酶促反应动力学实验报告

酶促反应动力学实验报告
酶促反应动力学实验报告

酶促反应动力学实验报告

杨恩原

实验目的:

1.观察底物浓度对酶促反应速度的影响

2.观察抑制剂对酶促反应速度的影响

3.掌握用双倒数作图法测定碱性磷酸酶的Km值

实验原理:

一、底物浓度对酶促反应速度的影响

在温度、pH及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[S]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。底物浓度和反应速度的这种关系可用米氏方程式来表示(Michaelis-Menten方程)即:

式中Vmax为最大反应速度,Km为米氏常数,[S]为底物浓度

当v=Vmax/2时,则Km=[S],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。若将米氏方程变形为双倒数方程(Lineweaver-Burk方程),则此方程为直角方程,即:

以1/V和1/[S]分别为横坐标和纵坐标。将各点连线,在横轴截距为-1/Km,据此可算出Km值。

本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[S]的倒数作图,计算出其Km值。

二、抑制剂对酶促反映的影响

凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。酶的特异性抑制剂大致上分为可逆性和不可逆性两类。可逆性抑制又可分为竞争性抑制和非竞争性抑制等。竞争性抑制剂的作用特点是使该酶的Km值增大,但对酶促反映的最大速度Vmax值无影响。非竞争性抑制剂的作用特点是不影响[S]与酶的结合,故其Km值不变,然而却能降低其最大速度Vmax。本实验选取Na2HPO4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。

实验步骤:

实验一:底物浓度对酶促反应速度的影响

管号

试剂

1.取试管9支,将L基质液稀释成下列不同浓度:

2. 另取9支试管编号,做酶促反应:

3. 混匀,37 ℃水浴保温5分钟左右。

4. 加入酶液后立即计时,各管混匀后在37 ℃准确保温15分钟。

5. 保温结束,立即加入L NaOH ml 以中止反应。各管分别加入% 4-氨基安替比林 ml 及%

铁氰化钾 ml 。

6. 充分混匀,放置10分钟,以管1为对照,于波长510 nm 处比色。读取各管吸光度,做

记录。(酶活性计算及Km 值计算)

实验计算:

1. 在37°C 下保温15分钟产生1mg 酚为1个酶活性单位,从标准曲线查出释放的酚量(ug )

试剂

管号

以此计算处各管的酶活性(v)。

2.以1/v为纵坐标、1/S为横坐标,在坐标纸上作图,求出酶的Km值。

Y=+, Km=

实验二:抑制剂对酶促反映的影响

管号

试剂

1.取试管9支,将L基质液稀释成下列不同浓度:

管号

试剂

2.另取试管9支,做酶促反应:

3.混匀,37 ℃水浴保温5分钟左右。

4.加入酶液后立即计时,各管混匀后在37 ℃准确保温15分钟。

5.保温结束,立即加入L NaOH ml 以中止反应。各管分别加入% 4-氨基安替比林 ml及%

铁氰化钾 ml。

6.充分混匀,放置10分钟,以管1为对照,于波长510 nm处比色。读取各管吸光度,并

计算各管酶活性。

实验计算:

以酶活性单位(v)的倒数1/v为纵坐标,以底物浓度[S]的倒数1/S为横坐标,在方格纸上描点,并连接各点,求该酶的Km值并与前面未加入抑制剂时测出的Km值作比较。

Y=+, Km=

实验分析:

通过绘图及分别计算无抑制剂与有抑制剂时酶的Km值,可发现,此抑制剂为竞争性抑制剂。通过绘图发现,其两条以1/v为纵坐标、1/S为横坐标的直线截距几乎相同,而加入抑制剂后,酶的Km值更大,此为竞争性抑制剂的特征:Vmax不变,Km变大。

思考题

一、除了双倒数作图外,你能举出其它能将酶动力学数据做出直线图的方法吗

1.海涅斯-沃尔弗作图法(Hanes-Wolff plot)

双倒数方程式两边同时乘以[S]

直线的斜率等于1/Vmax,横轴截距为-Km

2.伊迪-霍夫斯蒂作图法(Eadie-Hofstee plot)

米氏方程式两边均除以[S]

