基于HFSS分支定向耦合器设计说明书

基于HFSS分支定向耦合器设计说明书
基于HFSS分支定向耦合器设计说明书

基于HFSS分支定向耦合器设计

实验报告

学院电子科学与工程学院

姓名

学号

指导教师

2016年10月27日目录

一、实验目的 (1)

二、设计任务 (1)

三、设计思路 (2)

四、注意事项 (2)

五、基于HFSS分支定向耦合器设计过程 (2)

5.1 分支定向耦合器简介 (2)

5.2 使用HFSS设计分支定向耦合器 (3)

5.2.1 分支定向耦合器的理论计算 (3)

5.2.2 HFSS设计简介 (3)

5.2.3 HFSS设计环境概述 (4)

5.3 新建HFSS工程 (4)

5.4 创建分支定向耦合器模型 (5)

5.4.1 设置默认的单位长度 (5)

5.4.2 定义变量 (5)

5.4.3 添加新材料 (6)

5.4.4 创建带状线金属层模型 (7)

5.4.5 创建带状线介质层模型 (9)

5.5 分配边界条件和激励 (10)

5.6 求解设置 (11)

5.6.1 单频求解设置 (12)

5.6.2 扫频设置 (12)

5.7 设计检查和运行仿真分析 (13)

5.8 查看仿真分析结果 (14)

5.8.1 查看S参数扫频结果 (14)

5.9 分支定向耦合器的优化分析 (15)

5.9.1 新建一个优化设计工程 (15)

5.9.2 参数化分析设置和仿真分析 (16)

5.9.3 查看参数化分析结果 (17)

5.9.4 优化设计的设置和仿真分析 (18)

5.9.5 查看优化结果 (20)

5.9.6 优化后的S参数扫频结果 (20)

5.9.7 优化后的场分布图 (21)

5.9.8 查看4GHz频点的S矩阵 (21)

六、加分项 (22)

6.1 二阶分支定向耦合器建模 (22)

6.2二阶分支定向耦合器仿真结果 (24)

一、实验目的

●了解分支定向耦合器电路的原理及设计方法。

●学习使用HFSS软件进行微波电路的设计、优化和仿真。

二、设计任务

1.课题内容

运用功分器设计原理,利用HFSS软件设计一个90°(180°)分支定向耦合器

2.实现方式

自选一种或多种传输线实现,如微带线、同轴线、带状线,要求输入输出端口阻抗为50?。

3.基本要求

实现一个单阶90°分支定向耦合器的设计,带内匹配,隔离端口

,任选一种微波传输线结构实现,中心工作频率为4.0GHz。

4.加分项

多阶(),匹配隔离良好,,功率不等分,多种传

输线实现,带阻抗变换功能(输出端口阻抗不为50?)

三、设计思路

四、注意事项

1.传输线特性阻抗的计算

2.电长度与物理长度的换算

五、基于HFSS分支定向耦合器设计过程

5.1 分支定向耦合器简介

定向耦合器是把两根传输线放置在足够近的位置使得一条线上的功率可以耦合到另一条线上的元件。它的两个输出端口的信号幅度可以相等也可以不等,一种应用特别广泛的耦合器是3dB 耦合器,这种耦合器的两个输出端口输出信号的幅度是相等的。

5.2 使用HFSS设计分支定向耦合器

本节使用HFSS软件设计一个分支定向耦合器,此外分支定向耦合器使用带状线结构。分支定向耦合器的工作频率为4GHz,带状线介质厚度为3mm,介质材料的相对介电常数为2.16,损耗角正切为0.001;带状线的金属层位于介质层的中央;端口匹配负载均为50?。

5.2.1 分支定向耦合器的理论计算

使用AWR公司Microwave Office的TXLine工具,可以计算出在上述设计条件下,带

状线的物理长度________

__D__D_Dd__D_Dd__________??

图5.2.1 分支定向耦合器模型图

5.2.2 HFSS设计简介

此外分支定向耦合器使用带状线结构,因此HFSS工程可以采用终端驱动求解类型。4个端口都与背景相接处,所以采用波端口激励,且端口负载阻抗设置为50 ?。为了简化建模操作以及节省计算时间,带状线的金属层使用理想导体来实现,即通过创建二维平面然后给二维平面指定理想导体边界条件来模拟带状线的金属层,带状线金属层位于介质层的中

央。在HFSS中,与背景层相接触的表面会自动设置为理想导体边界,因此带状线上下两边的参考地无需额外指定,直接使用默认的理想导体边界即可。

5.2.3 HFSS设计环境概述

求解类型:终端驱动求解

建模操作:

●模型原型:长方体、矩形面

●模型操作:复制操作、合并操作、相减操作

边界条件和激励:

●边界条件:理想导体边界

●端口激励:波端口激励

求解设置:

●求解频率:4GHz

●扫频设置:快速扫频,扫频范围1-7GHz

后处理:S参数扫频曲线、S矩阵

5.3 新建HFSS工程

1.运行HFSS 并新建工程

2.设置求解类型

设置当前设计为终端驱动求解类型。

从主菜单栏选择【HFSS】→【Solution Type】,打开如图5.3.1所示的Solution Type对话框,选中Driven Terminal单选按钮,然后单击【OK】按钮,退出对话框,完成设置。

图5.3.1

5.4 创建分支定向耦合器模型

5.4.1 设置默认的单位长度

设置当前设计在创建模型时使用的默认长度单位为毫米。从主菜单栏选择【Modeler】→【Units】命令,打开如图5.4.1所示的“模型长度单位设置”对话框。在该对话框中,Select units项选择毫米单位(mm),然后单击【OK】按钮,退出对话框,完成设置。

图5.4.1

5.4.2 定义变量

定义4个设计变量L1、W1、L2、W2,分别设置其初始值为12.75mm、2.51mm、12.75mm、4.08mm。

从主菜单栏中选择【HFSS】→【Design Properties】命令,打开“设计属性”对话框。在

该对话框中,单击按钮,打开Add Property 对话框;在Add Property 对话框的Name项输入变量名L1,Value项输入变量的初始值12.75mm,如图5.4.2所示。然后单击按钮,退回到“属性”对话框。此时,“属性”对话框会列出添加的变量L1,确认无误后单击“属性”对话框的按钮,同理定义变量W2、L2、W1,完成变量定义。

