ANSYS坐标系以及工作平面的具体说明

ANSYS坐标系以及工作平面的具体说明
ANSYS坐标系以及工作平面的具体说明

ansys坐标系的总结

ANSYS坐标系总结 直角坐标系 在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y 轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。 平面极坐标系 坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。 柱面坐标系 柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞, 0 ≤φ≤ 2π -∞

x=rsinθcosφ y=rsinθsinφ z=rcosθ https://www.360docs.net/doc/2f7597607.html,/zhishi/184852.html ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0 默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点

07-第七章平面直角坐标系知识点总结

第七章 《平面直角坐标系》知识点总结 一、有序数对: 1、定义:有顺序的两个数a 与b 组成的数对,记作(a ,b ); 2、注意:a 、b 的先后顺序对位置的影响。 3、坐标平面上的任意一点P 的坐标,都和有序实数对(b a ,)一一对应。 二、平面直角坐标系 1、两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x 轴或横轴,取向右为正方向; 竖直的数轴称为y 轴或纵轴,取向上方向为正方向; 两坐标轴的交战为平面直角坐标系的原点 2、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ; 3、象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0 第二象限:x<0,y>0 第三象限:x<0,y<0 第四象限:x>0,y<0 横坐标轴上的点:(x ,0) 。在x 轴的负半轴上时,x<0;在x 轴的正半轴 上时,x>0 纵坐标轴上的点:(0,y ) 。在y 轴的负半轴上时,y<0, 在y 轴的正半轴 上时,y>0 三、平行于坐标轴的直线的点的坐标特点: a) 在与x 轴平行的直线上, 所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ; b) 在与y 轴平行的直线上,所有点的横坐标相等; 点C 、D 的横坐标都等于n ; 四、各象限的角平分线上的点的坐标特点: X Y A B m X Y C D n

1) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等,mn>0; 2) 若点P (n m ,)在第二、四象限的角平分线上,则0m n +=,即横、纵坐标互为相反数;mn<0 在第一、三象限的角平分线上 在第二、四象限的角平分线上 五、与坐标轴、原点对称的点的坐标特点: 点P ),(n m 关于x 轴的对称点为),(1n m P -,即横坐标不变,纵坐标互为相反数; 点P ),(n m 关于y 轴的对称点为),(2n m P -,即纵坐标不变,横坐标互为相反数; 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数; 关于x 轴对称关于原点对称 六、用坐标表示平移:见下图 七、点到坐标轴的距离: 点到x 轴的距离=纵坐标的绝对值; 点到y 轴的距离=横坐标的绝对值。 即A(x,y),到x 轴的距离=|y|,到y 轴的距离=|x| 二、经典例题 知识点、已知坐标系中特殊位置上的点,求点的坐标 P (x ,y ) P (x ,y -a ) P (x -a ,y ) P (x +a ,y ) P (x ,y +a ) 向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位X y P m n O y P m n O X X y P 1P n n - m O X y P 2P m m - n O X y P 3P m m - n O n -

ANSYS坐标系和工作平面介绍

!总体和局部坐标系:用来定位几何形状参数(节点,关键点)的空间位置 !显示坐标系:用于几何形状参数的列表和显示 !节点坐标系:定义每个节点的自由度方向和节点结果数据的方向!单元坐标系:确定材料特性主轴和单元坐标系结果数据的方向 !结果坐标系:用来列表,显示或在统一后处理操作中将节点或单元转换到一个特定的坐标系 1局部坐标系定义方法:workplane-local coordinate system-create local cs- at specified loc (1)局部坐标系的激活,workplane –change active cs to-specified coord sys (2)显示坐标系:workplane –change display cs to –specified coord sys (3)节点坐标系:节点坐标系用于节点自由度的方向,每个节点 都有自己的节点坐标系 Preprocessor –modeling- move modify-rotate node cs to-active cs (4)单元坐标系:加面压力和结果的输出方向preprocessor –modeling-move-elements- modify attribute (5)结果坐标系:general postprocessor –options for output List –results- options

@ 工作平面 工作平面是一个无限平面,有原点,二维坐标系,捕捉增量和显示栅格。当定义一个新的工作平面就会删除已有的工作平面,工作平面与坐标系是独立的,它们可以有不同的原点和旋转方向 定义一个新的工作平面 Workplane –align Wp with-specified coord sys 移动工作平面 workplane-offset wp to-global original 工作平面旋转:workplane-offset wp by increment