直线的斜率为-Km,直线的纵轴截距为Vmax

二、为什么进行此种酶动力学测定时,所用各底物浓度不是按等差递增

在酶浓度和其他反应条件不变的情况下,反应速率V对底物浓度[S]作图呈矩形双曲线。当底物浓度较低时,反应速率与底物浓度成正比,反应为一级反应;随着底物浓度的增高,反应速率不再成正比例加速,反应为混合级反应;当底物浓度高达一定程度,酶被底物所饱和,

反应速率不再增加,达最大速率,反应为零级反应。

三、酶动力学实验中,哪些因素需严格控制

1.配制的各种试剂及反应液必须混匀。

2.加酶液要准确快速,以保证各管酶促反应同时开始。

3.加入酶液后要立即计时,计时要准确。

4.% 4-氨基安替比林 ml及%铁氰化钾 ml要依次加入,充分混匀,放置10分钟,放置

时间不可过长。

乙酸乙酯实验报告

乙酸乙酯皂化反应速率常数测定 实验日期: 提交报告日期: 带实验的老师 一、 引言 1. 实验目的 1.学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 2.了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 3.进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 2. 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc - =k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc -=k dt c ?? (2) 20 11-=k t c c (3) 式中:0c 为反应物的初始浓度;c 为t 时刻反应物的浓度;2k 为二级反应的反应速率常数。将1/c 对t 作图应得到一条直线,直线的斜率即为2k 。 对于大多数反应,反应速率与温度的关系可以用阿累尼乌斯经验方程式来表示: a E ln k=lnA-RT (4) 式中:a E 为阿累尼乌斯活化能或反应活化能;A 为指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21T a 21T 12k E T -T ln =k R T T ?? ??? (5) 由(5)就可以求出活化能a E 。 乙酸乙酯皂化反应是一个典型的二级反应,

325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 内生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k =t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设0κ、t κ和κ∞分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得: 0t 20t -1k = t c -κκκκ∞ (9) 整理上式得到 t 20t 0=-k c (-)t+κκκκ∞ (10) 以t κ对t (-)t κκ∞作图可得一直线,直线的斜率为20-k c ,由此可以得到反应速率系数2k 。 溶液中的电导(对应于某一电导池)与电导率成正比,因此以电导代替电导率,(10)式也成立。本实验既可采用电导率仪,也可采用电导仪。 3实验操作 3.1 实验用品

空气动力学实验之二元翼型测压实验

空气动力学实验之 二元翼型测压实验 班级 姓名 实验日期 指导教师

一、实验目的 1.了解低速风动的基本结构和熟悉风洞实验的基本原理。 2.熟悉测定物体表面压强分布的方法。 3.复习巩固空气动力学的相关知识。 3.测定NACA0012翼型的压力分布并计算其升力系数Cy ,掌握获得机翼气动特性曲线的实验方法。 二、实验设备及工作原理简介 1.测定翼型表面压力 在翼型表面上各测点垂直钻一小孔,各孔成锯齿状分布,小孔底与埋置在模型内部的细金属管相通,小管的一伸出物体外,然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,上表面为1号-14号,下表面为15号-27号,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。 2.压力系数的计算 通过测压,可以得到翼型在给定迎角下的压力分布,(采用无黏流理论)根据伯努利方程: 2 22 121∞∞+=+v p v p i ρρ 可得压力系数q p p C p ∞-= ,其中2 2 1∞∞=v q ρ 本实验利用水排测压得 h g p p p ?=-=?∞ρ

3.升力系数计算 根据计算得出压力系数Cp,利用Matlab做出压力系数Cp与测压点分布位移X的图像,并分别拟合上下表面的压力分布曲线,通过对上下表面的压力分布曲线的所夹面积进行积分,其值除以弦长L可得出翼型的升力系数Cy。在不同的迎角α下,可分别求出翼型的升力系数,由此绘制翼型NACA0012的升力系数分布图,再与标准升力系数图比较,分析实验结果。 三.实验步骤 1.检查实验设备并进行人员分工。 2.记录实验环境下的温度与大气压。 3.安装翼型模型,并调整迎角为 ?0。 4.调整多管压力计液柱的高低,记下初读数0 h。 5.开风洞调到所需的风速,本实验对应的来流风速为25m/s。 6.当多管压力计稳定后,记下液柱末读数i h。 7.关闭风机等待测压液柱回复,依次将翼型迎角调整到 ? 1? 3? 5和? 7重复实验。 8. 关闭风洞,整理实验场地,将记录交老师检查。 9. 整理实验数据,写好实验报告。 四.实验数据及处理 1.实验环境数据: 实验室温度(C?)大气压强(Pa)空气密度(kg/3m) 12 98010 1.225

