气系数较大,以致烟气中SO3含量较多,露点较高,且给水温度较低(如高压给水加热器停用)时,省煤器管也有可能发生低温腐蚀。

超超临界机组锅炉受热面高温硫腐蚀与磨损防护专业技术研究

超(超)临界机组锅炉受热面高温硫腐蚀与磨损防护技术研究

————————————————————————————————作者:————————————————————————————————日期:

超(超)临界机组锅炉受热面高温硫腐蚀与磨 损防护技术研究 李太江,李巍,李勇,刘立营,王博 西安热工研究院有限公司,陕西省西安市兴庆路136号710032; Study on the Protective Techniques for the Heating Face of Super-Ultra Critical Unit from High Temperature Sulfur Corrosion and Erosion LI Tai-jiang, LI Wei, LI Yong, LIU Li-ying, WANG Bo Xi’an Thermal Power Research Institute Co., Ltd., Xi’an, 710049, China; ABSTRACT:In view of the situation of shutting down for repairing due to the leakage and tube cracking caused by severe high temperature sulfur corrosion, solid-particle erosion and wear, high velocity oxygen fuel (HVOF) was employed to deposit NiCr cermet coatings on 2Cr13 substrates. The anti-sulfur corrosion behavior of the NiCr cermet coating and 2Cr13 substrate was studied in an atmosphere with high sulfur content. The anti-erosion behavior of the NiCr cermet coating and 2Cr13 was also studied. The results indicated that the sealed NiCr cermet coating deposited by HVOF can reduce the high temperature corrosion and erosion rate. The 8000 hours in-field application of the NiCr cermet coating shows its effectivity to protect the heating surface tube in super-ultra critical unit fired with of high-sulfur coal from high temperature sulfur corrosion and erosion. KEYWORDS: Ultra supercritical unit; Sulfur corrosion; Solid particle erosion; HVOF; NiCr cermet coating 摘要:针对燃用高硫煤的超(超)临界机组锅炉受热面遭受高温硫腐蚀与磨蚀导致泄漏、爆管等事故而被迫停炉检修的情况,本文采用了超音速火焰喷涂NiCr金属陶瓷涂层,比较了相同腐蚀环境下涂层与抗腐蚀性能较高的2Cr13基体的高温硫腐蚀性能,同时比较了该涂层与2Cr13基体钢材的抗磨损性能。研究结果表明超音速火焰喷涂的NiCr金属陶瓷涂层具有比2Cr13钢更优的抗高温硫腐蚀性能。同时其抗高温磨损性能优于2Cr13钢。该超音速火焰喷涂NiCr金属陶瓷涂层在贵州某燃用高硫煤的电厂中经8000小时现场挂片考核后,涂层表面完好,可有效提高超(超)临界机组的抗高温硫腐蚀和磨损性能。 关键词:超(超)临界机组;高温硫腐蚀;磨损;超音速火焰喷涂;NiCr金属陶瓷涂层 1前言 目前,超(超)临界机组已经成为国内新建和扩建机组的主要发展趋势,其主汽压力和温度高,可大大提高机组热效率和经济性,是我国电力行业的主力机组[1-3]。但随着电煤供应趋于紧张,劣质燃煤的掺烧比例不断加大,超超临界机组锅炉“四管”(水冷壁管、过热器管、再热器管、省煤器管)将遭受严重磨损和高温硫腐蚀[4-7]。在我国贵州、四川等地的电厂多用当地的煤种,有的煤矿硫含量高达4~6%以上,洗选后含硫量仍然高达2~4%,使燃用这种高硫煤的机组锅炉受热面发生严重的高温硫腐蚀,这种高温硫腐蚀与煤粉对受热面的冲蚀磨损共同作用,相互影响,导致锅炉管的使用寿命降低,危害锅炉安全运行,造成巨大的安全事故和经济损失。为防止锅炉管发生过早的失效,目前常规方法为采用火焰喷涂或电弧喷涂防磨材料[8-14],比如电弧喷涂45CT涂层在一般火电厂锅炉的应用取得了较好的防护效果[15-20]。但是随着燃煤含硫量的提高,这种传统涂层已经不能满足超超临界机组的应用要求。因此,本研究针对超超临界锅炉受热面

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。1.腐蚀的原因 广义的腐蚀指材料与环境间发生的化学或电化学相互作用而导致材料功能受到损伤的现象。 狭义的腐蚀是指金属与环境间的物理-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。

1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。 3.设备发生腐蚀的理论原因分析 3.1管内壁腐蚀 3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。