ANSYS中的坐标系

ANSYS中的坐标系 坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。同一时刻只能有一个坐标系被激活。 总体坐标系:用于确定几何结构的空间位置,是绝对参考系。如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。 局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。删除局部坐标系(CSDELE)。查看局部坐标系(CSLIST)。 节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。显示节点坐标系(NLIST)。此外节点复制(NGEN)时,节点坐标系也一并复制。 单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。修改面单元和体单元坐标系方向(ESYS)。 显示坐标系:用于节点和单元PLOT LIST采用的坐标系,默认采用总体笛卡尔坐标系。设置显示坐标系的方法(DSYS)。 结果坐标系:用于结果数据显示采用的坐标系,默认采用总体笛卡尔坐标系。设置结果坐标系的方法(RSYS)。 节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用"Prep7> Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括: 输入数据: 1 自由度常数 2 力 3 主自由度 4 耦合节点 5 约束方程等 输出数据: 1 节点自由度结果 2 节点载荷 3 反作用载荷等 但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实现。

(完整版)平面直角坐标系知识点归纳.doc

平面直角坐标系知识点归纳 1 、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系; 2 、 坐标平面上的任意一点 P 的坐标,都和惟一的一对 有序实数对 ( a,b ) 一一对应;其中, a 为横坐标, b 为纵坐标坐标; 3 、 x 轴上的点,纵坐标等于 0 ; y 轴上的点,横坐标等于 0 ; Y 坐标轴上的点 不属于 任何象限; b P(a,b) 4 、四个象限的点的坐标具有如下特征: 1 象限 横坐标 x 纵坐标 y -3 -2 -1 0 1 a x -1 第一象限 正 正 -2 第二象限 负 正 -3 第三象限 负 负 第四象限 正 负 小结:( 1 )点 P ( x, y )所在的象限 横、纵坐标 x 、 y 的取值的正负性; ( 2 )点 P ( x, y )所在的数轴 横、纵坐标 x 、 y 中必有一数为零; y 5 、在平面直角坐标系中,已知点 P (a,b) ,则 a 点 P 到 x 轴的距离为 b P ( a, b ) (1 ) b ; ( 2 )点 P 到 y 轴的距离为 a ; (3 ) 点 P 到原点 O 的距离为 PO = a 2 b 2 b 6 、平行直线上的点的坐标特征: O a x a) 在与 x 轴平行的直线上, 所有点的纵坐标相等; Y A B 点 A 、 B 的纵坐标都等于 m ; m X b) 在与 y 轴平行的直线上,所有点的横坐标相等; Y C 点 C 、 D 的横坐标都等于 n ; n D X

ANSYS坐标系以及工作平面的区别联系

ANSYS坐标系以及工作平面的区别联系 基本概念: 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 总体坐标系 在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系 数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。 局部坐标系 局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径Workplane>Change active CS to>。 节点坐标系 每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用"Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 单元坐标系 单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。 结果坐标系 /Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体

平面直角坐标系题型总结

《平面直角坐标系》 考点1:点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M(-2,3)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若点P(a,a-2)在第四象限,则a的取值范围是().A.-2<a<0 B.0<a<2 C.a>2 D.a<0 4、点P(m,1)在第二象限内,则点Q(-m,0)在() A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上 5、若点P(a,b)在第四象限,则点M(b-a,a-b)在() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12) A x x -- ,在第四象限,则实数x 的取值范围是. 7、对任意实数x,点2 (2) P x x x - ,一定不在 ..() A.第一象限 B.第二象限 C.第三象限 D.第四象限 8、如果a-b<0,且ab<0,那么点(a,b)在( ) A、第一象限 B、第二象限 C、第三象限, D、第四象限. 考点2:点在坐标轴上的特点 x轴上的点纵坐标为0, y轴上的点横坐标为0.坐标原点(0,0) 4、已知点P(m,2m-1)在y轴上,则P点的坐标是。 考点3:对称点的坐标 知识解析: 1、关于x轴对称A(a,b)关于x轴对称的点的坐标为(a,-b)。 2、关于y轴对称A(a,b)关于y轴对称的点的坐标为(-a,b)。 3、关于原点对称A(a,b)关于原点对称的点的坐标为(-a,-b)。 1、点M(2 -,1)关于x轴对称的点的坐标是(). A. (2 -,1 -)B. (2,1) C.(2,1 -) D. (1,2 -) 2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点 是(). A.(-3,2) B.(3,-2) C.(-2,3) D.(2,3) 3、如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为 (2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA1B1C1, 那么点B1的坐标为( ). A. (2,1) B.(-2,l) C.(-2,-l) D.(2,-1) 4、若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值 是 . 5、在平面直角坐标系中,点A(1,2)关于y轴对称的点为点 B(a,2),则a=. 6、点A(1-a,5),B(3,b)关于y轴对称,则a+b=______. 7、如果点(45) P- ,和点() Q a b ,关于y轴对称,则a的值 为.