系统动力学实验报告

系统动力学实验报告 姓名:徐键 班级:管科131班 学号:5504113023

学院:管理学院 一、背景:高塘乡德邦牧业有限公司是一家大型种猪养殖场,在高速发展的同时存在两个急需解决的问题:1、养殖场猪粪尿污染环境;2、高塘乡已建的300余口户用沼气池大部分因缺乏原料致使沼气池闲置,农户买化肥、农药种植粮食、蔬菜,农作物受到污染。 二、基于顶点赋权分析确定规划实现的管理对策:略 三、基于逐树入仿真技术建立仿真入树模型 建立流位流率系: {(年出栏L1(t)(头),年出栏变化量R1(t)(头/年)),(规模养殖利润L2(t)(万元),规模养殖利润年变化量R2(t)(万元/年)),(日均存栏L3(t(头),日均存栏年变化量R3(t)(头/年)),(年猪尿量L4(t)(t),猪尿年变化量R4(t)(t/年)),(场猪尿年产沼气量L5(t)(m^3),场猪尿产沼气年变化量R5(t)(m^3/年)),(年猪粪量L6(t)(t),猪粪年变化量(t)(t/年)),(户猪粪年产沼气量L7(t)(m^3),户猪粪产沼气年变化量L7(t)(m^3/年))}

据实际意义,将流位流率系分为两部分 第一部分——生产.销售.利润流位流率系 {(年出栏L1(t)(头),年出栏变化量R1(t)(头/年)),(规模养殖利润L2(t)(万元),规模养殖利润年变化量R2(t)(万元/年)),(日均存栏L3(t(头),日均存栏年变化量R3(t)(头/年))} 第二部分——生物质资源开发流位流率系 {(年猪尿量L4(t)(t),猪尿年变化量R4(t)(t/年)),(场猪尿年产沼气量L5(t)(m^3),场猪尿产沼气年变化量R5(t)(m^3/年)),(年猪粪量L6(t)(t),猪粪年变化量(t)(t/年)),(户猪粪年产沼气量L7(t)(m^3),户猪粪产沼气年变化量L7(t)(m^3/年))}第一部分——逐枝建树逐树仿真建立生产.销售.利润子模型 (一)年出栏年变化量R1(t)(头/年)仿真流率基本入树T1(t) 1.逐枝建立的R1(t)(头/年)前期流率基本入树T1(t)见图3.1 图3.1年出栏变化量R1(t)(头/年)前期流率基本入树T1(t) 2.建立年出栏变化量R1(t)(头/年)流率基本入树T1(t)各变量方程:略

酶促反应动力学实验

酶动力学综合实验 实验(一)——碱性磷酸酶Km值的测定 【目的要求】 1.了解底物浓度对酶促反应速度的影响 2.了解米氏方程、Km值的物理意义及双倒数作图求Km值的方法。 【实验原理】 1、碱性磷酸酶: 碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。 2、米氏方程: Michaelis-Menten 在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即: 错误!未找到引用源。(1) 式中:v表示酶促反应速度, 错误!未找到引用源。表示酶促反应最大速度, [S]表示底物浓度, 错误!未找到引用源。表示米氏常数。 3、错误!未找到引用源。值的测定主要采用图解法,有以下四种: ①双曲线作图法(图1-1,a) 根据公式(1),以v对[s]作图,此时1/2错误!未找到引用源。时的底物浓度[s]值即为Km值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测错误!未找到引用源。一个近似值,因而1/2错误!未找到引用源。不精确。此外由于v对[S]的关系呈双曲线,实验数据要求较多,且不易绘制。 ②Lineweaver- Burk作图法双倒数作图法(图1-1,b) 实际工作中,常将米氏方程(式(1))作数学变换,使之成为直线形式,测定要方便、精确得多。其中之一即取(1)式的倒数,变换为Lineweaver- Burk方程式:错误!未找到引用源。(2) 以错误!未找到引用源。对错误!未找到引用源。作图,即为y=ax+b形式。此时斜率为错误!未找到引用源。,纵截距为错误!未找到引用源。。把直线外推与横轴相交,其截距相交,其截距即为—错误!未找到引用源。。 ③Hofstee作图法(略) 把(2)式等号两边乘以错误!未找到引用源。,得: 错误!未找到引用源。(3) 以v对错误!未找到引用源。作图,这时斜率为错误!未找到引用源。,纵截距