图5.4.2

5.4.3 添加新材料

向材料库中添加新的介质材料,并设置其为建模时使用的默认材料;新添加材料的相对介电常数为2.16,介质损耗正切为0.000429。从主菜单栏中选择【Tools】→【Edit Configured Libraries】→【Materials】命令,在弹出对话框中单击按钮,打开如图5.4.3所示的View/Edit Material 对话框。在该对话框中,MaterialName 项输入材料名称Material1,Relative Permittivity项对应的Value值处输入相对介电常数2.16,Dielectric Loss Tangent 项对应的Value 值处输入介质的损耗正切0.001。然后单击按钮,退出对话框,完成向材料库中添加新材料的操作。

图5.4.3

5.4.4 创建带状线金属层模型

1.创建矩形平面

在HFSS模型窗口中,通过矩形平面作图工具创建如下两个矩形平面。

表5.4.4 矩形平面参数表

用rectangle_1减去rectangle_2,得到如下图形(图5.4.4):

图5.4.4

3.画出端口

图形如下所示(图5.4.5):

图5.4.5

4.合并图形

通过unite运算得到分支定向耦合器的基本结构(图5.4.6)

图5.4.6 5.4.5 创建带状线介质层模型

1.创建介质层

长方体参数如下表:

表5.4.5 长方体参数表

创建后的介质层如下(图5.4.7):

图5.4.7

2.设置介质层材料

将Material中的材料改为‘Material1’(图5.4.8)

图5.4.8

5.5 分配边界条件和激励

1.设置分支定向耦合器带状线为理想导体边界

在操作历史树下选中带状线,选中后的带状线模型会高亮显示;然后右键单击工程树下的Boundaries节点,从弹出菜单中选择【Assign】→【Perfect E】,打开Perfect E Boundary 对话框,直接单击对话框按钮,设置选中的带状线为理想导体边界,如图5.5.1

所示。

图5.5.1

2.设置耦合器四个端口为波端口激励

首先设置端口1 的激励单击F 键,切换到面选择状态,选中1、4端口所在的端面

右键,从弹出菜单中选择【Assign】→【Wave Port】,同理设置2、3端口。

双击工程树Boundaries节点下的端口激励P1、P2、P3、P4,打开Wave Port 对话框,选中对话框的PostProcessing选项卡,确认其端口阻抗为50?,如图5.5.3所示;

然后单击【OK】按钮关闭该对话框。

图5.5.3

5.6 求解设置

由于设计的分支定向耦合器工作频率为4GHz,所以可以设置自适应网格剖分频率

4GHz,另外,为了查看设计的分支定向耦合器在工作频率两侧的频率响应,需要设置

1-7GHz的扫频分析。

5.6.1 单频求解设置

右键单击工程树下的Analysis节点,在弹出菜单中选择【Add Solution Setup】命令,打开如图5.6.1所示的Solution Setup对话框。在该对话框中,Setup Name项保留默认名称Setup1;Solution Frequency项输4GHz,即设置求解频率为4GHz;Maximum Number of Passes项输入20,即设置HFSS 软件进行网格剖分的最大迭代次数为20;Maximum Delta S项输入0.02,即设置收敛误差为0.02;其他项保持默认设置。然后单击【OK】按钮,完成求解设置,退出对话框。设置完成后,求解设置的名称Setup1会添加到工程树的Analysis节点下。

图5.6.1

5.6.2 扫频设置

展开工程树的Analysis节点,选中求解设置Setup1,单击右键,在弹出菜单中选择【Add Frequency Sweep】,打开如图5.6.2所示的Edit Sweep 对话框,进行扫频设置。在该对话框中,Sweep Name 项保留默认的名称Sweep1;Sweep Type 项选择Fast,设置扫频类型为快速扫频;在Frequency Setup栏,Type项选择LinearStep,Start项输入1GHz,Stop项输入7GHz,Step项输入0.05GHz,即设置扫频范围为1-7GHz,频率步进为0.05GHz。然后单击对话框【OK】按钮,完成扫频设置,退出对话框。设置完成后,扫频

设置的名称Sweep1会添加到工程树Analysis > Setup1节点下。

图5.6.2

5.7 设计检查和运行仿真分析

通过前面的操作,我们已经完成了模型创建和求解设置等HFSS 设计的前期工作,接下来就可以运行仿真计算,查看设计结果了。在运行仿真计算之前,通常需要进行设计检查,检查设计的完整性和正确性。

在工具栏中点击【Validation Check】按钮,进行设计检查,并弹出如图5.7.1所示的“检查结果显示”对话框。“扫描结果显示”对话框的每项都显示图标,表示当前HFSS设计正确、完整。单击关闭对话框,点击工具栏的【Analyze All】按钮,运行仿真分析。

图5.7.1

5.8 查看仿真分析结果

设计的分支定向耦合器工作频率为4GHz,设计中仿真分析了耦合器1-7GHz频段的扫频特性。在分析结果中,我们要观察耦合器在1-7GHz频带内S参数的扫频特性。。

5.8.1 查看S参数扫频结果

右键单击工程树下的Results 节点,在弹出菜单中选择【Create Terminal Solution Data Report】→【Rectangular Plot】命令,打开“结果报告设置”对话框。在该对话框中,Category 项选中Terminal S Parameter,Quantity 项按住Ctrl 键的同时选中St(P1,P1)、St(P2,P1)、St(P3,P1)和St(P4,P1),在Function栏选中dB,如图5.8.1阴影部分所示。然后单击按钮,生成结果报告;再单击按钮关闭对话框。此时,生成的S11、S21、S31 和S41 在1-7GHz 范围内随频率的变化曲线报告如图5.8.2所示。

图5.8.1

图5.8.2

在未优化前,我们可以从上图中看出S11、S41在4Ghz处并未满足设计要求,下面我们对结果进行优化。

5.9 分支定向耦合器的优化分析

利用Optimetrics模块对分支定向耦合器的L2进行参数扫描分析和设计优化。参数扫描分析的目的是:在工作频率为4GHz 时,查看S11、S21、S31 和S41随着变量L2的变化曲线;优化设计的目标是:在工作频率为4GHz 时,求解出L2的长度,使S11和S41均小于等于-10dB。