ANSYS第三章 坐标系

第三章坐标系 3.1坐标系的类型 ANSYS程序提供了多种坐标系供用户选取。 2 总体和局部坐标系用来定位几何形状参数(节点、关键点等)的空间位置。 2 显示坐标系。用于几何形状参数的列表和显示。 2 节点坐标系。定义每个节点的自由度方向和节点结果数据的方向。 2 单元坐标系。确定材料特性主轴和单元结果数据的方向。 2 结果坐标系。用来列表、显示或在通用后处理(POST1)操作中将节点或单元结果转换到一个特定的坐标系中。 工作平面与本章的坐标系分开讨论,以在建模中确定几何体素,参见§4中关于工作平面的详细信息。 3.2总体和局部坐标系 总体和局部坐标系用来定位几何体。缺省地,当定义一个节点或关键点时,其坐标系为总体笛卡尔坐标系。可是对有些模型,定义为不是总体笛卡尔坐标系的另外坐标系可能更方便。ANSYS程序允许用任意预定义的三种(总体)坐标系的任意一种来输入几何数据,或在任何用户定义的(局部)坐标系中进行此项工作。 3.2.1总体坐标系 总体坐标系统被认为是一个绝对的参考系。ANSYS程序提供了前面定义的三种总体坐标系:笛卡尔坐标、柱坐标和球坐标系。所有这三种系统都是右手系。且由定义可知它们有共同的原点。它们由其坐标系号来识别:0是笛卡尔坐标,1是柱坐标,2是球坐标(见图总体坐标系)

图3-1总体坐标系 2 (a) 笛卡尔坐标系(X, Y, Z) 0 (C.S.0) 2 (b)柱坐标系(R,θ, Z com ponents) 1 (C.S.1) 2 (c) 球坐标系(R,θ,φcomponents) 2 (C.S.2) 2 (d)柱坐标系 (R,θ,Y components) 5 (C.S.5) 3.2.2局部坐标系 在许多情况下,有必要建立自己的坐标系。其原点与总体坐标系的原点偏移一定的距离,或其方位不同于先前定义的总体坐标系(如图3-2所示用局部、节点或工作平面坐标系旋转定义的一个坐标系的例子)。用户可定义局部坐标系,按以下方式创建: 图3-2欧拉旋转角 2按总体笛卡尔坐标定义局部坐标系。 命令:LOCAL GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At Specified Loc 2通过已有节点定义局部坐标系。 命令:CS GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Nodes 2通过已有关键点定义局部坐标系。 命令:CSKP GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Keypoints 2在当前定义的工作平面的原点为中心定义局部坐标系。 命令:CSWPLA

平面直角坐标系知识点归纳及例题

平面直角坐标系知识点归纳 1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系; 2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标; 3、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限; 4、 四个象限的点的坐标具有如下特征: 小结:(1)点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性; (2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零; 5、 在平面直角坐标系中,已知点P ),(b a ,则 (1) 点P 到x 轴的距离为b ; (2)点P 到y 轴的距离为a ; (3) 点P 到原点O 的距离为PO = 22b a 6、 平行直线上的点的坐标特征: a) 在与x 轴平行的直线上, 所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ; b) 在与y 轴平行的直线上,所有点的横坐标相等; 点C 、D 的横坐标都等于n ; 象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限 正 负 P (b a ,) a b x y O -3 -2 -1 0 1 a b 1 -1 -2 -3 P(a,b) Y x X Y A B m X Y C D n a b