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

蔗糖转化反应动力学 实验报告

蔗糖转化反应动力学 姓名: 学号: 班级: 1 实验目的 1) 测定蔗糖水溶液在酸催化作用下的反应速率常数和半衰期。 2) 了解旋光度的概念,学习旋光度的测量方法及在化学反应动力学研究中的应用。 2 原理 蔗糖在水溶液中的转化反应为 此反应是一个二级反应,在纯水中反应速率极慢,通常需要在H + 的催化作用下进行。当蔗糖含量不大时,反应过程中水是大量存在的,尽管有部分水分子参加了反应,仍可认为整个反应过程中水的浓度是恒定的。H +是催化剂,其浓度也保持不变。则此蔗糖转化反应可以看作是准一级反应,反应速率为 蔗果葡蔗kc dt dc dt dc dt dc ===-=υ 式中:k 为蔗糖转化反应速率常数,c 蔗 为时间t 时蔗糖的浓度。 当t =0时, kt c c =蔗 蔗,0ln 当蔗蔗,02 1 c c = 时,相应的时间t 即为半衰期21t ,且 k k t 6931 .02ln 21= = 测定不同t 时的c 蔗可求得k 。在化学反应动力学研究中,要求能实时测定某反应物或生成物的浓度,且测量过程对反应过程没有干扰,本实验通过测量旋光度来代替反应物或生成物浓度的测量。 旋光性物质的旋光角 A m m αα= 式中:αm 为旋光性物质的质量旋光本领,与温度、溶剂、偏振光波长等有关;m 为旋光性物质在截面积为A 的线性偏振光束途径中的质量。由此式可得 Mlc Al nMl m m ααα== M 为旋光性物质的摩尔质量,l 为旋光管的长度。当温度、溶剂、偏振光波长、旋光物质与旋光管长度一定时,将上式改写为 Ac =α 式中A 为常数。当旋光管中同时存在多种旋光性物质时,总的旋光角等于各旋光性物质旋光角之和。 蔗糖、葡萄糖和果糖都具有旋光性,但旋光能力不同,因此,随着反应的

实验5气体绝热指数实验报告大全

实验5气体绝热指数测量 【预习提示】 1、熟悉气体的定压比热容、定容比热容、绝热指数、热力学过程等基本概念。 2、理解热力学第一定律和理想气体的状态方程。 3、了解绝热膨胀法测量空气的绝热指数的基本原理和方法。 4、了解用传感器精确测量气体压强和温度的基本原理和方法。 【实验目的】 1、学习绝热膨胀法测量气体绝热指数的原理和方法。 2、观察和分析热力学系统的状态和过程特征,掌握实现等值过程的方法。 3、初步了解半导体气体压力传感器和电流型集成温度传感器的工作原理和使用方法。 【实验原理】 1、测量绝热指数的原理 根据热力学第一定律,Q= .E A ,系统自外界吸收的热量Q等于系统内能的增加:E 和对外界所做的功A之和。压强、温度、体积是研究气体状态的三个基本参量。 设想一储气瓶,上面有充气阀、放气阀,用打气球向瓶内 打气,瓶内空气被压缩,也强增大,温度升高。等瓶内气 体稳定后,空气分子分布均匀,瓶内气体温度与室温相 同,此时气体状态记录为 (p1 V1,T0);迅速打开放气阀,使瓶,内气体与大气相 通,则瓶内气体将有喷出,当压强降为大气压P o时,关闭 放气阀,根据热力学第一定律,气体对外界做功,内能减 少,气体温度下降为「,,由于放 气较快,瓶内保留气体可视作为未与外界进行热量交换, 视为绝热膨胀过程;瓶内气体低于外界温度,气体将会从外界吸热直到达到室温为止,压强也会 增加为P2,这个过程视作为等容吸热过程。 将绝热膨胀后瓶内剩余气体作为一定质量的热力学系统来研究。剩余气体放气前处于状态 I (p,y,T o),经过绝热膨胀后气体由状态I变为状态II (P),V2,T1 κV是瓶内剩余气体 在状态I的体积,V是储气瓶的体积。再经过等容吸热的过程由状态II P0,V2,T1变为状 态III P2,V2,T0。气体的状态变化过程如图所示。由于状态I和状态III的温度均为T o,因此,由状态I到状态III可视为等温过程。 I-II绝热过程状态变化方程: P1V1 = P0V2 (泊松方程)