5.9.1 新建一个优化设计工程

1.从主菜单栏选择【File】→【Open】,或者直接单击工具栏的按钮,打开上一节所保存

的工程文件Project3.hfss;然后从主菜单栏选择【File】→【Save As】,把工程文件另存为Project3_Optim.hfss。

2.展开工程树下的Analysis节点,再展开Analysis节点下的Setup1项,选中Sweep1

项,然后单击工具栏的按钮,删除扫频设置。

5.9.2 参数化分析设置和仿真分析

1.添加参数扫描变量

选中工程树下的Optimetrics节点,单击右键,从弹出菜单栏中选择【Add】→【Parametric】,打开Setup Sweep Analysis 对话框,单击对话框的按钮,打开Add/Edit Sweep 对话框;在Add/Edit Sweep对话框中,Variable 项选择变量L2作为扫描变量,扫描类型选择为LinearStep,Start、Stop、Step 项分别输入11、15、0.1,单位为mm,然后单击【OK】按钮,设置过程和设置结果如图5.9.1所示。单击按钮,回到Setup Sweep Analysis对话框。

图5.9.1

2.定义输出变量

定义2个输出变量S11和S41。选择Setup Sweep Analysis对话框的Calculations选项卡,单击(Setup Calculations)按钮,打开Add/Edit Calculation对话框,设置好后如图5.9.2所示。

基于HFSS带通滤波器设计文献综述

2012 届本科毕业设计(论文)文献综述 题目基于HFSS的带通滤波器设计 学院物理与电子工程学院 年级08 专业电子信息工程 班级 2 学号160408220 姓名刘建 指导教师施阳职称

基于HFSS 带通滤波器设计文献综述 1引言 我们知道,当一定复杂程度的信号通过几乎任何电子系统时,它都需要经过某种滤波电路进行滤波。一般在一个实际应用的电子系统中,因输入信号往往因受干扰等原因而带有其它一些不需要的频率信号,就必须使用滤波电路将它衰减到足够小的程度。滤波电路是一种可通过或阻止某种频率信号的电路,其功能就是让指定频段的信号能顺利地通过,而对其它频段的信号起到衰减作用。它分为两种:无源和有源滤波电路。无源滤波电路是由无源器件(电阻、电容和电感)组成,性能较差有源滤波电路是由集成运算放大器和RC 等网络构成,具有几个主要优点:体积小,重量轻;电路的输入和输出之间具有良好的隔离;除了起滤波作用外,还可放大输入信号,且容易调节放大倍数等。BPF 主要用来截取突出有用频段的信号,削弱其余频段的信号或干扰和噪声,以提高信噪比。 2 设计原理 2.1 带通滤波器工作原理及HFSS 简介 带通滤波器中作原理 一个理想的滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度dB 来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦—开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。在频带较低的剪切频率1f 和较高的剪切频率2f 之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是2f 和1f 之间的差值。 HFSS 简介 HFSS 是ANSOF T 公司开发的一个基于物理原型的EDA 设计软件. 使用HFSS 建立结构模进行3D 全波场分析,可以计算.①基本电磁场数值解和开边界问题,近远场辐射问题; ②端口特征阻抗和传输常数; ③ S 参数和相应端口阻抗的归一化S 参数; ④结构的本征模或谐振解.依靠其对电磁场精确分析的性能,使用户能够方便快速地建立产品虚拟样机.

基于HFSS的滤波器设计流程

滤波器设计流程: 1.确定设计指标要求 2.查阅资料,确定形状 3.建模,仿真 4.优化结果 5.版图,加工,测试 本例设计一个带通滤波器,通过微带线结构实现,工作频率覆盖。选用基板材料为Rogers 4350,其相对介电常数为,厚度为h=0.508mm,金属覆铜厚度h1=0.018mm, 表1 模型初始尺寸

设计步骤(以为例) 一开始 (一)建立工程 1.在HFSS窗口中,选择菜单File->New 2.从Project菜单中,选择Insert HFSS Design (二)设计求解模式 1.选择菜单HFSS->Solution Type 2.在Solution Type窗口,选择Driven Modal,点击OK 二建立3D模型 (一)定义单位并输入参数表 1.选择菜单Modeler->Units 2.设置模型单位:mm,点击OK 3.选择菜单栏 HFSS->Design Properties再弹出的窗口中,点ADD添加参量,将上面模型的参数表中的变量全部添加进去,如下图: (二)创建金属板R1

1.在菜单栏中点击Draw->Box,创建Box1 2.双击模型窗口左侧的Box1,改名为R1,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。 3.双击左侧R1的子目录Createbox,修改金属板大小及厚度。Position输入坐标(0mm,0mm,0mm),金属板长L1=7.2mm,宽W1=0.8mm,厚h1=0.018mm。点击确定。 (三)创建金属板R1_1 1.在菜单栏中点击Draw->Box,创建Box2 2.双击模型窗口左侧的Box2,改名为R1_1,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。 3.双击左侧R1_1的子目录Createbox,修改金属板大小及厚度。Position输入坐标(W1+S1,0mm,0mm),S1=,金属板长L1=7.2mm,宽W1=0.8mm,厚h1=0.018mm。点击确定。 (四)创建金属板R2 1.在菜单栏中点击Draw->Box,创建Box3 2.双击模型窗口左侧的Box3,改名为R2,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。 3.双击左侧R2的子目录Createbox,修改金属板大小及厚度。Position输入坐标(W1+S1,L1,0mm),金属板长L2=7.1mm,