大型锅炉低温腐蚀的原因分析及防控措施

大型锅炉低温腐蚀的原因分析及防控措施 发表时间:2019-07-26T10:52:59.217Z 来源:《建筑细部》2018年第27期作者:袁磊[导读] 通过需要分析大型锅炉的低温腐蚀问题,并采取针对性措施,一遍提高了大型锅炉的适用效果。 摘要:大型锅炉能够有效实现热能资源的二次回收利用。在特定的工业生产过程中,通过在各工艺中设定大型锅炉,就能够实现余热的回收以及再利用,削减一次能源的消耗量,实现节约能源。大型锅炉在高能耗产业中具有良好的应用性,开发前景非常良好。然而,实际上,大型锅炉运行中,非常容易出现结露以及腐蚀问题,影响大型锅炉的正常使用。因此,通过需要分析大型锅炉的低温腐蚀问题,并采取针对性措施,一遍提高了大型锅炉的适用效果。 关键词:大型锅炉;低温腐蚀;结露;预防措施 1 大型锅炉的类型以及特点 1.1 大型锅炉的类型及应用形式 所谓大型锅炉,指的主要以烟道气体和工艺气体中的热能来作为热源,通过一定的方式来对这些热能进行回收。根据具体工艺设备的特征,大型锅炉通常被划分成两个类型:(1)通过冷却工业生产中的气体,同时实现余热回收;(2)基于节能的热能回收。根据大型锅炉的适用情况,可分为烧结大型锅炉、水泥窖大型锅炉、合成氨大型锅炉等。另外,如果从水循环的方式来对其类型进行划分,可以划分成自然循环大型锅炉以及强制循环大型锅炉两个类型。在目前工业生产中,如果使用大型锅炉,基本上都会选择运用水管式大型锅炉,主要作用是实现高压余热气体的回收和利用。 1.2 大型锅炉的特点 与普通锅炉相比,大型锅炉缺乏直接的燃烧设备,对热能的质量和供应要求也没有固定要求,所以在布置上与工业锅炉有很大的不同。大型锅炉位于工业生产过程的每个部分。工作环境复杂,燃烧锅炉的安全稳定性高。另外,考虑到大型锅炉回收的工而已废气很多都具有易爆性以及腐蚀性,所以在材质选用上需要特别引起注意,这就要求大型锅炉材质必须要能够承受强冷和强热冲击,其结构设计也要能够适应恶劣工作环境。 2 大型锅炉低温腐蚀机理 大型锅炉的低温腐蚀特点是均匀性,它会使得大型锅炉的管壁逐渐变薄直至破裂。当进入大型锅炉的烟道气体含有更多二氧化硫时,二氧化硫会在某种条件下发生转变,生成三氧化硫,三氧化硫与烟道煤气的水蒸气结合,形成硫酸蒸气。随着烟气的流动,管道壁的温度进一步降低,如果管道壁的温度达到硫酸蒸汽露点温度,那么硫酸蒸气在管壁上慢慢地凝缩,产生低温的露点腐蚀,形成硫酸亚铁。硫酸铁在煤堆积物的催化剂作用下形成硫酸铁,而实际上硫酸铁对二氧化硫转化为三氧化硫具有一定催化作用,可以大大加速二氧化硫向三氧化硫的转换。由于低温腐蚀形成的腐蚀层容易脱落,烟气的不断冲刷会使得复式层脱落,进行循环上述腐蚀过程,形成新的腐蚀层。在长期的运行过程中,由于低温腐蚀,管道壁连续变薄,进而导致管道破裂。 3 大型锅炉低温腐蚀预防措施 3.1 灰分的利用 (1)通过在管道内附加螺旋管接头,能够使烟气在流经大型锅炉时由原来的平行流动转变成旋转流动,这种方式能够减少烟气流动时在锅炉中的沉积,同时也能够冲击烟气本身的层流附面层,使其出现紊流,进一步提升烟气对管道的传热系数。另外,在此过程中,大多数的烟层并未与管道进行接触就实现了分离沉积,即便有部分松散积灰会附着在管壁上,在运维中采用机械去除的方式也可以非常容易的进行去除。 (2)减小漏风量和过量空气系数。在余热管道运行中,如果是的鼓风机的功率增加,那么会提升烟气中的含氧量,这就会使得烟气中的三氧化硫含量进一步提升。所以,在大型锅炉运行中,管道漏风以及炉膛空气量过多都是引发烟气中三氧化硫含量增加的关键因子,因此实际工作中必须要对烟道漏风量进行较为严格的管控,对于鼓风机的功率和转速也要进行有效调整,尽可能的降低烟气中三氧化硫含量,降低对管材的腐蚀性,延长其使用寿命。 3.2 提高金属壁的温度 管材金属壁的温度如果提升,那么就不容易出现结露现象,对于管材的腐蚀也就会随之降低所以,在实际运行中,应该结合实际工作状况来采取核实的措施提升管道金属壁温度,从而更好的实现对大型锅炉的保护。 3.3 控制大型锅炉积灰 (1)进一步提升省煤器的进水温度。如果烟气中硫酸的露点温度低于管材壁温,那么就能够切断低温腐蚀化学反应的基础条件,从而避免腐蚀反应的进行。所以实际工作中,可以把省煤器和蒸汽提前进行预混,消除出现腐蚀反应的条件。(2)受热面的清洁也能够在一定程度上减少积灰。所以实际工作中可以装设吹灰器,并选择使用振动、振打的方式来对积灰进行及时清除,保持清洁。(3)耐腐蚀材料。如果在大型锅炉生产过程中,选择使用耐腐蚀材料,那么也能够显著降低在其使用过程中由腐蚀引发的问题,提升其使用效率。 3.4 大型锅炉的日常维护操作 在大型锅炉实际运用方面,要及时观察水位计,同时也要注意对水位计的检修和维护,如果水位计出现滴液、漏液的问题,那么就应该及时对其进行检修与更换,以便于保证大型锅炉能够安全运转。另外,在大型锅炉的运行过程中要对传动装置的灵活性进行检查,以便于保证其工作状态能够达到大型锅炉运行的实际需求,充分发挥其价值。工作人员还需要对大型锅炉系统的连接管道法兰严密性定期进行检查,如果尹继峰发生剧烈振动,那么就需要停止其运转,并对其叶轮磨损状况实施检修,如果发生损坏,则需要急性更换。还应该不定期的对大型锅炉的气压以及蒸汽量实施检测,从而保障其在正常工作范围内。工作人员还需要大型锅炉的高低水位报警器等装置实施检查,保证相关设备处于正常运转状态,对于可能存在问题的设备要做好检修和养护,只有这样,才能够有效奥众大型锅炉的平稳、安全运行,避免低温腐蚀状况的发生。 3.5 其他

