光电子技术实验报告

光电子技术实验报告
光电子技术实验报告

《光电子技术实验》实验报告

波分复用光纤传输系统

王浩然无112011011202

1实验目的

?了解WDM的特性及其简单应用;

?掌握WDM的复用方法,实现单纤单向和单纤双向的双波长复用和解复用;

?观察菲涅尔反射现象,了解其在光纤传输中的影响。

2实验原理

波分复用技术是在单根光纤中传输多个波长光信号的一项技术。典型的波分复用的框图如下所示:

图1:波分复用系统框图

其基本原理是在发送端将不同波长的光信号组合在一起复用,并耦合到光纤线路中的同一根光纤中进行传输,在接收端又将组合波长的光信号解复用,并做进一步处理,恢复出原信号送入不同的终端。目前波长域的波分复用技术主要有三种:粗波分复用、密集波分复用和光频分复用。三者的区别是复用的信道的波长间隔不同。

3实验装置

波分复用实验的光端机为视频光发射机和视频光接收机。实验装置包括视频光发端机三台,视频光接收机三台,摄像头三台,监视器三台,视频电缆6跟,高隔离度的WDM2只,的隔离度的WDM2只,OADM1只,固定光衰减器若干,法兰盘若干,可调衰减器2只。

4实验步骤

1.搭建两种波长分别为1310nm和1550nm的点到点的光纤传输系统,测量两种系统的接收机灵敏度,计算等效传输距离。

2.按照如下框图搭建单纤单向传输的波分复用系统,观察监视器上的图像,测量两种波长系统的接收机灵敏度,计算等效传输距离。

图2:单纤单向传输波分复用系统

3.按下图搭建单纤双向传输的波分复用系统,观察监视器上的图像,测量两种波长系统的接收机灵敏度,计算等效传输距离。

图3:单纤双向波分复用系统

4.如下图所示,将发射端WDM的1310nm和1550nm的发送端接反,观察监视器上的图像。将接收端也接反,观察监视器上的图像变化。

图4:单纤单向发射端反接

5.单纤单向传输时,如下图所示,发射端用隔离度较低的WDM,观察监视器上的图像变化。如果接收端用隔离度较低的WDM光茶监视器上的图像变化。

图5:单纤单向发射端低隔离度WDM

图6:单纤单向接收端低隔离度WDM

6.如下图所示,甲乙两地进行单纤双向传输时,如果甲地的WDM的1310nm和1550nm 的两端接反了,乙地使用一个隔离度低的WDM,增大传输衰减观察监视器上的图像变化。

图7:单纤双向乙地低隔离度WDM

7.如下图所示,观察接收端的图像。如果发射端也增加一个WDM观察接收端的图像变化。

8.如下图所示,发射端分别为1310nm和1550nm,在接收端用隔离度较低的WDM,让两个接收端均为1550nm发射端的图像然后将公共光纤在手指上绕若干圈,观察接收端的图像变化。

9.如下图所示,搭建一个双波长三地通信的WDM系统。

图8:双波长三地通信波分复用系统

5注意事项

?光纤连接端面应保持清洁,连接前用镜头纸蘸无水乙醇或乙醇乙醚混合液轻轻将连接的两个端面搽干净。

?光纤跳线接入发射端时,要注意连接器上的突起对准发射端的凹槽,适当旋钮即可,不可大力旋钮或没对准就强行旋钮。

?测量接收机灵敏度时为接收机监视器上刚开始出现雪花时的接收功率。

6实验数据

对于1550nm的单纤单向传输系统,可以测得其发射功率为-7.74dBm,接收机灵敏度为-34.78dBm,可以计算出最大传输距离为

?7.74dBm?(?34.78dBm)

=135.20km

0.2dB/km

对于1310nm的单纤单向传输系统,可以测得其发射功率为-18.05dBm,接收机灵敏度为-30.27dBm,可以计算出最大传输距离为

?18.05dBm?(?30.27dBm)

=34.91km

0.35dB/km

采用单纤单向波分复用传输系统时,对于采用波长为1550nm的光纤传输系统,其发射功率为-7.74dBm,接收机灵敏度为-32.29dBm,可以计算出最大传输距离为

?7.74dBm?(?32.29dBm)

=122.75km

0.2dB/km

对于采用波长为1310nm的光纤传输系统,其发射功率为-18.05dBm,接收机灵敏度为-31.47dBm,可以计算出最大传输距离为

?18.05dBm?(?31.47dBm)

=38.34km

0.35dB/km

采用单纤双向波分复用传输系统时,对于采用波长为1550nm的光纤传输系统,其发射功率为-7.74dBm,接收机灵敏度为-35.20dBm,可以计算出最大传输距离为

?7.74dBm?(?35.20dBm)

=137.30km

0.2dB/km

对于采用波长为1310nm的光纤传输系统,其发射功率为-18.05dBm,接收机灵敏度为-26.94dBm,可以计算出最大传输距离为

?18.05dBm?(?26.94dBm)

=25.40km

0.35dB/km

可总结为如下表所示:

传输方式波长nm发射机功率dBm接收机灵敏度dBm传输距离km

点到点1550-7.74-34.78135.20 1310-18.05-30.2734.91

单纤单向1550-7.74-32.29122.75 1310-18.05-31.4738.34

单纤双向1550-7.74-35.20137.30 1310-18.05-26.9425.40

表1:各种传输方式下的接收机灵敏度和传输距离

对于实验探究部分,各种连接方式的实验现象如下:

1.发射端WDM的1310nm和1550nm的发送端接反时,增大衰减时,1550nm的接收端先出现雪花,后衰减变不清晰,1310nm的接收端后出现雪花,后衰减变不清晰。发射端接反时,我们在接收端相当于接收到的为串扰信号,这相当于WDM对两个波长的信号均增加了一个衰减,由于采用可调衰减器增加衰减时,对1550nm的光的衰减更大,所以1550nm的光接收时先出现雪花。对于接收端也接反时,由于接收机监视器对波长无限制,所以与仅发射端接反时现象相同。所以反接仅对发射端有作用。

2.发射端接低隔离度的WDM时,与高隔离度的WDM无明显差别。对于接收端接低隔离度的WDM时,两个波长接收的图像均不清晰,出现彩色条纹,继续增加衰减,1550nm的接收端会收到1310nm的图像,这是由于接收端采用低隔离度的WDM时,串扰信号较强,所以出现图像不清晰和彩色条纹。增加衰减时,由于对1550nm的光衰减较大,所以当衰减增大到一定程度时,1550nm的信号光会低于1310nm的串扰光,从而产生1550nm的接收端会收到1310nm的图像的现象。所以低隔离度的WDM仅对接收端有作用。