微带线定向耦合器的设计word文档

微带线定向耦合器的设计 一、数学模型 1、耦合度和传输系数 图12所示,是平行耦合微带线定向耦合器的示意图。当①端口信号激励时,③端口为隔离端无输出、而耦合端口②及直通端口④有输出。根据奇、偶模分析方法可知,耦合端口②及直通端口④的输出电压分别为, θ θ θθθ θθ θsin )(cos 2sin cos sin )(cos 2sin cos 2020000002 0000002020000200002Z Z j Z Z jZ Z Z Z Z j Z Z jZ Z Z U e e e e +++-+++= θ θθ θsin )(cos 2sin )(cos 22020000000 0020200000 02Z Z j Z Z Z Z Z Z j Z Z Z Z U e e e ++-++= 式中:e Z 0和00Z 分别为耦合微带线的偶模和奇模特性阻抗,e θ和0θ分别是耦合微带线的 偶模和奇模的电长度,0Z 是端口的端接阻抗。 根据(1)式可知定向耦合器的耦合度为, )dB (| |lg 202U C =' 而根据(2)式可得传输系数为, )dB (| |lg 204U T = 但需要满足以下条件,即: ) 1() 2() 3() 4(

e O e e e e Z Z Z Z Z Z Z θθθθsin sin sin sin 0000 00000020 ++== 如果假设耦合微带线中传输的是TEM 波(而不是准TEM 波),则可忽略奇、偶模相速的差别而认为:θθθ==0e ,此时(1)~(4)式可以改写成以下形式,即: θ θθsin cos 1sin 2002j C jC U +-= θ θsin cos 11202 04j C C U +--= 式中: 00 000 00Z Z Z Z C e e +-= 2f f ? =πθ 但需要满足以下条件,即: 00020Z Z Z e = 根据(5)~(9)式可知,此时的耦合度和传输系数分别变为, )dB ()cos 1sin lg(102 20220θ θ C C C -=' )dB ()cos 11lg(102 202 0θ C C T --= 而中心频率的耦合度为, ) dB () lg(20lg 2000 000 00Z Z Z Z C C e e +-==') 5() 6() 7()8() 9() 10()11() 12() 13(

定向耦合器

定向耦合器是一种通用的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。主要技术指标有方向性、驻波比、耦合度、插入损耗。 基本简介 定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配。 定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。 定向耦合器是把两根传输线放置在足够近的位置使得一条线上的功率可以耦合到另一条线上的元件。它的两个输出端口的信号幅度可以相等也可以不等,一种应用特别广泛的耦合器是3dB 耦合器,这种耦合器的两个输出端口输出信号的幅度是相等的。 在20世纪50年代初以前,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe小孔耦合理论,Cohn和Levy等人也做了很多贡献。 随着航空和航天技术的发展,要求微波电路和系统做到小型化、轻量化和性能可靠,于是出现了带状线和微带线。随后由于微波电路与系统的需要有相继出现了鳍线、槽线、共面波导和共面带状线等微波集成传输线。这样就出现了各种传输线定向耦合器。 第一个真正意义上的定向耦合器由H. A. Wheeler在1944年设计实现,Wheeler使用了一对长为四分之一中心频率波长的圆柱来实现电场与磁场的能量相互耦合,遗憾的是这种方法只能实现一个倍频程的带宽。 定向耦合器是一种具有方向性的功率耦合(分配)元件。它是一种四端口元件,通常由称为直通线(主线)和耦合线(副线)的两段传输线组合而成。直通线和耦合线之间通过一定的耦合机制(例如缝隙、孔、耦合线段等)把直通线功率的一部分(或全部)耦合到耦合线中,并且要求功率在耦合线中只传向某一输出端口,另一端口则无功率输出。如果直通线中波的传播方向变为与原来的方向相反,则耦合线中功率的输出端口与无功率输出的端口也会随之改变,也就是说,功率的耦合(分配)是有方向的,因此称为定向耦合器(方向性耦合器)。 定向耦合器作为许多微波电路的重要组成部分被广泛应用于现代电子系统之中。它可以被用来为温度补偿和幅度控制电路提供采样功率,可以在很宽的频率范围完成功率分配与合成;在平衡放大器中,它有助于获得良好的输入输出电压驻波比(VSWR);在平衡混合器和微波设备(例如,网络分析仪)中,它可以被用来采样入射和反射信号;在移动通信中,使用

HFSS微带低通滤波器的设计

微带低通滤波器的设计 一、题目 低通滤波器的设计 技术参数:截止f = 2.2GHz;f=4GHz时,通过小于30db;特性阻抗Z0=50 Ohm。波纹系数0.2db 材料参数:相对介电常数9.0,厚度h=0.8,Zl=10 0hm,Zh=100 0hm。仿真软件:HFSS 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为f < 2.2GHz;通带插入损耗;特性阻抗Z0=50 Ohm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的宽度及长度。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器,?s = fs/fc = 1.82,?s -1 = 0.82及Lr = 0.2dB,Ls >= 30,查表得N=5,原型滤波器的归一化元件参数值如下: g1 = g5 = 1.3394,g2 = g4 = 1.3370,g3 = 2.1660,gL= 1.0000。 该滤波器的电路图如下图所示:

(2)计算各元件的真实值(没用):终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*2.2*10^9*50) = 1.938 pF, C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*2.2*10^9*50) = 3.134 pF, L2 = L4 = Z0*g2/(2*pi*f0) = 50*1.3370/(2*3.1416*2.2*10^9) = 4.836 nH。 (3)计算微带低通滤波器的实际物理尺寸: 低阻抗(电容)为Zl = 10?,高阻抗(电感)为Zh = 100?。 电长度的计算Le:p357的8.86a和8.86b两个公式。 Le1=g1*Zl*57.3/R0=1.3394*10*57.3/50=15.35° Le2=g2*R0*57.3/Zh=1.337*50*57.3/100=38.3° Le3=24.8° L e4=38.3° Le5=15.35°