论锅炉受热面高温腐蚀

论锅炉受热面高温腐蚀 论锅炉受热面的高温腐蚀 【摘要】主要介绍了电站锅炉受热面的高温腐蚀机理、危害、类型、影响高温腐蚀的因素,并提出了防止或减轻受热面高温腐蚀的措施。 【关键词】受热面高温腐蚀机理影响因素防止措施 目前在高参数、大容量火电机组中,锅炉受热面的高温腐蚀问题已很普遍且迫切需要解决。因发生高温腐蚀导致受热面管件损坏严重而被迫停机的事故屡见不鲜。受热面的高温腐蚀已经成为燃煤锅炉机组安全稳定运行的一大隐患。在锅炉的设计及运行调整中如稍有不慎则高温腐蚀便很容易发生,腐蚀使得受热面承压部件的管壁变薄,严重时会使受热面管子在短时间内爆管,导致锅炉漏泄而被迫停机或事故跳机。可见其迫害程度非常之大,在运行中必须避免受热面的高温腐蚀。 1 高温腐蚀的形成机理 所谓高温腐蚀是指在煤粉锅炉高温火焰及高温烟气区,过热器和再热器管子及其悬挂件产生的外部腐蚀。锅炉受热面的高温腐蚀是一个复杂的物理化学过程。与其他有关煤的反应机理一样,由于煤自身的复杂性以及迄今对它的认识有限,这类机理都是粗糙的和带有推理性的,在结论的定量上也都具有相当宽的范围。高温腐蚀多发生在燃烧器区域的水冷壁、高温过热器、高温再热器,亦即受热面管壁金属温度超越一定界限的部位。从对高温腐蚀的现象及调查研究结果表明,这种腐蚀都是因壁面与积灰层间的一层液相物反应 而产生的。污染后的受热面会受到灰渣和烟气的复杂的化学反应。高温过热器与高温再热器多布置于烟温高于700-800?的烟道内,管子的外表面积灰由内层、外层两部分组成,内层灰密实,与管子黏结牢固,不易清除;外层灰松散,容易清除。

低熔灰在炉膛内高温烟气区已成为气态,随着烟气流向烟道。由于高温过热器及高温再热器区域的烟温较高,低熔灰若不接触温度较低的受热面则不会凝固,若接到温度较低的受热面就会凝固在受热面上,形成黏结灰层。灰层形成后,表面温度随灰层厚度的增加而增加。此后,一些中、高熔灰粒也被黏附在黏性灰层中。这种积灰在高温烟气中的氧化硫气体的长期作用下,形成白色的硫酸盐密实灰层,这个过程称为烧结。随着灰层厚度的增加,其外表面温度继续升高,低熔灰的黏结结束。但是中熔灰和高熔灰在密实灰层表面还进行着动态沉积,形成松散而且多孔的外层灰。内层灰的坚实程度随着时间的增长而增大,时间越长,灰层越坚实。 对于黏结灰层固形物进行化学分析和x衍射分析,结果都表明其主要构成是碱-三硫酸铁的络合物。它在538-704?温度范围内呈熔融状态。从关于碱-三硫酸铁络合物与铁的反应特性资料可知,在与碱-三硫酸铁络合物紧密黏结的奥氏体钢或铁素体钢之间都会产生对铁的腐蚀反应。与铁素体钢的这种反应,其速度是随着温度的升高而增大的;奥氏体钢的腐蚀速度与温度关系则成半铃形。从实验室的腐蚀失重试验结果也表明在相当于炉内条件下,合成硫酸盐具有相同的铃形腐蚀速度曲线,也表明这个硫酸盐络合物是受热面 高温腐蚀的根本原因。由此可以得出产生高温腐蚀的机理是:因煤灰的选择性沉积,使碱与氧化铁在积灰层中的浓度远比在煤灰中高。碱-三硫酸铁是这些选择性沉积物中与烟气中的so3反应生成的。碱与氧化铁在沉积之初很可能是粉末状的物料,随着温度的升高而呈熔融或半熔融状态。碱在管壁表面的聚积也可能是出于外层熔融物料的迁移。图示也表明了,积灰层中钾、钠含量比的重要性。钠络合物在图示的温度范围内都是干的;而钾络合物从625?开始就产生黏结;1:1钾络合物在约550?时就开始呈熔融状态,非但开始呈熔融状态的温度低,其温度范围也宽(如图1)。 煤灰在受热面上的沉积并致腐蚀的大致步骤如下:

防止锅炉高温腐蚀的措施

大唐三门峡发电有限责任公司 三门峡华阳发电有限责任公司 运行管理措施 [2007] 04 号 执行部门:燃料管理部、设备管理部、中电维护部、发电部 主题:防止锅炉高温腐蚀的措施 编写:周江涛 审核:郭迪华 批准:陈春林 2007年03月 19日发布2006年03月19日实施运行管理措施内容: 防止锅炉高温腐蚀的措施 由于煤炭市场原因,目前公司入厂煤煤质较差,煤中含硫量远超设计值,为了避免水冷壁、过热器、再热器发生高温腐蚀,特制定本措施。 1由于煤中含硫量越高,越易发生高温腐蚀,因此燃料管理部应加强进煤管理,杜绝高硫煤入厂,发电部燃料专业应加强混配煤管理,使入炉煤硫份小于1.5%。2炉膛内缺氧或局部缺氧会使水冷壁壁面附近有还原性气氛和产生H S气体, 2 而还原性气氛是水冷壁高温腐蚀的必要条件,还原性气氛还会使灰熔点降低,加 S气体含量与水冷壁高温腐蚀速度成正比,剧炉膛结焦,高温腐蚀速度加快,H 2 因此正常运行时氧量应控制在3%~5%,最低不得小于2.5%,投运燃烧器二次风门应及时开启,防止局部缺氧。 3合理调整一次风风速。#1、2炉直流燃烧器,适当增加一次风风速有利于防止气流偏转;但对#3、4炉旋流燃烧器,若一次风风速过大,会导致燃烧推迟,并在炉膛中间激烈燃烧、碰撞,导致气流在中部区域范围产生较大的回流,使煤粉火焰刷墙,并产生高温,形成良好的高温腐蚀条件。 4每月对煤粉细度测量一次,#1、2炉煤粉细度应在20%~22%,#3、4炉煤粉

细度按200目筛通过量为70%,不合格应及时调整,防止煤粉颗粒太粗导致火焰拖长,使大量煤粉颗粒集中在水冷壁表面附近,进一步燃烧和燃尽时形成缺氧区,冲刷和腐蚀水冷壁。 5运行中应加强受热面的吹灰,保持受热面的清洁。对长期低负荷运行的工况,在受热面积灰严重时,应申请值长,投油吹灰。 6管壁温度越高, 越易发生高温腐蚀, 过热器、再热器管在650~700℃最为严重,因此运行人员要加强汽温和受热面壁温监督,机组运行中,必须有专人监视和调整汽温、壁温,汽温和受热面管壁温度应控制在正常范围内,超限时要及时调整,并分析原因。 7停炉后应对水冷壁、过热器、再热器进行检查,发现受热面有高温腐蚀造成管壁减薄严重,应及时进行更换,同时进行分析,采取相应措施: 7.1如是管材不合格或不适应高硫煤种,应更换耐腐蚀管材或刷涂耐磨耐腐蚀涂料进行防腐处理。 7.2如是燃烧切圆过大,一次风贴墙,造成火焰冲刷水冷壁引起高温腐蚀,应做空气动力场试验,调整燃烧切圆。 7.3如是燃烧器结构不合理或二次风门故障导致局部缺氧,应根据具体情况检修处理。

尾部受热面的积灰、磨损和低温腐蚀的预防和检修

论文 锅炉尾部受热面的积灰、磨损和腐蚀 的预防和检修 关键词:受热面积灰磨损腐蚀预防处理 作者:高俊义 单位:佳木斯第二发电厂生技处 住址:黑龙江省佳木斯市前进区 时间:2003年7月