7、 对称点的坐标特征: a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数; 关于x 轴对称 关于y 轴对称 关于原点对称 8、 两条坐标轴夹角平分线上的点的坐标的特征: a) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; b) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数; 在第一、三象限的角平分线上 在第二、四象限的角平分线上 习题 1、在平面直角坐标系中,线段B C ∥x 轴,则 ( ) A .点B 与C 的横坐标相等 B .点B 与C 的纵坐标相等 C .点B 与C 的横坐标与纵坐标分别相等 D .点B 与C 的横坐标、纵坐标都不相等 2.若点P ),(y x 的坐标满足0=xy 则点P 必在 ( ) A .原点 B .x 轴上 C .y 轴上 D .x 轴或y 轴上 3.点P 在x 轴上 ,且到y 轴的距离为5,则点P 的坐标是 ( ) A .(5,0) B .(0,5) C .(5,0)或(-5,0) D .(0,5)或(0,-5) 4.平面上的点(2,-1)通过上下平移不能与之重合的是 ( ) A .(2,-2) B .(-2,-1) C .(2,0) D .2,-3) 5.将△ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的△A 'B 'C '相应顶点的坐标,则 △A 'B 'C '可以看成△ABC ( ) A .向左平移3个单位长度得到 B .向右平移三个单位长度得到 X y P 1P n n - m O X y P 2P m m - n O X y P 3P m m -n O n - X y P m n O y P m n O X

七年级数学平面直角坐标系复习知识点总结讲解学习

第七课时平面直角坐标系 1、有序数对 ①定义:有顺序的两个数a与 b 组成的数对叫做有序数对,记做(a,b)。 ②有序数对的作用:可以准确地表示出平面内一个点的位置。 注意:有序数对的书写格式(a,b)间的分隔号是逗号而不是顿号 例1、判定下列有序数对书写格式的正误: ⑴(5、9)⑵(4,2)⑶4,6⑷(3 4) 例2、用1,2,3可以组成有序数对______对,分别是: 例3、类有序数对(x,y)满足方程x+y=5,则下列数对不属于这类的是______. (A)(3,2)(B)(2,3) (C)(5,1)(D)(-1,6) 2、平面直角坐标系 ①确定直线上点的位置:在直线上规定了原点、正方向、单位长度就构成了数轴。 数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2。反过来,知道数轴上一个点的坐标,这个的点在数轴上的位置就确定了。 ②确定平面上点的位置:坐标平面内的点与有序数对是一一对应的 平面直角坐标系的引入:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系,水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向,竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点。 可以看出,原点O的坐标为(0,0);x轴 上的点的纵坐标为0,例如(1,0),(-1,0)…; y轴上的点的横坐标为0,例如(0,1),(0,-1)…. 建立了平面直角坐标系后,坐标平面就被 两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每 个部分称为象限,分别叫做第一象限、第二象 限、第三象限和第四象限。坐标轴上的点不属 于任何象限。 注意:⑴坐标轴上的点不属于任何象限 ⑵平面直角坐标系:两条数轴互相垂直公共原点 ③平面直角坐标系中两条数轴特征: ⑴互相垂直;⑵原点重合;⑶通常取向上、向右为正方向;⑷单位长度一般取相同的 ④平面上点的表示:

Ansys学习总结

5、ANSYS输出mnf文件 模型单位要统一,最好都适用国际单位米制的,那么弹性模量、密度也要统一单位。然后进行单元添加:solid45、beam4、mass21给beam4设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变) 给mass21设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变) 添加材料设置:包括两种材料,一种是实体需要的材料,即为应该模型材料。 一种就是需要刚度大但是质量轻的材料,一般用的是密度为1e-12,弹性模量比模型实体的高出5个数量级(这个数值对能否导成功有直接影响,可以进行试算,用高5个数量级保证了稳定输出)。 在attachpoint铰链位置添加两个keypoint,然后用mass21去划分网格。可以得到node 1、node2,然后对模型整体用solid45划分。现在要把这两个孔刚化,就需要用到刚性梁单元。 用beam4单元连接孔上每一个节点与孔中心节点(需要成为attachpoint的点)。 6、ansys中的add、glue、overlap的区别及联系 1、相加(add):相加是指对所有图元进行叠加,包含原是个图元的所有部分,生成一个新图元,各个原始图元的公共边界将被清除,形成一个单一的整体。在ansys的面相加中只能对共面的图元进行操作.