定向耦合器的研究

定向耦合器的研究 几种定向耦合器结构与分析 班级 XXXXXXXXXXXXXXXX 学号 XXXXXXXXXXX 姓名 XXXXXX 功率分配器是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。也叫过流分配器,分有源,无源两种,可平均分配一路信号变为几路输出,一般每分一路都有几dB的衰减,信号频率不同,分配器不同衰减也不同,为了补偿衰减,在其中加了放大器后做出了无源功分器。 定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配,所以它是一种具有方向性的功率分配器。 定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。 由于微带线具有平面电路结构,用其做成的定向耦合器往往比波导型的立体结构简单的多,故在微波集成电路中获得广泛应用。下面我们将来研究几种微带定向耦合器。 微带分支线定向耦合器 微带分支线定向耦合器由两根平行导带组成,通过一些分支导带实现耦合。分支导带的长度及其间隔均为1/4线上的波长,其结构示意图如下图所示,其分支数可为两分支或更多。所谓电桥是一种将功率平分耦合的定向耦合器的特称,即3dB定向耦合器。下面着重分析二分支的情况。 在一些电桥电路及平衡混频器等元件中,常用到分支线定向耦合器,微带二分支定向耦合器如下图所示,图中的字母G、H和数字1是各线段特性导纳的归一化值(对50欧姆阻抗对应的导纳值归一化),因各端口的导纳值相同,所以又称为等阻二分支定向耦合器。

HFSS 与腔体滤波器设计

HFSS9.0与腔体滤波器设计

HFSS9.0介绍 ?HFSS9.0提供了更为简洁直观的用户设计界面、精确自适应的场求解器、拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无源结构的s-参数和全波电磁场。 ?提高研发效率的最佳选择 强大的绘图功能 与AutoCAD完全兼容,完全集成ACIS固态建模器。 无限的undo/redo 多个物体组合、相减、相交布尔运算 动态几何旋转 点击物体选择/隐藏 二维物体沿第三维扫描得到三维物体 宏记录/宏文本 锥螺旋、圆柱和立方体的参数化宏 可选的“实表面”几何体 在线关联帮助以加快新功能的应用。

?先进的材料库 综合的材料数据库包括了常用物质的介电常数、渗透率、电磁损耗正切。用户在仿真中可分析均匀材料、非均匀材料、各向异性材料、导电材料、阻性材料和半导体材料。对不可逆设备,标配的HFSS可直接分析具有均匀静磁偏的铁氧体问题,用户还可选用ANSOFT 3DFS选件以完成铁氧体静磁FEM的解算仿真。 ?模型库 ANSOFT HFSS含有一宏大的库,用该库可参数化定义标准形状: 微带T行结 宽边耦合线 斜接弯和非斜接弯 半圆弯和非对称弯 圆螺旋和方螺旋 混合T接头 贴片天线 螺旋几何

?强大的宏 用户可登录到非常易读完整的作图和仿真的宏文件中。利用置于宏语言中的自动记录和重放功能,即可执行参数化仿真。在重放时宏即时提示几何尺寸,使用户能基于名义结构创建几何库,随后对名义结构进行仿真得出设计曲线、几何敏感性和最优化设计。 ?强大的天线设计功能 计算天线参量,如增益、方向性、远场方向图剖面、远场3D图和3dB带宽。绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴比。 二分之一、四分之一、八分之一对称模型并自动计算远场方向图。 频率扫描技术

基于ADS的定向耦合器的设计讲解

本科毕业论文(设计、创作) 题目:基于ADS的定向耦合器的设计 学生姓名:张振华学号: 110102044 所在系院:电子电气工程学院专业:电子科学与技术 入学时间: 2011 年 9 月导师姓名:杨斌职称/学位:讲师/学士 导师所在单位:安徽三联学院 完成时间: 2015 年 6 月 安徽三联学院教务处制

基于ADS的定向耦合器的设计 摘要:在20世纪50年代初,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe 小孔耦合理论。定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配。定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。定向耦合器在微波波段有着广泛的应用,其主要用途有用来监视功率、频率和频谱,把功率进行分配和合成,构成平衡混频器和测量电桥,利用定向耦合器来测量反射功率系数和功率。本设计主要利用ADS2011 软件设计微带分支定向耦合器的方法,及利用ADS设计、仿真微带分支定向耦合器,完成原理图和布局图。 关键词:定向耦合器;微带分支;ADS;微波

Design of directional coupler based on ADS Abstract: In twentieth Century the beginning of the 50's, the microwave equipment is used by almost all metal waveguide and coaxial line directional coupler circuit, at that time also many for the waveguide aperture coupling directional coupler, its theoretical basis is the Bethe aperture coupling theory. Directional coupler is a kind of microwave devices are widely used in microwave system, it is the essence of the microwave signal power distribution according to a certain proportion of the directional coupler. Directional coupler is composed of transmission lines, coaxial line, rectangular waveguide, circular waveguide, stripline and microstrip line directional coupler can be formed, so the structure of directional coupler variety, difference is very big. Directional couplers are widely applied in microwave band, its main purpose is to monitor the power, frequency and spectrum, the power distribution and synthesis, a balanced mixer and a bridge, to measure the power reflection coefficient and power by using a directional coupler. This design is mainly using the method of software design of ADS2011 microstrip branch directional coupler, and the use of ADS design, simulation of microstrip branch directional coupler, completes the schematic and layout. Keywords: directional coupler; microstrip branch; ADS; microwave

定向耦合器

单位代码: 10293 密 级: 硕 士 学 位 论 文 论文题目:带短路支节的高隔离度分支线定向耦合器设计研究 电磁场与微波技术 移动通信与射频技术 工学硕士 二零一五年三月 学 科 专 业 研 究 方 向 申请学位类别 论文提交日期

摘要 定向耦合器是一种常用微波无源元件,在无线系统的射频前端中有着广泛的应用。特别在收发同频的无线系统中定向耦合器常常被用作隔离收发信号的一种关键部件。但是传统的定向耦合器隔离度偏低且工作带宽较窄,无法满足系统的要求。本文以分支线定向耦合器为研究对象,主要围绕如何提高其隔离度和增加工作带宽来进行深入研究。论文的主要工作和创新点包括: (1)根据功率相消原理在其耦合端口增加一条微带短路支节,设计出一款3dB带短路支节双分支线定向耦合器。这种方法结构简单,易于实现,且能够大幅提高耦合器隔离度。 (2)完成了一款实验样品的加工、测量工作,验证了短路支节线用于提高双分支线定向耦合器隔离度的效果,以及工作带宽提高不明显的缺点。 (3)在双分支线定向耦合器基础上,总结出一种有效提高其工作带宽的方法:增加耦合路径,并设计出一款3dB三分支线定向耦合器,该耦合器能够大幅拓宽工作带宽。在3dB带短路支节双分支线定向耦合器的基础上设计出一款3dB带短路支节三分支线定向耦合器,该款改进型定向耦合器在很大程度上拓宽了工作带宽,且提高了隔离度。 关键词: 定向耦合器,隔离度,短路支节,工作带宽