锅炉尾部受热面的积灰、磨损和腐蚀 的预防和检修 高俊义 (佳木斯第二发电厂黑龙江省佳木斯市 154008) 摘要:大容量锅炉尾部受热面的积灰、磨损和腐蚀时有发生,对锅炉机组的安全、经济、稳定运行产生很大影响,本文主要阐述了大容量锅炉受热面积灰、磨损和腐蚀的原因、预防措施及发生这些缺陷后的一些处理方法。 关键词:受热面积灰磨损腐蚀预防检修 The boiler suffers the prevention for of accumulating the ash, wear awaying with corrosion of hot with fix GaoJunYi Summary:Big capacity boiler tail department some for reason for suffering the safety for of accumulating the ash, wear awaying with decaying having take placing, to boiler machine set of hot, economy, stabilizing circulating producing very big influence, this text primarily discussing the big capacity boiler suffering the hot area ash, wear awaying with corrosion, prevention measure and take placing these blemishs empress handle the method. Key phrase:Suffer the hot Accumulate the ash Wear away Decay Prevention Maintain 1前言 我国电站锅炉和工业锅炉以燃煤为主,而动力用煤质量偏劣,含灰量和含硫量等均较高,容易形成受热面的沾污、积灰、腐蚀和磨损。这将会给锅炉带来很多的问题,如积灰的清除、传热条件变差、受热面的寿命下降等问题。目前,随着锅炉容量的增大,炉内沾污、结渣、腐蚀等问题更为严重。这是由于如下众多的因素引起的:炉膛容积增大,清灰困难,烟道尺寸增大,烟速和烟温容易分布不均匀;

锅炉高温腐蚀及防止措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.锅炉高温腐蚀及防止措施 正式版

锅炉高温腐蚀及防止措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重

时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1 高温腐蚀的主要原因 1.1 燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子

锅炉水冷壁高温腐蚀原因及预防措施

锅炉水冷壁高温腐蚀原因及预防措施 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

水冷壁高温腐蚀的原因分析及预防措施 我厂#2炉在本次B 级检修中发现水冷壁存在高温腐蚀现象,高温腐蚀区域大约在D 层燃烧器与 层燃烧器之间, 在这一区域水冷壁高温腐蚀后,壁厚明显减薄,最薄处仅有5mm, 因而强度降低,极易造成水冷壁爆管和泄漏,危及锅炉安全运行。 针对水冷壁高温腐蚀问题,生产部、调度部、运行分场进行了多次分析和探讨,认为我厂水冷壁高温腐蚀的原因大致有以下几个原因: 1、我厂燃煤为山西贫煤,该煤种含硫及硫化物较多,高含硫量使煤在燃烧中产生较多的腐蚀性物质,直接导致水冷壁的高温腐蚀。同时,由于近年来煤炭市场供求关系的转换,煤质难以得到保证,由于煤质较杂多变,运行中往往引起煤粉变相,着火点推迟,燃烧速度低等一系列问题。 2、我厂锅炉为亚临界锅炉,饱和水温约为360 ℃,水泠壁温度可达400℃,在该条件下管壁被氧化,使受热面外表形成一层Fe 2O 3和极细的灰粒污染 层,在高温火焰的作用下,灰分中的碱土金属氧化物(Na 2O 、K 2O )升华,靠扩散 作用到达管壁并冷凝在壁面上,与周围烟气中的SO 3化合生成硫酸盐。管壁上的硫 酸盐与飞灰中的Fe 2O 3及烟气中的SO 3作用,生成复合硫酸盐,复合硫酸盐在 550℃-710 ℃范围内呈液态,液态的复合硫酸盐对管壁有极强的腐蚀作用。 3、我厂入炉煤粉长期偏向,造成煤粉直接冲刷水冷壁,在水冷壁附近区域造成还原性气氧,导致高温腐蚀。 4、我厂为四角切圆燃烧锅炉。当一、二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁

常见垃圾焚烧锅炉的腐蚀成因与防范对策

常见垃圾焚烧锅炉的腐蚀成因与防范对策 焚烧,是城市生活垃圾处理的三大方法之一,其关键设备——生活垃圾焚烧锅炉诞生已有100多年历史。当今,采用焚烧技术处理生活垃圾,已成为众多发达国家和地区城市最重要的垃圾处理方式。 深圳市于1988年在国内建成第一座生活垃圾焚烧厂——深圳市政环卫综合处理厂,在此基础上成功进行引进垃圾焚烧锅炉提高蒸汽参数的技术改造,实现了向垃圾发电厂职能转变;与杭州锅炉厂合作开发国产150t/d垃圾焚烧炉,实现了焚烧锅炉的国产化.改革开放以来,国内已建成深圳清水河、龙岗和珠海、温州垃圾焚烧发电厂。目前上海浦东、江桥和杭州、宁波、厦门、广州等地正在筹建城市生活垃圾焚烧处理设施,垃圾焚烧工艺越来越受到有关地区和主管部门的重视。 生活垃圾焚烧锅炉是垃圾化学能转换为热能的关键设备,其工艺过程是将生活垃圾作为固体燃料,投入焚烧锅炉内,在高温条件下,垃圾中的可燃质与空气中的氧发生剧烈化学反应,放出热量,转化为高温燃烧气体和性质稳定的固态炉渣,完成生活垃圾的减容、灭菌过程,实现无害化处理。高温烟气通过余热锅炉产生蒸汽用于发电、供热,实现垃圾化学能向热能、电能的转换。生活垃圾焚烧锅炉与传统的燃煤、燃油锅炉相比较,其金属受热面因腐蚀导致事故频率要高得多,占其汽水系统事故频发率第一位。出于发电效益要求,目前垃圾焚烧锅炉工质已从低参数饱和蒸汽向中温中压过热蒸汽参数过渡。垃圾锅炉既要满足发电工质参数要求,又要避免工质过热段金属受热面超温,产生高温腐蚀现象,认真探讨垃圾锅炉腐蚀成因并研究其防范对策,对垃圾焚烧锅炉和整个电厂的安全运行,具有重要意义。 1垃圾锅炉独有的运行特征