3.单纤双向传输时,甲地接反,乙地采用隔离度较低的WDM时,对于1550nm的接收端,增大衰减时,图像变不清晰后消失,对于1310nm的接收端,图像先变暗,不清晰;后又变清晰;继续增大衰减,又变不清晰后消失。出现这种现象的原因是由于1310nm的接收端采用隔离度较低的WDM所以1550nm的串扰信号较强,所以1310nm接收端接收到的信号主要分为信号光和串扰光,增加衰减时,由于信号光光强减小作用较大,因此图像变不清晰,继续增加衰减,由于可调衰减器对1550nm的光衰减较大,因此此时串扰光的衰减作用较大,因此图像变清晰,进一步增大衰减,串扰光信号较小,信号光的衰减又起主导作用,因此图像变不清晰。

4.单纤单向传输时,在接收端用隔离度较小的WDM,对于1310nm的光,先接衰减器后接入WDM,增大衰减,使得两个接收端均接收到1550nm的发射图像。继续增大衰减,对于1550nm的接收端,图像变不清晰后消失,对于1310nm的接收端,首先是1550nm的发射图像变不清晰后消失,后又出现1310nm的图像。出现这种现象是由于当我们对1310nm的信号光进行衰减后接入WDM时,由于接收端采用隔离度较小的WDM,会导致接收端1550nm 的串扰光信号强于1310nm的信号光信号,因此会出现两个接收端均出现1550nm的发射光信号,继续增加衰减,由于对1550nm光信号的衰减,会导致串扰光信号强度变小,因此1310nm 端接收到的1550nm的发射光信号变弱,进一步增加衰减时,由于对1550nm的光信号衰减强于1310nm的光信号衰减,因此会导致1310nm接收端的信号光强度超过串扰光强度,从而会出现1310nm发射端的图像。

7实验体会

本次实验的基本部分,测量各种传输系统的接收机灵敏度和传输距离部分较简单。对于后面的探究部分,由于不断改变光路,因此首先应该对光路的连接较明确,提前绘制好光路图,才能顺利的进行实验。探究部分的内容主要是对WDM功能的理解,要较好的理解实验现象,我认为要明确几点内容。首先,接收端对光的波长无限制,因此反接只对发射端有作用;其次,较低隔离度的WDM在发射端没有作用,而在接收端会导致较大的串扰;第三,采用可调光衰减器增大衰减时,对于1310nm的光衰减较小,而对1550nm的光衰减较大。明白了以上几点,就能较明白地理解和解释实验现象。

光电子技术实验感想

光电子技术实验感想 光电子技术,是电子和光子结合的一门技术。自从激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念(如放大与振荡、调制与解调、直接探测与外差探测、倍频、和频与差频等)几乎都一直到了光频段。电子学与光学之间鸿沟在概念上消失了,产生了光频段的电子技术,习惯说简称为光电子技术。当然由于波段拨通,电子波段和光波段在相应器件的结构上完全不同了。 经过一学期的学习与训练,使我从概念上理解了光电子技术这门课程的意义以及其广泛的应用。为了更好的熟悉这门课程,学院领导开放了实验室,提供了“电子技术实验”这门实验课程,对于我们这些学子来说,无疑是最美好的事情。有了这门实验课程,可以让我们从繁琐的书籍中解脱,加入到际、加具体、加容易让人感受的实验中去。我们在“电子技术实验”中,我们能将理论知识与实际实验过程相结合,在过程中加深对理论知识的理解与认识,在知识的牵引下体会在科技上的应用。 在“光敏二极管特性实验”与“硅光电池实验”中,了解到了光电实验电路模块的概念,还有ZY13OFSens12SB 主机箱的强大功能。据我了解,它是由湖北众友公司生产的光电传感器试验台。ZY13OFSens12SB 型光电传感器实验台,集中了目前常用的光敏元件和传感器,采用模块式组合构造。 在“光纤位移传感器实验”和“纤温度传感系统特性实验”中,让我认识到光电子技术在光纤传感器上的应用。作为光纤传感器,它让一些以前我们无法直接测量的物理量,通过电光的转换,实现了物理量的代换测量,使得我们对测量技术的发展有了显著的提升。 在CCD光电传感实验系列里,我们先了解到了CCD的组成以及其工作原理。之后,又进行实际操作测量CCD的主要特性参数,了解CCD的一些特征,接着运用CCD,对光电信号的二值化以及其测量上的运用。从这里可以看出,CCD器件除了最主要的光电成像以外,还在测量物理量的领域上也有着显著的作用。 实验的最后,我们又学习使用了电光、磁光调制的原理以及其对信号的处理效果的展示。通过实际操作和实际结果,更容易让我们接受以及理解调制的知识。 总的来说,总过实验,让我们学会了合理的选择传感器的原理和方法,培养了我们的动手能力,对新型光电子仪器有了更深的认识以及理解。 在这里,个人的一观点: 这次实验除了学到的东西外,还有个让人有点不能接受的地方,就是实验仪器的老旧化。由于仪器年代有点久远,导致大部分实验的仪器有损坏而不能使用,从而不能保证每位同学都能亲手操作到,这是我们进行实验时非常遗憾的事。当然,能有机会进入实验室,亲自进行实验,也是非常难得的机会。 在最后,感谢老师以及领导们给予我们的一次次宝贵的体验实验的机会,我很高兴能够从中得到锻炼、学到知识。

材料分析方法实验报告

篇一:材料分析方法实验报告 篇二:材料分析方法课程设计报告 材料分析测试方法 课程设计(论文) 题目:磁控溅射c/w多层膜成分及微观分析 学院材料科学与工程 专业材料化学 班级材化082 学生王维娜 学号 3080101296 指导教师陈迪春 起止时间 2010.12.27-2011.1.1 年 材料分析测试方法课程设计任务书 课程设计内容要求: 掌握高分辨透射电子显微镜样品制备方法,学习并了解真空镀膜 技术-磁控溅射技术,多层膜制备过程,以及其微观结构分析,成分 分析所用仪器和原理。 学生(签名) 月日 材料分析测试方法课程设计评语 指导教师(签名) 年日 目录 材料分析测试方法 ............................................................................. .. (1) 1.1 磁控溅射 ............................................................................. (5) 1.2 x射线衍射仪 ............................................................................. . (5) 1.3 透射电子显微镜 ............................................................................. (6) 1.4 x射线光电子能谱仪(xps) ........................................................................ (7) 第二章实验方法 ............................................................................. .. (9) 2.1 tem样品的制备方法 .............................................................................