流体力学及气体动力学综合实验报告册(二)

流体力学及气体动力学综合实验实验报告册(二) 班级 姓名 学号 成绩 西北工业大学动力与能源学院 2015年11月

实验三沿程损失实验 一、实验目的 1、验证沿程水头损失与平均流速的关系。 2、掌握管道沿程阻力系数λ的测量方法。 二、实验设备 实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。 接 水 盒 图3-1 沿程损失实验原理图 三、实验原理

四、实验方法与步骤 1. 确定出水阀完全开启,进水阀半开启。启动水泵,排出实验管道、测压计中的气泡。 2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重 法测定流量。每次测量流量的时间应大于10秒。 3. 调整流量,继续测量,直至进水阀全开。 4. 如此测量10次以上,其中层流流动时测量3~5次。 5. 每次实验均要测量温度。 6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。 五、实验成果及要求 实验台号No 1.记录计算有关常数: 管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。 运动粘度6 21.7751010.03370.000221t t υ-?= =++ 2/m s

2.实验数据记录与计算 六、实验分析与讨论: 1.什么是沿程损失,影响沿程损失的因素有哪些? 2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。

实验四局部损失实验 一、实验目的 1、掌握管路中测定局部阻力系数的方法。 2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。 3、加深对局部阻力损失机理的了解。 二、实验装置 实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。 图4-1 局部阻力系数测定实验装置 三、实验原理

气垫导轨实验报告

气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

造球、焙烧、还原反应动力学综合实验报告

造球、焙烧、还原反应动力学综合实验 摘要:本实验主要分为造球、生球焙烧、还原反应三个部分,全面的演示了炼铁的全过程。其中造球包括生球形成,生球抗压强度测定,生球落下强度测定。 关键词:铁矿粉造球生球焙烧球团还原反应 The experiment of pelletizing,Pellet roasting and reduction reaction Abstract:This experiment mainly have three parts,pelletizing, Pellet roasting and reduction reaction. It shows all the Process of Iron-making. the pelletizing contains Determination of compressive strength of green-ball, Determination of Falling strength of green-ball。 Key word: pelletizing Pellet roasting reduction reaction 正文: 一、造球实验 造球是细磨物料在造球设备中被水湿润,借助机械力的作用而滚动成球的过程。在工业生产中,湿料连续加到造球机中,母球在造球机中不断的滚动而被压密,引起毛细管形状和尺寸的改变,从而使过剩的毛细管被迁移到母球表面,潮湿的母球在滚动中很容易粘上一层润湿程度较低的湿料。再压密,表面再粘上一层湿料,如此反复多次,母球不断长大,一直到母球中的摩擦力比滚动时的机械压密

作用力大为止,如果要使母球继续长大,必须人为地使母球的表面过分湿润,即向母球表面喷水,母球长大应满足以下3个条件: (1)机械外力的作用,使滚动粘附料层和压密; (2)有润湿程度较低的物料,能粘附在过湿的母球表面; (3)母球表面必须有过湿层,必要时可通过喷水实现。 实验设备:造球机,重量计 生球要求:合适的生球抗压强度和生球落下强度 配料:95%以上的精矿粉,添加剂为膨润土及一些矿质元素等 实验生球直径:10~12mm 生球测试数据 二、生球焙烧实验 生球烧结的目的: 铁矿粉在一定的高温作用下,部分颗粒表面发生软化和熔化,产生一定量的液相,并与其他未熔矿石颗粒作用,冷却后,液相将矿粉颗粒粘结成块,达到人造富矿的目的。 生球烧结的目的: (1)为高炉提供冶金性能好的优质烧结矿; (2)除去矿石中的有害杂质; (3)可以扩大炼铁原料的来源。 实验设备:三段式电阻炉模拟焙烧机 球团矿的焙烧阶段: 干燥、焙烧、均热、冷却五个阶段