(1)垃圾焚烧锅炉是以焚烧处理生活垃圾为目的,对生活垃圾进行焚烧,实现其减量化、无害化和余热利用的热力设备,其基本考核指标是日处理垃圾数量、焚烧后炉渣的热灼减率、余热锅炉工质参数和锅炉效率等。在额定出力范围内,锅炉蒸发量随垃圾处理量和垃圾发热量变化在一定范围内波动,锅炉蒸发量决定发电出力。垃圾焚烧锅炉热效率一般在80%以下,低于普通工业锅炉和电站锅炉。垃圾发电厂用电率一般为25%~35%,远高于普通火力发电厂。 (2)作为锅炉燃料的生活垃圾成分比较复杂,由各种不同类别固体废弃物混合构成,低位发热量较低,当前国内经济较为发达的城市一般为3350~6280kJ/kg;含水率高,一般为50%~70%;组分成分变化大,燃烧难以控制等特点。发达城市或地区的生活垃圾中橡胶、塑料所占比重较大,在焚烧过程中产生HCL、SOx等酸性气体,若不加以控制,会在锅炉金属受热面产生高温腐蚀和低温腐蚀。 (3)二恶英(Dioxin)类是垃圾焚烧过程中产生的有害物质,具有极强的致癌性。出于对该类物质排放控制要求,垃圾焚烧锅炉的运行除满足蒸汽品质外,还要求二恶英类必须在炉内充分裂解,垃圾焚烧锅炉运行还必须满足如下三T+E的燃烧工况: ①温度:Temperature炉膛烟气温度控制在850~950℃; ②时间:Time烟气在上述温度条件下停留2秒以上; ③湍流+空气:Turbulence + Excess air要求炉膛内烟气有足够的湍流强度,焚烧炉出口烟气含氧量控制在6%~12%。炉排型垃圾焚烧锅炉过剩空气系数一般为1.6~2.0,远大于普通工业锅炉与电站锅炉。 2常见的生活垃圾焚烧锅炉腐蚀成因 生活垃圾作为燃料,具有含水率高,低位发热量低,组分成分变化大等特点,在运行过程中,其特有的燃烧工况对锅炉的金属受热面产生腐蚀,主要有以下几方面原因:

锅炉尾部受热面低温腐蚀分析及预防

锅炉尾部受热面低温露点腐蚀分析及预防 徐州天能姚庄煤矸石热电有限公司孙乐场 [摘要] 借徐州天能姚庄热电公司锅炉尾部受热面腐蚀一事,分析了烟气中SO3的形成和硫酸蒸汽的凝结是工业锅炉运行时低温段受热面管道腐蚀发生的根本原因。介绍了低温受热面管道的腐蚀过程,并对降低腐蚀提出了可行的预防措施 [关键词] 省煤器空预器腐蚀露点措施 0引言 响应节能减排、资源综合利用号召,徐州天能姚庄热电公司3台SHF20-2.45/400-SⅡ型燃煤锅炉技改为SHS20-2.45/400-QJ型燃焦炉煤气锅炉。运行一年后,3台炉空预器、省煤器出现不同程度的损坏。经检查分析省煤器、空气预热器的损坏,低温露点腐蚀是主要原因,在受热面的温度低于烟气的露点时,烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸会凝结在受热面上,严重地腐蚀受热面。 1低温腐蚀机理 1.1三氧化硫及硫酸的生成 焦炉煤气中含有硫,硫与空气中的氧气作用生成SO2,在炉膛内SO2继续被氧化,生成SO3,SO3与水蒸气结合生成硫酸蒸气的概率很大,硫酸蒸气将在温度比较低的空气预热器上凝结。硫酸浓度为零时,纯水沸点为45.45℃,随浓度增高,沸点也随之升高。烟气中只要含有少量硫酸蒸气,就会使露点大大超过纯水的露点;当硫酸蒸气的浓度为10%时,露点可达190℃左右。尽管烟气中硫酸蒸气的浓度很低,凝结下来的液体中的硫酸浓度却可以很高。因此,必须严格控制烟气中SO3含量,即控制燃料中的硫含量。 1.2 三氧化硫的生成及转化率的确定 烟气中三氧化硫生成的机理极其复杂。一般以为一部分是在工艺生产过程中产生的,一部分是在尾部烟道中产生的。 在工艺生产过程中,主要是原子氧的作用而生成三氧化硫,而原子氧主要是在燃烧反应中形成的。如: CO+O2→CO2+O H+O2→OH+O