光电子技术安毓英习题答案

光电子技术安毓英习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 1. 设在半径为R c 的圆盘中心法线上,距盘圆中心为l 0处有一个辐射强度为I e 的点源S ,如图所示。试计算该点源发射到盘圆的辐射功率。 解:因为 ΩΦd d e e I = , 且 ()??? ? ??+- =-===Ω?22000212cos 12sin c R R l l d d r dS d c πθπ?θθ 所以??? ? ??+-=Ω=Φ220012c e e e R l l I d I π 2. 如图所示,设小面源的面积为A s ,辐射亮度为L e ,面源法线 与l 0的夹角为s ;被照面的面积为A c ,到面源A s 的距离为l 0。若c 为辐射在被照面A c 的入射角,试计算小面源在A c 上产生的辐射照度。 解:亮度定义: r r e e A dI L θ?cos = 强度定义:Ω Φ =d d I e e 可得辐射通量:Ω?=Φd A L d s s e e θcos 在给定方向上立体角为:2 cos l A d c c θ?= Ω 则在小面源在?A c 上辐射照度为:20 cos cos l A L dA d E c s s e e e θθ?=Φ= 3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。 答:由θcos dA d d L e ΩΦ = 得θcos dA d L d e Ω=Φ,且() 2 2cos r l A d d +=Ωθ 则辐照度:()e e e L d r l rdr l L E πθπ =+=? ?∞ 20 0222 2 4. 霓虹灯发的光是热辐射吗? l 0 S R c L e A s A c l 0 s c 第1.2题图

光电子学实指导书

《光电子学》实验指导书 何宁编 桂林电子科技大学 2013年4月

前言 在现代通信系统中,利用光电子技术实现无线通信,保证通信的有效性是未来通信领域的一门新兴技术和发展方向。二十世纪下半叶,半导体的研究导出了微电子集成电路,同时也制造出了光电器件,它们对信息技术和计算机技术产生了极大的影响,由于微电子技术在向“微”方向的发展上不久将接近极限,而光电子技术还会继续向纵深发展,其应用面将会进一步扩大。 由于光通信具有波束隐蔽、接收天线小、通信速率高、抗电磁干扰和保密性强等优点,1960年激光出现以来,激光技术以其强大的生命力推动着光电子技术的发展,它在民用、医疗和军事方面都得到广泛应用,激光探潜、激光雷达、激光成像、激光测距、激光跟踪、激光制导等技术不断涌现,尤其近几年开展的大气光通信和水下光通信都有较好的实际应用,可以说二十一世纪是光电子技术的时代。 由于光电子技术是一门内容广泛的技术科学,而实验是课堂教学的延伸,通过基本实验可加深对课堂内容的理解,提高同学们的系统概念和实际操作能力,为日后工作和科学研究打下良好的基础。

光束调制 一、 实验目的 1、 理解电光转换的机理,了解内调制和外调制的实现方法。 2、 掌握光束的衍射角的定义和计算。 3、 熟悉常用电光器件和光测试设备的使用。 二、 实验内容及要求 1、 完成光束的直接光强度调制和声光调制。 2、 测试声光调制器的插入损耗和衍射角。 三、 实验原理及步骤 激光是一种光频电磁波,具有良好的相干性,并与无线电波相似。按其工作波长的不同可分为红激光(632nm )、绿激光(532nm )、蓝激光(473nm )三种,将信息加载于激光(载波)的过程称为调制,起控制作用的低频信息称为调制信号。 光波的电场强度为 )cos()(C C C A t E ?ω+= 应用某种物理方法改变光波的振幅(Ac )、频率(C ω)、相位(C ?)、强度和偏振等参量之一,使其按照调制信号的规律变化,那么激光束就受到了信号的调制。 根据调制器与激光器的关系,激光束调制的方法可分为内调制(直接调制)和外调制(间接调制)两种。内调制是指加载信号是在激光振荡过程中进行的,以调制信号改变激光器的振荡参数,从而改变激光器输出特性以实现调制,主要用于光通信的注入式半导体光源中。外调制是指激光形成后,在激光器的光路上放置调制器,用调制信号改变调制器的物理性能,当激光束通过调制器时,使光波的某个参量受到调制。 直接调制是把要传递的信息转变为电流信号注入半导体光源,从而获得调制光信号。根据调制信号的不同类型,直接调制可分为模拟调制和数字调制两种,它们都是对光源进行直接强度调制,调制后的输出光功率是随调制信号而变化的。 声光调制器是由声光介质、电-声换能器、吸声(或反射)装置及驱动电源等组成,声光调制是利用声光效应将信息加载于光频载波上的一种物理过程。当一束光通过变化的声场时,由于光和超声场的互作用,其出射光就具有随时间而变化的各级衍射光,衍射光的强度随超声波强度的变化而变化,调制信号是以电信号(幅度)形式作用于电-声换能器上,再转换为以电信号形式变化的超声场,当光波通过声光介质时,由于声光作用,使光载波受到调制而成为“携带”信息的强度调制波。声光调制器原理如图1,直接强度调制原理如图2, 开关K 是连续光和脉冲光的切换开关。

实验1紫外可见吸收光谱实验报告

实验一:紫外—可见吸收光谱 一、实验目的 1.熟悉和掌握紫外—可见吸收光谱的使用方法 2.用紫外—可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L;b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电 子、有形成双键的π电子、 有未成键的孤对n电子。外 层电子吸收紫外或者可见 辐射后,就从基态向激发态 (反键轨道)跃迁。主要有 四种跃迁,所需能量ΔE 大小顺序为σ→σ*> n→σ*>π→π>n→π* 吸收带特征典型基团 σ→σ*主要发生在远紫外区C-C、C-H(在紫外光区观测不到) 跃迁一般发生在150~250nm,因此在紫 n→σ* -OH、-NH 2 、—X、-S 外区不易观察到 跃迁吸收带波长较长,孤立跃迁一般发 π→π* 芳香环 生在200nm左右 跃迁一般发生在近紫外区(200~400n n→π* C=O、C=S、—N=O、-N=N-、C=N ; m) 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围 700-365nm 扫描速度高速;采样间隔: 0.5nm 2、甲基紫的测定

(1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准(2)标准曲线的测定 分别将5ug/ml、 10ug/ml 、15ug/ml、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始"键,进行扫描,保存 3、甲基红的测定 (1)校准基线 将空白样品(乙醇)放到比色槽中,点击“基线"键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始" 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml—1吸光度 50。665 10 1.274 152.048

现代通信技术开放实验实验报告

现代通信技术开放性实验 实验报告 姓名:杜文涛包瑜吴硕豪 班级:05116班 学号:050489 050482 050499 班内序号:08 01 18 指导老师:刘奕彤