Abstract Reader is an important part of the RFID system, and the reader send and receive isolation is one of the key performance of RFID system. At present, the most common methods to improve the reader transceiver isolation degree is to add directional coupler in front of the reader antenna feed network.The traditional directional coupler isolation and working bandwidth is narrow,and can not meet the requirements if the RFID system. In this paper,we focus on the branch line of directional coupler and research on how to improve the isolation and increase bandwidth. The main work and innovation of this paper include: (1)We use method of old-even mode to analyze the double branch line directional coupler,and use the HFSS simulation software to model and simulation,find the directional has a low degree isolation shortcoming. In order to increase isolation of the directional coupler,according to the theory of destructive power we increase a short branch section in the port, and design a 3dB dual-branch directional coupler with a short branch section.This method is simple in structure, easy to implement, and can greatly improve the coupler isolation. (2) We process the 3dB dual-branch directional coupler with a short branch section into objects, using a vector network analyzer to measure it,finally compare the simulation results and measurement results and found the isolation has been improved in the very great degree but the bandwith is not obvious increased. (3) Base on the dual branch line directional coupler,we sum an effective operating to improve its bandwidth approach:increase the coupling path,and design a 3dB three-branch line directional coupler, the coupler can greatly expand the bandwidth.Base on the dual-branch line directional coupler with a short branch section we design a 3dB three-branch directional coupler with a short branch section,The directional coupler significantly increases the operating bandwidth, and improve the isolation. Key words: the RFID system, isolation , short branch section, directional coupler

ADS设计定向耦合器讲解

<>课程设计——分支线耦合器 目录 1概述 (1) 1.1 微波技术产生的背景及发展趋势 (1) 1.2 微波电路仿真软件ADS简介 (2) 1.3定向耦合概念及分类 (3) 1.3.1概念 (3) 1.3.2分类 (4) 1.3.3 主要技术指标 (6) 2工作原理 (7) 2.1 传输线理论 (7) 2.2 输入阻抗 (8) 2.3 特性及测量 (9) 2.3.1网络特性 (9) 2.3.2测量方法(定向耦合器的特性参量) (10) 2.4 定向耦合器的用途 (11) 3.微带分支电路的分析与设计 (12) 3.1 分支线耦合器 (12) 3.2 分支线耦合器的奇偶模分析 (13) 4设计过程 (17) 4.1 建立工程 (17) 4.2 原理图的设计 (18) 4.3微带线参数的设置 (19) 4.4 VAR控件的设置 (20) 4.5 S参数仿真设计 (20) 4.6 参数的优化 (22) 4.7分支线耦合器版图的生成 (23) 5.总结与展望 (25)

1概述 1.1 微波技术产生的背景及发展趋势 微波技术是无线电电子学的一个重要分支,已成为现代通信、雷达、导航和遥感等领域最为敏感的课题之一,发展至今已经有比较久的历史了,无论在理论上还是在实践上,微波科学技术逐渐成熟,并拥有很多的从业人员。微波波段的电磁波能穿透电离层,因而卫星通信与卫星电视广播、宇宙通信及射电天文学的研究等均需利用微波来实现,在通信、雷达、导航、遥感、天气、气象、工业、农业、医疗以及科学研究等方面得到越来越广泛的应用,成为了无线电电子学的一个重要的分支趋向。 随着通信技术的迅速发展,为了便于携带和移动,无线电设备的小型化是未来的发展趋势,而移动通信所使用频段处于微波范围,因此实现微波电路的更高频率化, 小型化,固体化,不仅在实用方面,而且在学术方面均有重要的研究价值。定向耦合器通常有两种实现方式: Lange耦合器和带线耦合器。Lange耦合器具有结构紧凑,便于集成的优点,但一般使用陶瓷基板, 电路制作要求较高,加工工艺和成本限制了它的应用。带线耦合器虽然对电路制作工艺要求相对较低,但存在结构复杂、体积较大以及集成困难等缺点。 传统的定向耦合器虽然具有设计成任意功率分配比例的优点,但是体积较大,不利于微波集成化方向发展,因此寻找性能更好和功能独特的小型定向耦合器,一直是人们去研究的课题之一。而微带定向耦合器由于具有结构紧凑、制作简单、便于和其他电路集成等优点,目前已引起人们的极大研究兴趣,未来的耦合器必然会向着集成化和小型化方向发展。 同时,用微带线设计的微波元器件,可以直接做在电路板上,具有所占空间小、易于和其它电路元件连接的特点。因为微带线具有上述特点,所以用它来做微波电路。这将有助于提高微波集成电路的集成度。 然而,微带定向耦合器也有自身的不足,主要体现在耦合度较低和方向性差等方面。为了克服上述缺陷,研究者提出了多种补偿方法,本文也将结合微波理论知识和先进的仿真软件技术,来实现对微带定向耦合器的耦合度和方向性等性能的改善和提高。

ADS设计定向耦合器

目录 1概述0 微波技术产生的背景及发展趋势 0 微波电路仿真软件ADS简介0 定向耦合概念及分类1 概念1 分类2 主要技术指标3 2工作原理4 传输线理论4 输入阻抗5 特性及测量6 网络特性 6 测量方法(定向耦合器的特性参量)7定向耦合器的用途7 3.微带分支电路的分析与设计8 分支线耦合器9 分支线耦合器的奇偶模分析9 4设计过程13 建立工程13 原理图的设计14 微带线参数的设置15 VAR控件的设置15 S参数仿真设计16 参数的优化18 分支线耦合器版图的生成19 5.总结与展望20