锅炉水冷壁高温腐蚀原因分析及预防措施

锅炉水冷壁高温腐蚀原因分析及预防措施 发表时间:2019-11-18T13:31:35.660Z 来源:《中国电业》2019年14期作者:侯启聪 [导读] 对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析。 摘要:对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析,认为其主要是主燃烧器区二次风和一次风配比不合理,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛所致。文章针对锅炉水冷壁高温腐蚀的原因及预防措施,进行简要的剖析研究。 关键词:锅炉;水冷壁;高温腐蚀;燃烧 鲁北电厂330MW锅炉是采用美国燃烧工程公司(CE)的引进技术设计和制造的。锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、四角切圆燃烧方式,。锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1020t/h;机组电负荷为330MW(即TRL工况)时,锅炉的额定蒸发量为969t/h。 锅炉设计燃料为烟煤,收到基硫0.41%,校核煤种收到基硫0.6%。 1高温腐蚀的现象及原理 机组停备水冷壁防磨防爆检查发现,腐蚀严重的区域大都位于燃烧器喷出后射流的中下游。腐蚀区域的水冷壁表面一般呈黑褐色,外层松软、内层坚硬,剥落坚硬层后,垢状物与水冷壁管结合面处层蓝色。腐蚀区域大多水冷壁表面不清洁,有较多的灰沾污。大唐鲁北电厂1、2号炉水冷壁发现腐蚀区域水冷壁表面有未燃尽的煤粉附着,再往里有较多的黄色硫化物。 通过收集资料汇总发现,近几年山东省相继有多台电厂锅炉发生严重的水冷壁高温腐蚀,如黄台电厂8号炉(1000t/h)、华能德州电厂1-4号炉(1000t/h)、南定电厂1、2号炉(410t/h)、潍坊电厂1、2号炉(1000t/h)、青岛电厂1、2号炉(1000t/h)等,腐蚀最严重的锅炉水冷壁最小壁厚仅1.3mm,腐蚀速度2mm/a。上述各台锅炉发生高温腐蚀的区域基本相近,都在燃烧器出口射流中下游区域,高度在燃烧器中心线附近,且管子向火侧的正面点腐蚀速度最快。水冷壁发生高温腐蚀后,壁厚减薄,强度降低,容易造成爆管泄漏,影响锅炉安全运行。有腐蚀物分析基本可确定,大唐鲁北1号炉水冷壁高温腐蚀属于硫化物型高温腐蚀。这种腐蚀主要是由煤中的黄铁矿硫造成的。 2水冷壁高温腐蚀原因分析 2.1煤种问题 煤种是造成高温腐蚀的主要原因之一。煤中的硫和硫化物是形成腐蚀物质的基础,而煤的燃烧特性则直接影响贴壁还原性气氛的生成。 对发生高温腐蚀的锅炉所燃用煤质统计分析表明,大部分锅炉燃煤的含硫量均在1.2%以上,有些甚至高达3%。高含硫量使煤在燃烧中产生更多的腐蚀性,加速水冷壁腐蚀。根据山东省锅炉高温腐蚀情况普查结果,发生严重高温腐蚀的多为1000t/h以上高参数、大容量锅炉,中小型锅炉较少出现高温腐蚀。南定电厂1、2号炉均为410t/h锅炉,但也出现严重高温腐蚀,这其中有燃烧器结构布置方面的原因,但更重要的是煤质。 2.2炉内燃烧风粉分离 这是四角切圆燃烧锅炉普遍存在的问题。目前四角切圆燃烧锅炉普遍采用集束射流着火方式,一二次风间隔布置并以同一角度平行射向炉内。理想的着火应是一次风喷出后不久即被动量较大的二次风所卷吸,射流轨迹变弯,形成转弯的扇形面,并卷吸周围高温烟气,形成着火区,着火后的一次风被卷入二次风射流中燃烧。由于一次风射流混入动量大的二次风中,使火炬射流刚性加强,不易受干扰,从而在整个燃烧器区域内形成一个燃料与空气强烈混合的、稳定燃烧的旋转火炬。 但炉内实际燃烧过程并非如此。为保证稳定燃烧,一次风出口风速通常控制比较低(20—25m/s),而二次风速一般在40—50m/s之间,从而一二风的射流刚性相差较大。一二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁偏转,此时刚性较弱的一次风射流比二次风偏转更大角度,从而使一二次风分离。一二次风的刚性相差越大,这种分离现象越明显。由于部分一次风射流偏离二次风,煤粉在缺氧状态下燃烧,在射流中下游水冷壁附近形成还原性气氛,这是引发高温腐蚀的一个重要原因。 2.3运行调整方面 2.3.1配风状况差 锅炉二次风门普遍采用气动执行机构控制,由于种种原因风门控制大都较乱,加上锅炉一二次风配比不合理,炉内配风状况很差。这也是造成一二次风混合不完全,煤粉着火和燃尽差,煤粉贴壁燃烧的原因之一。 2.3.2燃烧配风状况差 部分锅炉设备由于辅机设备问题,造成满负荷工况供风不足。如潍坊电厂1、2号炉由于排烟温度低,空预器积灰严重,阻力增大,造成送、引风机出力不足,满负荷运行时炉膛出口氧量不足1%(设计值为4%),远远不能满足锅炉正常燃烧要求。由于总风量不足,使燃烧器区域的缺氧燃烧状况更加严重,对预防高温腐蚀非常不利。 通过以上分析,认为鲁北1号炉高温腐蚀的主要原因是:锅炉长期高负荷、大煤量运行工况下,主燃烧器区二次风和一次风配比不合理,一次风粉射流在炉内上升过程中,受到刚性较强的二次风射流的挤压和下游二次风射流的牵引,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛。而给煤量大大偏离设计值造成的入炉煤粉浓度加大,以及含硫量的增高加剧了腐蚀的速度。 3预防高温腐蚀的措施方法 造成高温腐蚀的主要原因是煤质、设备、运行三个方面。从目前情况看,要改变煤种非常困难,依靠燃烧调整来预防高温腐蚀也有一定难度且效果不理想,因此,只有通过设备改造来预防高温腐蚀才是最根本有效的方法。 3.1侧边风技术 所谓侧边风就是在高温腐蚀区域的上游水冷壁或在高温腐蚀区域水冷壁上安装喷口,向炉膛内通入空气。采用侧边风的主要目的是改变水冷壁高温腐蚀区域的还原性气氛,增加局部含氧量。一般情况下以二次风作为侧边风的风源。根据侧边风结构及布置方式又分为贴壁型和射流型2种。贴壁型侧边风一般采用在水冷壁鳍片上开孔的方式,开孔位置在高温腐蚀区域内,依据腐蚀面积大小决定开孔数目的多少。二次风有小孔进入炉膛后,受炉内烟气运动影响,很快偏转附着于水冷壁管上,在高温腐蚀区域水冷壁表面形成一层空气保护膜。贴