实验一更软切换 一.实验目的 验证BSS应能在同BTS内扇区间进行更软切换 二.实验条件 将BTS配置为两个扇区101,102,两个扇区配置相同载频,频率为f1=466;MS为试验移动台;先关闭101、102两个扇区 三.实验原理 所谓软切换就是当移动台需要跟一个新的基站通信时,并不先中断与原基站的联系。而以往的系统所进行的都是硬切换,即先中断与原基站的联系,再在一指定时间内与新基站取得联系。软切换只能在相同频率的CDMA信道间进行。它在两个基站覆盖区的交界处起到了业务信道的分集作用。这样可大大减少由于切换造成的掉话。因为据以往对模拟系统TDMA的测试统计,无线信道上90%的掉话是在切换过程中发生的。实现软切换以后,切换引起掉话的概率大大降低,保证了通信的可靠性。 CDMA系统中移动台在进行业务信道通信中,会发生以下几种切换:(1). 软切换,在这种切换中,当移动台开始与一个新的基站联系时,并不立即中断与原来基站之间的通信。软切换仅仅能用于具有相同频率的CDMA信道之间,软切换可提供在基站边界处的前向业务信道和反向业务信道的路径分集。 (2). 更软切换,这种切换发生在同一基站具有相同频率的不同扇区之间。 (3). 硬切换,在这一切换里,移动台先中断与原基站的联系,再与新基站取得联系。硬切换一般发生在不同频率的CDMA信道间。 (4). CDMA到模拟切换,在这一切换里,移动台从CDMA业务信道转到模拟话音信道。 要深入了解CDMA网络的软切换,还必须先了解导频,导频集,切换参数和搜索窗口的概念。 导频即导频信道,在CDMA系统中利用导频信道引导接入和切换信道,通过处理导频信道来确认最强的信号部分。 CDMA系统采用m序列对导频信道进行调制。不同导频之间PN码的时间偏置不同,两个相邻导频之间的偏移为64个码片,MS通过识别偏移来区分不同的基站。 CDMA系统中有4类导频集合:有效导频集,候选导频集,相邻导频集,剩余导频集。在一个导频集合中,所有导频都具有相同的频率,只是它们的时间偏置不同。

《光电子技术实验》指导书

《光电子技术实验》指导书 北京航空航天大学 仪器科学与光电工程学院 2010年12月 实验规则及注意事项 由于本实验课所用设备属于高技术实验系统,许多组件价格昂贵,易于损坏,所以实验者在做实验前应该充分复习实验大纲上的内容,实验者在做实验时应注意以下几点事项: 1.操作光纤时应注意不能用力拉扯光纤,不能随意弯曲光纤。实验时不要用手碰动与实验无关的光纤部分。 2.实验调节电流时注意不要使工作电流超过限额。电流过大有可能损坏光源和光探测器以及其它有源器件。 3.不能直视光纤、激光器出射的光束! 4.调节光学微调架时要小心、轻力,严禁强力搬拧光学微调架。 目录 实验1:光源与光纤耦合调整及光纤损耗特性测量实验 (4) 实验2:光纤温度传感系统特性实验 (8) 实验一.光源与光纤耦合调整及光纤损耗特性测量实验 一.实验目的 (1)了解提高光源与光纤耦合效率的原理及方法。重点掌握光路调整及光纤处理的基本方法。

(2) 了解光纤损耗的定义,掌握光纤衰减的测试方法。 二. 实验原理 1. 光源与光纤耦合调整实验原理 (1) 直接耦合:这种方法将光纤的端面直接靠近光源的发光面,为了保证耦合 的效率,光纤的端面必须经过特殊处理,而且光纤端面与光源发光面的距离要尽可能的近。光源的发光面不应该大于纤芯的横截面面积,这是为了避免较大的耦合损耗。通常带尾纤的光源都使用这种耦合方式。这种耦合方法对光源耦合封装工艺技术要求较高。 (2) 使用透镜耦合:具体方法描述如下——将光源发出的光通过透镜聚焦到光 纤的纤芯上,可以使光源与光纤的耦合效率提高。具体原理见图1。 五维调节架五维调节架 图1.透镜耦合 (3) 利用五维调节架对光纤入端及出端进行位置调整,使输出功率达到最大。 (4) 耦合效率的计算(适合所有的耦合方法): 2 1P P ≡η 其中P 1为输出功率,P 2为输入功率。 2. 光纤损耗特性测量实验 光纤衰减是光纤中光功率减少量的一种度量,它取决于光纤的工作波长类型和长度,并受测量条件的影响。

半导体a谱仪实验报告

实验6:半导体α谱仪 实验目的 1.了解α谱仪的工作原理及其特性。 2.掌握应用谱仪测量α粒子能谱的方法。 3.测定241Am核素的α衰变的相对强度。 内容 1.调整谱仪参量,测量不同偏压下的α粒子能量,并确定探测器的工作偏压。 2.测定谱仪的能量分辨率,并进行能量刻度。 3.测量未知α源的能谱,并确定α粒子能量。 原理 半导体α谱仪的组成如图1所示。 金硅面垒探测器是用一片N型硅,蒸上一薄层金(100-2000 A),接近金膜的那一 层硅具有P型硅的特性,这种方式形成的PN结靠近表面层,结区即为探测粒子的灵敏区。探测器工作加反向偏压。α粒子在灵敏区内损失能量转变为与其能量成正比的电脉冲信号,经放大并由多道分析器测出幅度的分布,从而给出带电粒子的能谱。偏置放大器的作用是当多道分析器的道数不够用时,利用它切割、展宽脉冲幅度,以利于脉冲幅度的精确分析。为了提高谱仪的能量分辨率,探测器要放在真空室中。另外金硅面垒探测器一般具有光敏的特性,在使用过程中,应有光屏蔽措施。 金硅面垒型半导体α谱仪具有能量分辨率高、能量线性范围宽、脉冲上升时间快、体积小和价格便宜等优点,在α粒子及其它重带电粒子能谱测量中有着广泛的应用。 带电粒子进入灵敏区,损失能量产生电子空穴对。形成一对电子空穴所需的能量w,与半导体材料有关,与入射粒子的类型和能量无关。对于硅,在300K时,w为3.62eV,77K时为3.76eV。对于锗,在77K时w为2.96eV。若灵敏区的厚度大于入射

粒子在硅中的射程,则带电粒子的能量E 全部损失在其中,产生的总电荷量Q 等于 e w E )/(。w E /为产生的电子空穴对数,e 为电子电量。由于外加偏压,灵敏区的电 场强度很大,产生的电子空穴对全部被收集,最后在两极形成电荷脉冲。通常在半导体探测器设备中使用电荷灵敏前置放大器。它的输出信号与输入到放大器的电荷量成正比。 探测器的结电容d C 是探测器偏压的函数,如果核辐射在探测器中产生电荷量为Q ,那么探测器输出脉冲幅度是d C Q /。因此,由于探测器偏压的微小变化所造成的d C 变化将影响输出脉冲的幅度。事实上,电源电压的变化就可以产生偏压近种微小变化。此外,根据被测粒子的射程调节探测器的灵敏区厚度时,也往往需要改变探测器的偏压。要减少这些变化对输出脉冲幅度的影响,前级放大器对半导体探测器系统的性能越着重要的作用。图2表示典型探测器的等效电路和前置放大器的第一级。其中一K 是放大器的开环增益,f C 是反馈电容,1C 是放大器的总输入电容,它等于 '',C C C d +是放大器插件电缆等寄生电容。前置放大器的输入信号是d C Q /,它的等 到效输入电容近似等于f KC ,只要1C KC f >>,那么前置放大器的输出电压为 f f C Q C K C KQ V - =++- =)1(10 ( 1 ) 这样一来,由于选用了电荷灵敏放大器作为前级放大器,它的输出信号与输入电荷Q 成正比,而与探测器的结电容d C 无关。 1. 确定半导体探测器偏压