1概述 微波技术产生的背景及发展趋势 微波技术是无线电电子学的一个重要分支,已成为现代通信、雷达、导航和遥感等领域最为敏感的课题之一,发展至今已经有比较久的历史了,无论在理论上还是在实践上,微波科学技术逐渐成熟,并拥有很多的从业人员。微波波段的电磁波能穿透电离层,因而卫星通信与卫星电视广播、宇宙通信及射电天文学的研究等均需利用微波来实现,在通信、雷达、导航、遥感、天气、气象、工业、农业、医疗以及科学研究等方面得到越来越广泛的应用,成为了无线电电子学的一个重要的分支趋向。 随着通信技术的迅速发展,为了便于携带和移动,无线电设备的小型化是未来的发展趋势,而移动通信所使用频段处于微波范围,因此实现微波电路的更高频率化, 小型化,固体化,不仅在实用方面,而且在学术方面均有重要的研究价值。定向耦合器通常有两种实现方式: Lange耦合器和带线耦合器。Lange耦合器具有结构紧凑,便于集成的优点,但一般使用陶瓷基板, 电路制作要求较高,加工工艺和成本限制了它的应用。带线耦合器虽然对电路制作工艺要求相对较低,但存在结构复杂、体积较大以及集成困难等缺点。 传统的定向耦合器虽然具有设计成任意功率分配比例的优点,但是体积较大,不利于微波集成化方向发展,因此寻找性能更好和功能独特的小型定向耦合器,一直是人们去研究的课题之一。而微带定向耦合器由于具有结构紧凑、制作简单、便于和其他电路集成等优点,目前已引起人们的极大研究兴趣,未来的耦合器必然会向着集成化和小型化方向发展。 同时,用微带线设计的微波元器件,可以直接做在电路板上,具有所占空间小、易于和其它电路元件连接的特点。因为微带线具有上述特点,所以用它来做微波电路。这将有助于提高微波集成电路的集成度。 然而,微带定向耦合器也有自身的不足,主要体现在耦合度较低和方向性差等方面。为了克服上述缺陷,研究者提出了多种补偿方法,本文也将结合微波理论知识和先进的仿真软件技术,来实现对微带定向耦合器的耦合度和方向性等性能的改善和提高。 微波电路仿真软件ADS简介 ADS,即Advanced Design System 的简称,它是Agilent Technoligyies(安捷伦)公司推出的一套电路设计软件。Agilent Technoligyies公司把HP MDS(Microwave Design System)和HP EEsof IV(Electronic Engineering Software )两者的精华有机地结合起来,并增加了许多新的功能,便构成了ADS软件。 自从Agilent Technoligyies 公司推出ADS软件后,很快被广大电子工程技术人员所接受,因为它与以前的微波仿真软件相比,具有更全面的功能,而且它的应用也变得更加广泛,它具有多种仿真软件的优点,仿真手段丰富,可实现包括时域和频域,数字与模拟,线性与非线性,高频与低频,噪声等多种仿真分析手段,范围涵盖小到元器件,大到系统级的仿真分析设计,ADS能够同时仿真射频(RF),模拟(Analog),数字信号处理(DSP)电路,并可对数字电路和模拟电路的混频电路进行协同仿真,由于其强大的功能,很快成为全球内业界流行的EDA设计工具。 (1)ADS的特点 ①在可操作性方面,ADS灵活使用了窗口技术,工具栏、工具栏、快捷键、模版以及菜单等使人机界面更美观、方便。

基于HFSS的滤波器设计流程

1.确定设计指标要求 2.查阅资料,确定形状 3.建模,仿真 4.优化结果 5.版图,加工,测试 本例设计一个带通滤波器,通过微带线结构实现,工作频率覆盖。选用基板材料为Rogers 4350,其相对介电常数为,厚度为h=0.508mm,金属覆铜厚度h1=0.018mm, 表1 模型初始尺寸

设计步骤(以为例) 一开始 (一)建立工程 1.在HFSS窗口中,选择菜单File->New 2.从Project菜单中,选择Insert HFSS Design (二)设计求解模式 1.选择菜单HFSS->Solution Type 2.在Solution Type窗口,选择Driven Modal,点击OK 二建立3D模型 (一)定义单位并输入参数表 1.选择菜单Modeler->Units 2.设置模型单位:mm,点击OK 3.选择菜单栏 HFSS->Design Properties再弹出的窗口中,点ADD添加参量,将上面模型的参数表中的变量全部添加进去,如下图: (二)创建金属板R1 1.在菜单栏中点击Draw->Box,创建Box1

2.双击模型窗口左侧的Box1,改名为R1,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。 3.双击左侧R1的子目录Createbox,修改金属板大小及厚度。Position输入坐标(0mm,0mm,0mm),金属板长L1=7.2mm,宽W1=0.8mm,厚h1=0.018mm。点击确定。 (三)创建金属板R1_1 1.在菜单栏中点击Draw->Box,创建Box2 2.双击模型窗口左侧的Box2,改名为R1_1,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。 3.双击左侧R1_1的子目录Createbox,修改金属板大小及厚度。Position输入坐标(W1+S1,0mm,0mm),S1=,金属板长L1=7.2mm,宽W1=0.8mm,厚h1=0.018mm。点击确定。 (四)创建金属板R2 1.在菜单栏中点击Draw->Box,创建Box3 2.双击模型窗口左侧的Box3,改名为R2,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。 3.双击左侧R2的子目录Createbox,修改金属板大小及厚度。Position输入坐标(W1+S1,L1,0mm),金属板长L2=7.1mm,宽W2=1.1mm,厚h1=0.018mm。点击确定。

微带线定向分支线耦合器

设计仿真微带线分支线定向耦合器 一、设计要求: 设计3dB微带分支定向耦合器 已知条件:微带线介质基片厚度h=0.5mm,εr=4.2。 指标要求: 1)通带:50MHz 2)耦合度:3dB 3)中心频率:1.8GHz 4)输入输出阻抗:50Ω 二、理论分析: 2.1 结构分析 在一些电桥电路及平衡混频器等元件中,常用到分支线定向耦合器,微带二分支定向耦合器如下图所示,图中的字母G、H和数字1是各线段特性导纳的归一化值(对50欧姆阻抗对应的导纳值归一化),因各端口的导纳值相同,所以又称为等阻二分支定向耦合器。 H(Zb) 当功率由(1)臂输入时,(2)、(3)两臂有输出;理想情况下,(4)臂无功率输出,故(4)臂是隔离臂,(2)、(3)两臂的输出可按一定的比例分配,若(2)、(3)两臂的输出功率相同,都等于输入功率的一半,则成为3dB定向耦合器或3dB分支电桥。 利用奇偶模分析法,将上述电路在中心线A-A1处切开,此时可将两条线(1)-(2)及(3)-(4)从A-A1面分开来考虑,这样将四端口网络转换为二端口网络,上下是对称的。所以利用各端口理想的匹配及(1)、(4)端口之间理想的隔离条件,得出下列公式:

2221(1)3 (2)4 11 20lg 20lg (3) 3G H u jG u u G C u GH +==-+== 其中C 称为定向耦合器的耦合度,u1、u2、u3分别为(1)口输入电压和(2)、 (3)口输出电压,可见(2)口和(3)口的输出电压相位差90度,对与3dB 定向耦合器(C =3dB )代入上式得: 1,G H =2.2 主要技术指标 含量定向耦合器性能的主要技术指标有耦合度、定向性、隔离度、输入电压驻波比和频带宽度。 (1)耦合度C 当端口1接信号源,端口2、3、4均接匹配负载时,端口1的输入功率p1与端口2的输出功率p2之比的分贝数为该定向耦合器的耦合度C ,则 (2)方向性系数D 端口2的输出功率p2与端口3的输出功率p3之比的分贝为定向耦合器的方向性系数D ,则 (3)隔离度I 端口1的输入功率p1与端口2的输出功率p3之比的分贝数为该定向耦合器的隔离度I ,则 (4)输入电压驻波比 指定向耦合器直通端口4、反向耦合端口2、隔离端口3都匹配负载时,在输入端口1测量到的驻波系数。 (5)频带宽度 频带宽度是指当耦合度及输入驻波比都满足指标要求时定向耦合器的工作频带宽度。 对于一个理想的定向耦合起器,p3=0,S31=0,I 趋向于无穷大 三、 原理图设计及仿真分析: 3.1 原理图设计 Ω=== Ω===3.351150110 bY Y Z aY Y Z b b a a

微带分支定向耦合器

微带分支定向耦合器 注意:在设置变量的时候一定要记得设置成L mm的形式,如果丢掉mm数据图就出不来。 参数: 中心频率为2.4GHz 在2.3GHz-2.5GHz范围内,S11值小于-20dB 在2.3GHz-2.5GHz范围内,S21值大于-3.2dB 在2.3GHz-2.5GHz范围内,S31值大于-3.2dB 在2.3GHz-2.5GHz范围内,S41值小于-20dB 系统特性阻抗为50欧姆 微带线基板的厚度选为0.5mm,基板的相对介电常数4.2 步骤: 1.打开工程,命名为ohqfzdx。 2.新建设计,命名为ohqfzdx。 3.在原理图元件面板上选择微带线【TLines-Microstrip】,将 插入原理图中,并设置其参数,参数如下: 4.在原理图中画微带分支定向耦合器的电路图,如下图:

5. 在原理图中,菜单栏【tools】-【LineCalc】-【Start LineCale】,弹出【LineCalc】计算窗口,如下图所示 Z0表示计算时微带线的特性阻抗 E_Eff表示计算式微带线的相移 其中参数设置: Type:MLIN表示计算微带线。 Er:4.2表示介质板的相对介电常数 Mur:1表示微带线的相对磁导率

H=0.05mm表示微带线基板厚度 Hu=1.0e+33mm表示微带线封装高度 T=0.05表示微带线的导体层厚度 Cond=5.8e+7表示微带线的导体电导率 TanD=0.0003表示为微带线的损耗角正切 Tough=0mm表示微带线表面粗糙度 Freq=2.4GHz表示计算时采用频率 Z0=50Ohm表示计算时特性阻抗 E_Eff=90deg表示90deg相移 1.测得特性阻抗为50Ω时,微带线宽度为0.94mm,长度为17.67mm 2.测得特性阻抗50Ω/=35.36Ω,仍旧用90deg相移,测得宽 度1.63mm,长度17.17mm。 6.修改电路图中的参数,由于是双对称的,所以两两相等。 7. 全部设置为变量后,选中添加4个和 到原理图中,并设置。 8. 设置参数,频率扫描类型为Linear。起始值2.3GHz,终止值为2.5GHz(即扫描带宽长度既可),步长为10MHz。点击OK。 总得原理图:

带通滤波器的仿真设计

电子科技大学学院电子工程系 学生实验报告 课程名称HFSS电磁仿真实验实验名称实验一-带通滤波器的仿真 班级,分组14无线技术实验时间 2017年03月07日,学号指导教师袁海军 报告容 一、实验目的 (1)加深对滤波器理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握HFSS实现带通滤波器混频的方法和步骤; (3)掌握用HFSS实现带通滤波器的设计方法和过程,为以后的设计打下良好的基础。 二、实验原理和电路说明 带通滤波器是指能通过某一频率围的频率分量、但将其他围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。 这些滤波器也可以用低通滤波器同高通滤波器组合来产生. 三、实验容和数据记录 为了方便创建模型,在Tools>Options>HFSSOptions中将Duplicate boundaries with geometry 复选框选中,这样可以使得在复制模型的同时,所设置的边界也一同复制。 2)设置求解类型 将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>SolutionType。 (2)如图5-1-7所示,在弹出的SolutionType窗口中: (a)选择DrivenModal。 (b)点击OK按钮。

图5-1-7设置求解类型 图5-1-9建立介质基片 (a)在菜单栏中点击Draw>Box或者在工具栏中点击按钮,这时可以在(b)在右下角的坐标输入栏中输入长方体的起始点位置坐标,即 按回车键结束输入。输入各坐标时,可用Tab键来切换。 (c)输入长方体X、Y、Z三个方向的尺寸,即 dX:40,dY:70,dZ:-1.27 按回车键结束坐标输入。 (d)在特性(Property)窗口中选择Attribute标签,将该长方体的名字修改为(e)点击Material对应的按钮,在弹出的材料设置窗口中点击 数为10.8的介质,将其命名为sub。

相关文档
最新文档