对两个已经存在的面进行相加操作 命令:aadd,na1,na2,na3,na4,na5,na6,na7,na8,na9 2)对两个已经存在的体进行相加操作命令: vadd,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9 3)对两条已经存在的线进行操作 命令:lcomb,nl1,nl2,keep keep表示保留进行相加操作的图元,deleted表示进行相加操作后删除原始图元。 2、搭接(overlap):搭接食指将分离的同阶图元转变为一个连续体,其中图元的所有重叠区域将独立成为一个图元。搭接与相加操作类似,但相加操作是由几个图元生成一个图元整体,而搭接则是由几个图元生成更多的图元,相交的部分则被分离出来。 1)、线和线之间进行搭接操作 命令:lovlap,nl1,nl2,nl3,nl4,nl5,nl6,nl7,nl8,nl9 2)、面和面之间进行搭接操作 命令:aovlap,na1,na2,na3,na4,na5,na6,na7,na8,na9 3)、体和体之间进行搭接操作 命令:vovlap,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9 3、粘结(glue)粘结操作是将多个图元组合成一个连续体,图元之间仅在公共边界处相连,其公共边界的维数低于原始图元一维。粘结操作与加操作类似,但不同的是这些图元之间仍然相互独立,只是在边界上连接。粘结操作通常还与搭接操作配合使用。

平面直角坐标系知识点总结归纳

平面直角坐标系的知识点归纳总结 1.平面直角坐标系的定义: 在平面画两条____________________________的数轴组成平面直角坐标系。水平的数轴为_______,习惯上取向___为正方向;竖直的数轴为______,取向_____为正方向;它们的公共原点O 为直角坐标系的原点。 两坐标轴把平面分成_____________,坐标轴上的点不属于____________。 2.点的坐标:可用有序数对(a ,b)表示平面任一点P 的坐标。a 表示横坐标 ,b 表示纵坐标。 3.各象限点的坐标符号特点: 第一象限__________,第二象限_____________, 第三象限______________,第四象限______________。 4.坐标轴上点的坐标特点: 横轴上的点纵坐标为_______,纵轴上的点横坐标为________。 【练习1】指出下列各点所在的象限或坐标轴。 A.(3,4) B.(-2,5) C.(-4,-1) D.(2.5,-2) E.(0,-4) F.(0,0) 【练习2】下列说确的是( ) A 平面,两条互相垂直的直线构成数轴 B 、坐标原点不属于任何象限。 C.x 轴上点必是纵坐标为0横坐标不为0 D 、坐标为(3, 4)与(4,3)表示同一个点。 【练习3】已知坐标平面点M(a,b)在第二象限,那么点N(b, -a)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【练习4】在平面直角坐标系中,点(-1,m 2+1)一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 【练习5】点P(3a-9,a+1)在第二象限,则a 的取值围为___________.

ansys工作平面和坐标

ansys工作平面和坐标 ANSYS坐标系总结 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 4.1什么是工作平面 尽管光标在屏幕上只表现为一个点,但它实际上代表的是空间中垂直于屏幕的一条线。为了能用光标拾取一个点,首先必须定义一个假想的平面,当该平面与光标所代表的垂线相交时,能唯一地确定空间中的一个点。这个假想的平面就是工作平面。从另一种角度想象光标与工作平面的关系,可以描述为光标就象一个点在工作平面上来回游荡。工作平面因此就如同在上面写字的平板一样。(工作平面可以不平行于显示屏) 工作平面是一个无限平面,有原点、二维坐标系,捕捉增量(下面讨论)和显示栅格。在同一时刻只能定义一个工作平面(当定义一个新的工作平面时就会删除已有的工作平面)。工作平面是与坐标系独立的。例如,工作平面与激活的坐标系可以有不同的原点和旋转方向。见§4.3.5,详细讨论了如何迫使激活的坐标系跟踪工作平面。 4.2生成一个工作平面 进入ANSYS程序时,有一个缺省的工作平面,即总体笛卡尔坐标系的X-Y平面。工作平面的X、Y轴分别取为总体笛卡尔坐标系的X轴和Y轴。 4.2.1生成一个新的工作平面 用户可利用下列方法生成一个新的工作平面。 ·由三点生成一个工作平面或能过一指定点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:WPLANE GUI : Utility Menu>WorkPlane>Align WP with>XYZ Locations ·由三节点定义一个工作平面或通过一指定节点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:NWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Nodes ·由三关键点定义一个工作平面或能过一指定关键点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:KWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Keypoints ·由过一指定线上的点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:LWPLAN GUI: Utility Menu>WorkPlane>Align WP with>Plane Normal to Line ·还可以通过现有坐标系的X─Y(或R─θ)平面上定义工作平面。 命令:WPCSYS GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys Utility Menu>WorkPlane>Align WP with>Global Cartesian