《现代通信技术》实验报告一

《现代通信技术》实验报告一

现代通信之我见 一、通信的基本含义 “通信”二字在通信原理课本上的定义是——互通信息,简短却又蕴含了很深的含义。我自己对通信的理解:“互”字即互相,即通信是双方的通信;“通”字即建立了通道,处于连通的状态,信息能够在通道里传递;而“信息”则就有广泛的含义了,是通信传递的内容,人们通过获取信息来了解、认识事物。简单的“通信”二字蕴含了丰富的内容,让我们有深刻的思考。 二、现代通信的发展和技术 近现代的通信发展历史,大致可以分为两个阶段。第一阶段是电通信阶段,第二阶段是电子信息通信阶段。第一阶段包括莫尔斯发明电报机、贝尔发明电话,开启了电路交换的时代;第二阶段主要包括通信系统和通信网技术的快速发展,其主要应用的通信技术有移动通信技术、程控交换技术、传输技术、数据交换与数据网技术、接入网与接入技术。 现代通信网络采用分层的结构形式,其垂直描述,即为了实现端到端之间的业务通信,从功能上将网络分为业务与终端、交换与路由和接入与传送。“业务与终端”表示面向用户的各种通信业务与通信终端的类型和服务类型,“交换与路由”表示支持各种业务的提供手段与网络装备,“接入与传送”表示支持所接入业务的传送媒质和技术设施。每一层都有不同的支撑技术,表现出不同的功能与技术特征,使得通信技术与通信网络有机的融合。 在我们学习现代通信技术的过程中,老师一直要求我们从“大通信、大网络”的层面来学习思考,而不是单单注重某一门技术的研究。现代的网络时代,涌现出许许多多高端前沿的技术,如数字通信、程控交换、宽带IP等,如果将这些技术分别开设课程独立学习,则课程量很大,而且不利于我们对这个大网络的整体的关联性进行思考。在技术飞快的更新换代的今天,我们能做的就是尽快赶上信息的更新速度,从大的方面整体地观测信息时代的发展。

光电子技术安毓英习题答案完整版

第一章 2. 如图所示,设小面源的面积为?A s ,辐射亮度为L e ,面源法线与l 0 的夹角为?s ;被照面的面积为?A c ,到面源?A s 的距离为l 0。若?c 为辐射在被照面?A c 的入射角,试计算小面源在?A c 上产生的辐射照度。 解:亮度定义: r r e e A dI L θ?cos = 强度定义:Ω Φ =d d I e e 可得辐射通量:Ω?=Φd A L d s s e e θcos 在给定方向上立体角为: 2 cos l A d c c θ?= Ω 则在小面源在?A c 上辐射照度为:2 cos cos l A L dA d E c s s e e e θθ?=Φ= 3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对 的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。 答:由θcos dA d d L e ΩΦ = 得θcos dA d L d e Ω=Φ,且() 2 2cos r l A d d +=Ωθ 则辐照度:()e e e L d r l rdr l L E πθπ =+=? ?∞ 20 0222 2 7.黑体辐射曲线下的面积等于等于在相应温度下黑体的辐射出射度M 。试有普朗克的辐射公式导出M 与温度T 的四次方成正比,即 M=常数4T ?。这一关系式称斯特藩-波耳兹曼定律,其中常数为5.67?10-8W/m 2K 4 解答:教材P9,对公式2 1 5 1 ()1 e C T C M T e λλλ= -进行积分即可证明。 第二章 3.对于3m 晶体LiNbO3,试求外场分别加在x,y 和z 轴方向的感应主折射率及相应的相位延迟(这里只求外场加在x 方向上) 解:铌酸锂晶体是负单轴晶体,即n x =n y =n 0、n z =n e 。它所属的三方晶系3m 点群电光系数有四个,即γ22、γ13、γ33、γ51。电光系数矩阵为: 第1.2题图

光电子技术实验讲义

《光电了技术实验》 实验讲义 光信息教研室

2012年9月

目录 实验一LD/LED 的P-I-V 特性曲线测试............. - 2 -实验二光纤数值孔径测量实验................ - 8 - 实验三光源调制与解调实验 (10) 实验四电光调制实验 (15) 实验五声光调制实验 (19) 实验六、APD特性参数的测量 (25)

实验一 LD/LED 的P-I-V 特性曲线测试 、实验目的 1、通过测试LD/LED 的功率一电流(P-I )特性曲线和电压一电流(V-I )特性曲线,计算阈 值电流(I th ),掌握LED 发光二极管和LD 半导体激光器的工作特性。 、实验内容 1、测试LD/LED 的功率一电流(P-I )特性曲线和电压一电流(V-I )特性曲线。 三、 实验仪器 1、 LD 激光二极管(带尾纤输出, FC 型接口) 1 只 2、 LED 发光二极管 1 只 3、 LD/ LED 电流源 1 台 4、 光功率计 1 台 5、 万用表 1 台 四、 实验原理 激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放 大而产生激光振荡的。激光,其英文 LASER 就是 Light Amplification by Stimulated Emission of Radiatio n (受激辐射的光放大)的缩写。 1、半导体激光器的结构 半导体是由大量原子周期性有序排列构成的共价晶体,由于邻近原子的作用,电子所处的能 态扩展成能级连续分布的能带,如下图( a )所示,能量低的能带称为价带,能量高的能带称为 导带,导带底的能量 Eu 和价带顶的能量E 之间的能量差E u E l E g 称为禁带宽度或带隙, 不同的半导体材料有不同的带隙。本征半导体中导带和价带被电子和空穴占据的几率是相同的, N 型半导体导带被电子占据的几率大, P 型半导体价带被空穴占据的几率大。如下图( b )、 (c ) 所示。 图1半导体激光器的电子和空穴分布 半导体激光器的结构多种多样,基本结构是下图所示的双异质结平面条形结构。这种结构由 三层不同类型半导体材料构成,中间层通常为厚度为 0.1?0.3卩m 的窄带隙P 型半导体,称为有 源层,作为工作介质,两侧分别为具有较宽带隙的 N 型和P 型半导体,称为限制层。具有不同带 隙宽度的两种半导体单晶之间的结构称为异质结。有源层与右侧的 导带 ? 4 * 4 ? ? ? ? ? ? ?* 带常 Eg 1 E L Q Q O 匚|_ O Q O O o O 卒征半导体 N 型半导体 a b N 层之间形成的是 P--N 异质 P 型半导体