实验报告总结(精选8篇)

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉: 1.手脚勤快,热心帮忙他人。初来匝道,不管是不是自己的份内之事,都就应用心去完成,也许自己累点,但你会收获很多,无论是知识与经验还是别人的称赞与认可。 2.多学多问,学会他人技能。学问学问,无问不成学。知识和经验的收获能够说与勤学好问是成正比的,要记住知识总是垂青那些善于提问的人。 3.善于思考,真正消化知识。有知到识,永远不是那么简单的事,当你真正学会去思考时,他人的知识才能变成你自己的东西。 4.前人铺路,后人修路。墨守陈规永远不会有新的建树,前人的道路固然重要,但是学会另辟蹊径更为重要。

化工原理吸收实验报告总结归纳

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系 2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式:

相关的填料层高度的基本计算式为: OL OL N Z H = 其中,m x x e OL x x x x x dx N ?-=-=?2 11 2 Ω= a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=,吸收塔径φ=,填料层高度(陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和(金属θ环)。 表1 填料参数 2.图2是氧气吸收解吸装置流程图。氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压,为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9,与水并流吸收。富氧水经管道在解吸塔的顶部喷淋。空气由风机13供给,经缓冲罐14,由阀16调节流量经转子流量计17计量,通入解吸塔,贫氧水从塔底经平衡罐19排出。自来水经调节阀10,由转子流量计17计量进入吸收塔。 由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。空气流量前装有计前表压计23。为了测量填料层压降,解析塔装有压差计22。

物理化学实验报告-乙酸乙酯皂化反应动力学

乙酸乙酯皂化反应动力学 一、实验目的 1)了解二级反应的特点。 2)用电导法测定乙酸乙酯皂化反应的速率常数。 3)由不同温度下的速率常数求反应的活化能。 二、实验原理 乙酸乙酯在碱性水溶液中的消解反应即皂化反应,其反应式为: +→+ 反应式是二级反应,反应速率与及的浓度成正比。用分别表示乙酸乙酯和氢氧化钠的初始浓度,表示在时间间隔内反应了的乙酸乙酯或氢 氧化钠的浓度。反应速率为: 为反应速率常数,当时,上式为: 反应开始时,反应物的浓度为,积分上式得: 在一定温度下,由实验测得不同时的值,由上式可计算出值。 改变实验温度,求得不同温度下的值,根据Arrhenius方程的不定积分式有:

以对作图,得一条直线,从直线斜率可求得。 若求得热力学温度时的反应速率常数,也可由Arrhenius方程的定积分式变化为下式求得值: 本实验通过测量溶液的电导率代替测量生成物浓度(或反应物浓度)。乙酸乙酯、乙醇是非电解质。在稀溶液中,非电解质电导率与浓度成正比,溶液的电导率是各离子电导之和。反应前后离子浓度不变,整个反应过程电导率的变化取决于与浓度的变化,溶液中的导电能力约为的五倍,随着反应的进行,浓度降低,的尝试升高,溶液导电能力明显下降。 一定温度下,在稀溶液中反应,为溶液在时的电导率,分别是与、电导率有关的比例常数,于是: ,; ,; ,; 由此得 即

即 而即 上式变形为: 以对作图为一直线,斜率为,由此可求出。三、仪器和试剂 恒温槽、电导率仪、电导电极、叉形电导池、秒表、碱式滴定管、10ml、25m移液 管、100mL,50ml容量瓶、乙酸乙酯(A.R.)、氢氧化钠溶液(0.04mol·) 四、实验步骤 1.准备溶液: 1)打开恒温槽,设置温度为25℃。将叉形电导池洗净、烘干。同时清洗两个100ml、一个50ml的容量瓶;