低温腐蚀形成的原因及防范措施

低温腐蚀形成的原因及防范措施 一、低温腐蚀的定义: 发生在锅炉尾部受热面(省煤器、空预器)的硫酸腐蚀,因为尾部受热面区段的烟气和管壁温度较低,所以称为低温腐蚀。 二、低温腐蚀形成原因: 低温腐蚀的形成:燃料中的硫燃烧生成二氧化硫(S+O2=SO2),二氧化硫在催化剂的作用下进一步氧化生成三氧化硫(2SO2+O2=2SO3),SO3与烟气中的水蒸汽生成硫酸蒸汽(SO3+H2O=H2SO4)。硫酸蒸汽的存在使烟气的露点显著升高。由于空预器中空气的温度较低,预热器区段的烟气温度不高,壁温常低于烟气露点,这样硫酸蒸汽就会凝结在空预器受热面上,造成硫酸腐蚀。低温腐蚀常发生在空预器上,但是当燃料中含硫量较高、过剩空气系数较大,烟气中SO3含量较高,酸露点升高,并且给水温度较低(汽机高加停用)时,省煤器管也有可能发生低温腐蚀。 三、影响低温腐蚀的因素: 除壁温外,影响低温腐蚀的主要因素是烟气中的三氧化硫含量。随烟气中三氧化硫含量的增加,硫酸蒸汽的含量也相应增加,并使烟气中酸露点明显提高。后者使受热面容易结露并引起腐蚀,前者使腐蚀程度加剧。烟气中氧化硫的含量与下列因素有关:1、燃料中的硫分越多,则烟气中的三氧化硫含量也越多;2、火焰温度高,则火焰中原子氧的含量增加,因而三氧化硫也含量也增多;3、过量空气系数增加也会使火焰中原子氧的含量增加,从而使三氧化硫含量也增加; 4、飞灰中的某些成分,如钙镁氧化物和磁性氧化铁(Fe3O4)以及未燃尽的焦炭粒等有吸收或中和二氧化硫和三氧化硫的作用。故烟气中飞灰含量增加、切飞灰含上述成分又较多时,则烟气中三氧化硫量将减少。 5、当烟气中氧化铁(Fe2O3)或氧化钒(V2O5)等催化剂含量增加时,烟气中的三氧化硫将增加。 四、低温腐蚀的预防: 1、提高空预器管壁温度,使壁温高于烟气露点。如提高排烟温度,开热风再循环,加暖风器提高空预器入口温度。此法的优点是简便易行,缺点是锅炉效率降低。 2、在烟气中加入添加剂,中和SO3,阻止硫酸蒸汽的产生。此法的优点是不降低锅炉效率,缺点是增加运行成本,还要清除中和生成的产物。 3、用耐腐蚀的材料制造空预器,如采用玻璃管、搪瓷管或用陶瓷材料制作,防腐效果好,不降低锅炉效率,但成本高,漏风系数大。 4、采用低氧燃烧,减少烟气中的过剩氧,阻止和减少SO2转变为SO3。低氧燃烧可以降低引、送风机电耗,是一项经济价值很高和很有发展前途的技术措施,

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

相关文档
最新文档