透射电镜实验报告

透射电镜实验报告 实验报告 课程名称电镜技术成绩姓名学号实验日期 2013.3.27 实验名称透射电子显微镜原理、结构、性能及成像方指导教师 式 一、实验目的与任务 1. 初步了解透射电镜操作过程 2. 初步掌握样品的制样方法(主要是装样过程) 3.拍摄多晶金晶体的低分辨率照片(<300000倍)和高分辨率照片(>300000 倍),并对相关几何参数、形态给予描述。用能谱分析仪对样品的成分进行分析。 二、实验基本原理 1.仪器原理 透射电子显微镜是以图像方式提供样品的检测结果,其成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射两个过程。样品成像时,未经散射的电子构成背景,而像的衬底取决于样品各部分对电子的不同散射特性。采用不同的实验条件可以得到不同的衬底像,透射电子显微镜不仅能显示样品显微组织的形貌,而且可以利用电子衍射效应同样获得样品晶体学信息。本次实验将演示透射电镜的透射成像方式和衍射成像方式。 (1)成像方式 电子束通过样品进入物镜,在其像面形成第一电子像,中间镜将该像放大,成像在自己的像面上,投影镜再将中间镜的像放大,在荧光屏上形成最终像。 (2)衍射方式

如果样品是晶体,它的电子衍射花样呈现在物镜后焦面上,改变中间镜电流,使其对物镜后焦面成像,该面上的电子衍射花样经中间镜和投影镜放大,在荧光屏上获得电子衍射花样的放大像。 2.仪器结构 主机主要由:照明系统、样品室、放大系统、记录系统四大部分构成。 3.透射电子显微镜的样品制备技术 4.图像观察拍照技术 透射电镜以图像提供实验结果。在观察样品之前对电子光学系统进行调查,包括电子枪及象散的消除。使仪器处于良好状态。观察过程中选合适的加速电压和电流。明场、暗场像及选区电子衍射的观察和操作方法不同,应按况选择。三、实验方法与步骤 1( 登陆计算机 2( 打开操作软件 3( 检查电镜状态 4( 装载样品 5( 插入样品杆 6( 加灯丝电流 7( 开始操作 8( 结束操作 9( 取出样品杆 10( 卸载样品 11( 刻录数据 12( 关闭操作软件 13( 退出计算机

《现代通信技术》实验报告一

现代通信之我见 一、通信的基本含义 “通信”二字在通信原理课本上的定义是——互通信息,简短却又蕴含了很深的含义。我自己对通信的理解:“互”字即互相,即通信是双方的通信;“通”字即建立了通道,处于连通的状态,信息能够在通道里传递;而“信息”则就有广泛的含义了,是通信传递的容,人们通过获取信息来了解、认识事物。简单的“通信”二字蕴含了丰富的容,让我们有深刻的思考。 二、现代通信的发展和技术 近现代的通信发展历史,大致可以分为两个阶段。第一阶段是电通信阶段,第二阶段是电子信息通信阶段。第一阶段包括莫尔斯发明电报机、贝尔发明,开启了电路交换的时代;第二阶段主要包括通信系统和通信网技术的快速发展,其主要应用的通信技术有移动通信技术、程控交换技术、传输技术、数据交换与数据网技术、接入网与接入技术。 现代通信网络采用分层的结构形式,其垂直描述,即为了实现端到端之间的业务通信,从功能上将网络分为业务与终端、交换与路由和接入与传送。“业务与终端”表示面向用户的各种通信业务与通信终端的类型和服务类型,“交换与路由”表示支持各种业务的提供手段与网络装备,“接入与传送”表示支持所接入业务的传送媒质和技术设施。每一层都有不同的支撑技术,表现出不同的功能与技术特征,使得通信技术与通信网络有机的融合。 在我们学习现代通信技术的过程中,老师一直要求我们从“大通信、大网络”的层面来学习思考,而不是单单注重某一门技术的研究。现代的网络时代,涌现出许许多多高端前沿的技术,如数字通信、程控交换、宽带IP等,如果将这些技术分别开设课程独立学习,则课程量很大,而且不利于我们对这个大网络的整体的关联性进行思考。在技术飞快的更新换代的今天,我们能做的就是尽快赶上信息的更新速度,从大的方面整体地观测信息时代的发展。

光电子技术安毓英习题答案(完整版)

第一章 2. 如图所示,设小面源的面积为?A s ,辐射亮度为L e ,面源法线与l 0 的夹角为θs ;被照面的面积为?A c ,到面源?A s 的距离为l 0。若θc 为辐射在被照面?A c 的入射角,试计算小面源在?A c 上产生的辐射照度。 解:亮度定义: r r e e A dI L θ?cos = 强度定义:Ω Φ =d d I e e 可得辐射通量:Ω?=Φd A L d s s e e θcos 在给定方向上立体角为: 2 cos l A d c c θ?= Ω 则在小面源在?A c 上辐射照度为:2 cos cos l A L dA d E c s s e e e θθ?=Φ= 3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对 的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。 答:由θcos dA d d L e ΩΦ = 得θcos dA d L d e Ω=Φ,且() 2 2cos r l A d d +=Ωθ 则辐照度:()e e e L d r l rdr l L E πθπ =+=? ?∞ 20 0222 2 7.黑体辐射曲线下的面积等于等于在相应温度下黑体的辐射出射度M 。试有普朗克的辐射公式导出M 与温度T 的四次方成正比,即 M=常数4T ?。这一关系式称斯特藩-波耳兹曼定律,其中常数为 5.6710-8W/m 2K 4 解答:教材P9,对公式2 1 5 1 ()1 e C T C M T e λλλ=-进行积分即可证明。 第二章 3.对于3m 晶体LiNbO3,试求外场分别加在x,y 和z 轴方向的感应主折射率及相应的相位延迟(这里只求外场加在x 方向上) 解:铌酸锂晶体是负单轴晶体,即n x =n y =n 0、n z =n e 。它所属的三方晶系3m 点群电光系数有四个,即γ22、γ13、γ33、γ51。电光系数矩阵为: L e ?A s ?A c l 0 θs θc 第1.2题图