酶促反应动力学实验报告

酶促反应动力学实验报告 杨恩原 实验目的: 1.观察底物浓度对酶促反应速度的影响 2.观察抑制剂对酶促反应速度的影响 3.掌握用双倒数作图法测定碱性磷酸酶的Km值 实验原理: 一、底物浓度对酶促反应速度的影响 在温度、pH及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[S]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。底物浓度和反应速度的这种关系可用米氏方程式来表示(Michaelis-Menten方程)即: 式中Vmax为最大反应速度,Km为米氏常数,[S]为底物浓度 当v=Vmax/2时,则Km=[S],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。若将米氏方程变形为双倒数方程(Lineweaver-Burk方程),则此方程为直角方程,即: 以1/V和1/[S]分别为横坐标和纵坐标。将各点连线,在横轴截距为-1/Km,据此可算出Km值。

本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[S]的倒数作图,计算出其Km值。 二、抑制剂对酶促反映的影响 凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。酶的特异性抑制剂大致上分为可逆性和不可逆性两类。可逆性抑制又可分为竞争性抑制和非竞争性抑制等。竞争性抑制剂的作用特点是使该酶的Km值增大,但对酶促反映的最大速度Vmax值无影响。非竞争性抑制剂的作用特点是不影响[S]与酶的结合,故其Km值不变,然而却能降低其最大速度Vmax。本实验选取Na2HPO4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。 实验步骤: 实验一:底物浓度对酶促反应速度的影响 管号 试剂 1.取试管9支,将L基质液稀释成下列不同浓度:

分子模型实验报告

分子模型实验报告 篇一:分子模拟实验实验报告生物大分子 分子模拟实验作业——生物大分子 一、实验部分 12-3-1获得PDB号为“1HCK”的蛋白(human-cyclin-dependent kinase 2,i,e.,CKD2和ATP的结合晶体结构),并采用不同的模型观察其特点 ①分别用卡通模型和丝带模型显示生物大分子结构,并用球棍模型、棒状模型显示其中小分子、金属离子等。 参考文献: Analysis of CDK2 Active-Site Hydration: A Method to Design New Inhibitors Zdeneˇk Krˇ?′z PROTEINS: Structure, Function, and Bioinformatics 55:258–274 (XX) 12.2 分子对接 ①聚合物对接前效果图 ②聚合物对接后效果图 对接后实际距离和设置的最优值 12-3-2在样本文件中,创建冰的晶体结构,分别做温度为260K,273K,298K,373K下的分子动力学模拟(10 ps),观察晶体机构的变化情况,并做定性解释。

①不同温度下冰晶体结构图: 原始冰晶体结构图 由冰晶体在不同温度下的结构可见,随温度升高,冰晶体的各个水分子之间的距离不断增加,晶体结构趋向于分散无序状。 ②不同温度下,冰晶体分子动力学模拟图 ③不同温度下体系的总能量与势能 由曲线形状可见,经过分子动力学模拟之后,体系的能量降低,变得更加稳定。 由计算结果可见,体系的总能量和势能随温度的升高而增大。因为当温度升高时,分子的热运动加剧,使分子的伸缩、转动、振动势能增加从而使分子总能量增加,而体系的是能增加是因为非键相互作用尤其是分子间氢键相互作用减弱。 二、实验心得与体会 本次实验主要进行了生物大分子的模拟。生物大分子一般包含上千个原子,目前还不能应用量子化学从头计算方法模拟,常用的方法有QM/MM方法,和纯粹的分子动力学模型。 1.关于分子力学要求掌握四点内容:(1)分子力学中,离子间的相互作用势能函数是什么?(2)势函数中存在特定的参数,怎么给参数赋初值?(3)原子类型怎样确定?(4)力场有哪些?各自的适用范围是什么?下面详细解释:

大学物理实验气垫导轨实验报告

气轨导轨上得实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目得 1、学习气垫导轨与电脑计数器得使用方法。 2、在气垫导轨上测量物体得速度与加速度,并验证牛顿第二定律. 3、定性研究滑块在气轨上受到得粘滞阻力与滑块运动速度得关系。 二、实验仪器 气垫导轨(QG—5—1。5m)、气源(DC-2B型)、滑块、垫片、电脑计数器(MUJ-6B型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫得粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间得测量精度大大提高( Array如图,设U ;越小(越小), 4 或