电子能谱XPS实验报告

实验报告 电子能谱实验

实验报告 一、 实验名称 电子能谱实验 二、 实验目的 (1) 了解X 光电子能谱(XPS )测量原理、仪器工作结构及应用; (2) 通过对选定的样品实验,初步掌握XPS 实验方法及谱图分析。 三、 实验原理 在现代材料分析中,表面问题是材料研究中很重要的部分。尤其是在微型材料、超薄 材料、薄膜材料和材料的表面处理等,都离不开表面科学。而X 光电子能谱(简称XPS )则是一项重要的表面分析方法。一定能量的X 光作用到样品上,将样品表面原子中的不同能级的电子激发成为自由电子,这些电子带有样品表面信息,具有特征能量,研究这类电子的能量分布,即为X 光电子能谱分析。 (1)光电发射 在具体介绍XPS 原理时,先介绍光电发射效应。光电发射是指,在轨道上运动的电子收到入射的光子的激发而由发射出去成为自由电子的过程。对于固体样品光电发射的能量关系如下: 'b k sa E h E νφ=--(固体)(1) 其中b E 为相对于费米能级的结合能,h ν为光子的能量,'k E 为光电子的动能,sa φ为样品的功函数。 光电发射示意图如下: 原子能级结合能b E 对于原子来说是特征的,具有特异性,可以用它来标识原子及原子能级。 由样品发射的光电子最终将会被探测器俘获,对于探测器有如下能量关系:

b k sp E h E νφ=--(探测器)(2) 式中,sp φ为探测器的功函数。如下图所示: (二)化学位移 XPS 在进行定量分析的时候,有一项很重要的应用就是化学态分析,其中包括化学位移和化学能移。 化学位移是指由于原子处于不同的化学环境而引起的结合能的位移(b E ?)。如化合过程+X+Y=X Y -,X 、Y 因电子的转移引起结合能的变化。相应的电子能谱也会发生改变,通过这种方法,还可以区别同一类原子处于何种能态,这为表面分析提供了很大的便利。 (三)X 光电子能谱仪原理示意图 如下图所示,由X 射线源发出的X 射线入射到样品表面,激发出自由光电子。光电子经过半球形能量分析器后被探测器吸收。探测器将光电子的所携带的信息转化为电信号,由示波器收集并在电脑中显示出来。 XPS 测量原理示意图 X 光电子能谱仪结构示意图

光电子技术基础复习题

1、某单色光频率为3×1014Hz ,该单色光在水中(n=1.33)的速度和波长。 答:v=c/n=3*108/1.33=2.26*108m/s λ=v/f=2.26*108/3*1014 =0.75*10-6m 2、某星球的辐射出射度的峰值波长为400nm ,试估算该星球表明的温度。 答:由维恩位移律λmT=b 得 T=b/λm =2.898*10-3/400*10-9=7.245*103 k 3、简述光子简并和能级简并 答:光子简并:光子的运动状态简称为光子态。光子态是按光子所具有的不同能量(或动量数值),光子行进的方向以及偏振方向相互区分的。处于同一光子态的光子彼此之间是不可区分的,又因为光子是玻色子,在光子集合中,光子数按其运动状态的分布不受泡利不相容原理的限制。可以有多个光子处于同一种光子态上,这种现象称为简并。处于同一光子态的平均光子数目称为光场的简并度δ。δ=1/(e h υ /kT -1) 4、什么是亚稳态能级。 答:若某一激发能级与较低能级之间没有或只有微弱的辐射跃迁,则该态的平均寿命会很长τs >>10-3s,称为亚稳态能级,相应的态为亚稳态。 5、设二能级系统,发生受激辐射时,对入射光场的要求是什么? 6、产生激光的重要机理是 答:受激辐射 9、从能级理论出发,解释Nd:YAG 激光器工作原理(p44-45) 10、解释增益饱和效应 答:当入射光强度足够弱时,增益系数与光强无关,是一个常量,而当入射光强增加到一定程度时,增益系数将随光强的增大而减小,这种增益系数随光强的增大而减小的现象称为增益饱和效应。 11、两种介质A 、B 的折射率分别为nA=1,nB=1.2,当光从B 传播到A 时,计算:1)发生全反射的零界角 2)布鲁斯特角 答:1.θc =arcsin (n 2/n 1)(n 1>n 2) =arcsin (1/1.2)=56.44° 2. tan θ=n 2/n 1 θ=arctan (n 2/n 1) =arctan (1/1.2)=39.8° 12、人体辐射出射度的峰值波长为( ) 答:由维恩位移律λmT=b 得 λm =b/ T =2.898*10-3/(37+273)=9.35*10-6m 13、红宝石激光器利用(氙灯)作为泵浦源。 14、光纤长距离通信中传播信息光的波长为(1550nm),在接收端光电二极管所使用的材料是(InGaAs) 15、某阶跃光纤:n1=1.490, n2=1.480,则光纤的临界传播角为多少? 答: α=arcsin (n 2/n 1)=arcsin (1.48/1.49)=83.4° 16、某平板介质波导:2a=10μm, n1=1.480, n2=1.470,则该波导的截止波长为多少? 答:平板v=π/2(光纤v=2.405) V=(2πa/λc )2 221n n - λc =2πa 2 2 21n n -/ V=(10*π2247 .148.1-)/(π/2)=3.44μm 17、已知某平板介质波导:2a=80μm, n1=1.490, n2=1.470,入射光波长为λ=1μm ,在该波导中存在的模式数为 答:M=V 2/2=(π/2)2/2=1 18、解释材料色散产生的原因 答:材料色散:是由于折射率随波长变化的,而光源都具有一定的波谱宽度,因而产生传播时延差,引起脉冲展宽。 补充: 模式色散:在阶跃光纤中,入射角不同的光波在光纤内走过的路径长短不同,在临界角上传输的光路最长,沿光纤轴线传输的光路最短,由此引起时延差而产生模式色散。 波导色散:是由光纤的几何 结构决定的色散,它是由某一波导模式的传播常数β随光信号角频率w 变化而引起,也称为结构色散。 19、简述谐振腔的作用 答:使光只能沿着轴线方向往返运动(方向性) 筛选光频率,只能使满足干涉相干条件频率的光能在腔内往返运动(单色性) 增加光强度,实现光放大(高亮度) 20、半导体激光器实现光放大的物质条件是什么 答:PN 结附近或导带电子和价带空穴相对反转分布 21、激光产生的条件具体有那些 答:必要;粒子数反转分布和减少振荡模式数 充分;起振和稳定振荡 计算:1)入射光波长为1550nm ,Pin=0.05W ,Pout=0.002W ,估算光纤中信号能传输的最远距离。 2)光源为激光,λc=1550nm,光源脉宽Δλ=0.5nm ,假设信号传输1km ,计算由于材料色散造成的脉冲信号展宽σ。 3)只考虑材料色散,估算信号 在光纤中传播1km 的bit rate 的最大值。 答:1. α=10lg(p i /p o )/L L=10*lg (0.05/0.002)/0.36=38.8m 2. σ=Δλdn/cd λ=0.5*10-9/3*108=1.7*10-18s/m 3.B<=1/(4Δτ) Δτ=L|D m |Δλ 24、已知输入信号频率最大值为 1kHz ,输入信号峰值为3V ,脉冲编码调制采用4位编码 则:1)采样频率最小值为? 2)采用有舍有入的方式,量化单元为?由此产生误差的最大值为? 答: 25、KDP 晶体的纵向电光效应中,Δφ=?V π=? 答:Δφ=(2π/λ)n 03γ63v V π=λ/(2 n 03γ63)=πC/(wn 03γ63) 26、电光强度调制中如何解决信号失真问题?推导解决失真后的透射率表达式。 答:a.在调制晶体上加一个恒定的直流电压V=Vn/2,该直流电压使两束光产生相位延迟π/2; b .在光路中增加一片λ/4波片 27、调制:将欲传递的信息加载到激光 辐射上的过程。 28、脉冲编码调制是把模拟信号先变 成电脉冲序列,进而变成代表信号信息的二进制编码,再对光载波进行强度调制。 要实现脉冲编码调制,必须进行三个过程:抽样、量化和编码。 抽样:将连续的信号分割成不连续的脉冲波,且脉冲序列的幅度与信号波的幅度相对应。要求取样频率比传递信号频率的最大值大两倍 以上。 量化:把抽样后的脉冲幅度 调制波分级取整处理,用有限个数的代表值取代抽样值的大小。 编码:用量化的数字信号变 成相应的二进制代码的过程,用一组等幅度、等宽度的脉冲作为码元。 29、解释电光效应 答:某些晶体在外加电场作用下,折射率发生变化,当光波通过此介质时,其传播特性就会受到影响。 30、解释半波电压 答:光波在光晶体中传播时,当光波的两个垂直分量的光程差为半个波长时所需要加的电压,称为半波电压。 32、渡越时间对调制信号频率有什么影响? Δфo 是当ωm τd <<1时的峰值相位延迟;γ称为高频相位延迟缩减因子,表征因渡越时间引起的峰值相位延迟的减小程度。只有当ωm τd <<1。即τd << T m / 2π时, γ=1,即无缩减作用。说明光波在晶体内的渡越时间必须远小于调制信号的周期,才能使调制效果不受影响。 33、某电光晶体n=1.5,L=1cm ,ωm τd =π/2,则调制信号最高频率为? 答:f m =w m / 2π=1/4τd =c/4nL=3*108/(4*1.5*0.01)=5*109Hz 34、解释声光效应(p136-137) 答:当光在建立起超声场的介质中传播时,由于弹光效应,光介质中的超声波衍射或散射的现象。 补充:介质光学性质的变 化,不仅可以通过外加电场的作用而实现,外力的作用也能够造成折射率的改变,这种由于外力作用而引起介质光学性质变化的现象称为弹光效应。 36、声光调制器件由声光介质,电——声换能器,吸声装臵以及电源组成。 采用布喇格衍射。 35、声光效应中发生Bragg 衍射的条件是什么?Bragg 衍射的特点是? 答:条件:1)超声波频率足够高L=λs /λ 2)光线倾斜入射,当入射角θB 满足2λs sin θB =λ产生布喇格衍射 特点:1)衍射光只有0级,+1 或-1级,布喇格衍射效应制成的声光器件效率比较高。 2)两级衍射光夹角为2 θB 3)衍射效率 η=I 0/I i =sin 2[(π L/2 λ) s P M H L 2)/(]=sin 2 [πL/ 2λs I M 2] 37、调Q 的目的是压缩脉冲宽度,提高峰值功率。 38、解释激光器的Q 值?Q 值和激光器的损耗之间有什么关系? 答:Q 值是评定激光器中光学谐振腔质量好坏的指标—品质因数。 品质因子Q 与谐振腔的单 程总损耗的关系 Q=2πW/P=2π/λα总 39、叙述调Q 的过程? 答:过程1.在泵浦过程的大部分时间里(t-t 0)谐振腔处于低Q 值状态,故阈值很高不能起振,从而激光上能级的粒子数不断积累,直至t 0时刻,粒子数反转达到最大值Δni 过程2. t 0时刻Q 值突然升 高(损耗下降),振荡阈值随之降低, 于是激光振荡开始建立。由于此Δni>>Δnt (阈值粒子反转数),因此受激辐射增强非常迅速,激光介质存储的能量在极短时间内转变为受激辐射场的能量,结果产生了一个峰值功率很高的窄脉冲。 41、叙述声光调Q 的原理。 答:利用晶体的电光效应,在晶体上加一阶跃式电压,调节腔内光子的反射损耗。 40、叙述电光调Q 的原理。 答:电光调Q 是指在激光谐振腔内加臵一块偏振片和一块KDP 晶体。光经过偏振片后成为线偏振光,如果在KDP 晶体上外加λ/4电压,由于泡克尔斯效应,使 往返通过晶体的线偏振光的振动方向改变π/2。如果KD*P 晶体上未加电压,往返通过晶体的线偏振光的振动方向不变。所以当晶体上有电压时,光束不能在谐 振腔中通过,谐振腔处于低Q 状态。由于外界激励作用,上能级粒子数便迅速增加。当晶体上的电压突然除去时,光束可自由通过谐振腔,此时谐振腔处于高Q 值状 态,从而产生激光巨脉冲。电光调Q 的速率快,可以在10-8秒时间内完成一次开关作用,使激光的峰值功率达到千兆瓦量级。如果原来谐振腔内的激光已经是线 偏振光,在装臵电光调Q 措施时不必放臵偏振片。 42、什么是单模光纤?成为单模光纤的条件是什么? 答:只允许基模通过的光纤为单模光纤。 条件:V=(2πa/λc )2 221n n -<2.405 光纤直径很小、λ>λc 43、试比较单模光纤和多模光纤的区别(阶跃光纤) 答:单模光纤的数值孔径比较大,单 模光纤只允许基模通过而多模光纤则允许若干个模式通过。单模芯径为8~10μm ,多模光纤的芯径为50~100μm. 44、光纤中存在哪几种损耗 答:吸收损耗:当光波通过任何透明物质时,都要使组成这种物质的分子中不同振动状态之间和电子的能级之间发生跃迁。这种能级跃迁时, 物质吸收入射光波的能量引起的光的损耗。 散射损耗:由于光纤制作工艺上 的不完善,例如有微气泡、杂质和折射率不均匀以及有内应力等,光能在这些地方会发生散射,使光纤损耗增大。 弯曲损耗:光纤弯曲是引起光纤 损耗的另一个重要的原因。光纤是柔软的,可以弯曲。弯曲的光纤虽然可以导光,但是会使光的传播路径改变,使得光能渗透过包层向外泄漏而损失掉。 45、解释瑞利散射 答:物质散射中最重要的是本征散射,也成为瑞利散射。本征散射是由玻璃熔制过程中造成的密度不均匀而产生的折射率不均匀引起的散射。瑞利散射与波长的四次方成反比。瑞利散射引起的损耗: αRs =(A/λ4)(1+B Δ) 46、光纤通信中常用的波段的波长是多少?为什么使用该波长? 答:光在Sio 2中传输 850nm (损耗比较小)、1300nm (色散最小)、1550nm (损耗最小) 48、光纤的基本结构是什么?每部分的作用是什么? 答:基本结构:护套、涂敷层、包层和纤芯

相关文档
最新文档