5、牛顿第二定律得研究 若不计阻力,则滑块所受得合外力就就是下滑分力,。假定牛顿第二定律成立,有,,将实验测得得与进行比较,计算相对误差。如果误差实在可允许得范围内(<5%),即可认为,则验证了牛顿第二定律。(本地g取979。5cm/s2) 6、定性研究滑块所受得粘滞阻力与滑块速度得关系 实验时,滑块实际上要受到气垫与空气得粘滞阻力.考虑阻力,滑块得动力学方程为,,比较不同倾斜状态下得平均阻力与滑块得平均速度,可以定性得出f与v 得关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态"调平(粗调),后“动态"调平(细调),“静态”调平应在工作区间范围内不同得位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右得速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用得时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回得情况应基本相同.两光电门之间得距离一般应在50cm~70cm之间。 2、测滑块得速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返得测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门得时间、,然后按转换健,记录滑块通过两个光电门速度、,如此重复3次,将测得得实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨得单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度、与加速度,重复4次,取.再添2块(或1块)垫片,重复测量4次。然后取下垫片,用游标卡尺测量两次所用垫片得高度h,用钢卷尺测量单脚螺丝到双脚螺丝连线得距离L.计算,进比较与,计算相对误差,写出实验结论。 4、用电子天平称量滑块得质量m,计算两种不同倾斜状态下滑块受到得平均阻力,并考察两种倾斜状态下滑块运动得平均速度(不必计算),通过分析比较得出f与v得定性关系,写出实验结论。 五、注意事项 1、保持导轨与滑块清洁,不能碰砸。未通气时,不能将滑块放在导轨上滑动.实验结束时,先取下滑块,后关闭气源。 2、注意用电安全。 六、数据记录与处理

压气机性能实验报告概要

天津市高等教育自学考试 模具设计与制造专业 热工基础与应用 综合实验报告 (一)压气机性能实验 主考院校: 专业名称: 专业代码: 学生姓名: 准考证号:

一、活塞式压气机概述 1.活塞式压气机结构及工作原理 (1)活塞式压气机结构 压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。 本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。 活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。 图1.1 活塞式压气机机构简图 图1-2 三维仿真示意图

(2)活塞式压气机工作原理: 电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。 具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。当缸内压力高于输出空气管道内压力p后,排气阀打开。压缩空气送至输气管内,这个过程称为排气过程。 这种结构的压缩机在排气过程结束时总有剩余容积存在。在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。且由于剩余容积的存在,当压缩比增大时,温度急剧升高。特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。压力超过 0 . 6MPa ,各项性能指标将急剧下降。故当输出压力较高时,应采取分级压缩。分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。 活塞式空压机有多种结构形式。按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。按压缩级数可分为单级式、双级式和多级式三种。按设置方式可分为移动式和固定式两种。按控制方式可分为卸荷式和压力开关式两种。其中,卸荷式控制方式是指当贮气罐内的压力达到调定值时,空压机不停止运转而通过打开安全阀进行不压缩运转。这种空转状态称为卸荷运转。而压力开关式控制方式是指当贮气罐内的压力达到调定值时,空压机自动停止运转。 二、实验内容 1.实验目的 (1)压气机的压缩指数和容积效率等都是衡量其性能先进与否的重要参数。本实验是利用微机对压气机的有关性能参数进行实时动态采集,经计算处理、得到展开的和封闭的示功图。从而获得压气机的平均压缩指数、容积效率、指示功、指示功率等性能参数。 (2)掌握指示功、压缩指数和容积效率的基本测试方法。 (3)对使用电脑采集、处理数据的全过程和方法有所了解。 2.实验装置及测量系统 本实验仪器装置主要由:压气机、电动机及测试系统所组成。 测试系统包括:压力传感器、动态应变仪、放大器、计算机及打印机, 压气机型号:Z—0.03/7 汽缸直径:D=50mm 活塞行程: L=20mm 连杆长度:H=70mm,转速:n=1400转/分

相关文档
最新文档