ANSYS坐标系以及工作平面几点心得

ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。 CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点 CSYS,4(WP) !激活工作平面,原点在工作平面的原点 CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点 ▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令: 1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN 注:所有点的坐标均是全局坐标。 XORIG, YORIG, ZORIG为要定义的工作平面原点O的位置,坐标类型为全局坐标系,与当前激活的坐标类型(CSYS)无关。XXAX, YXAX, ZXAX为确定局部坐标系的X轴的方向,坐标类型为全局坐标系,局部坐标系的X轴就沿着原点O与此点的连线方向。XPLAN, YPLAN, ZPLAN为确定局部坐标系的Y轴方向,类型为全局坐标系,原点O与此点的连线确定Y轴的方向,不要求与OX垂直,只要成一弧度就可以确定。 wplane,,1,0,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X和Y方向均

平面直角坐标系知识点总结归纳

平面直角坐标系知识点总结 归纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面直角坐标系的知识点归纳总结 1.平面直角坐标系的定义: 在平面内画两条____________________________的数轴组成平面直角坐标系。水平的数轴为_______,习惯上取向___为正方向;竖直的数轴为______,取向 _____为正方向;它们的公共原点O为直角坐标系的原点。 两坐标轴把平面分成_____________,坐标轴上的点不属于____________。2.点的坐标:可用有序数对(a ,b)表示平面内任一点P的坐标。a表示横坐标,b表示纵坐标。 3.各象限内点的坐标符号特点:第一象限__________,第二象限_____________, 第三象限______________,第四象限______________。 4.坐标轴上点的坐标特点: 横轴上的点纵坐标为_______,纵轴上的点横坐标为 ________。 【练习1】指出下列各点所在的象限或 坐标轴。 A.(3,4) B.(-2,5) C.(-4,-1) D.(2.5,-2) E.(0,-4) F.(0,0) 【练习2】下列说法正确的是 () A平面内,两条互相垂直的直线构成数 轴 B、坐标原点不属于任何象限。 C.x轴上点必是纵坐标为0横坐标不为 D、坐标为(3, 4)与(4,3)表示同一个点。 【练习3】已知坐标平面内点M(a,b)在第二象限,那么点N(b, -a)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限【练习4】在平面直角坐标系中,点(-1,m2+1)一定在() A、第一象限 B、第二象限 C、第三象限 D、第四象限 【练习5】点P(3a-9,a+1)在第二象限,则a的取值范围为___________.

ANSYS 坐标系实用方法

ANSYS 坐标系实用方法 一、总体坐标系 在每开始进行一个新的ANSYS分析时,已经预先定义了四个坐标系。它们位于模型的总体原点。四种类型分别为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系,以总体z 轴为轴线 CS,2: 总体球坐标系 CS,5: 总体柱坐标系,以总体y 轴为轴线 数据库中节点坐标总是以总体笛卡尔坐标系表示,无论节点是在什么坐标系中创建的。 这4个坐标系都是ANSYS 预先定义的,它们的原点都在总体直角坐标系的原点,使用时只需选择,不要重新定义。参见CSYS 命令。 二、局部坐标系 局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径: Workplane > Local CS > Create LC 来创建,其编号从11 开始。 三、激活坐标系 激活坐标系或当前坐标系是分析中特定阶段的参考坐标系。缺省为总体笛卡尔坐标系。当创建一个新的坐标系时,新坐标系变为激活坐标系。这是随后的操作所使用的坐标系。也可以使用激活坐标系的命令(csys) 来改变激活坐标系。菜单中激活坐标系的路径: Workplane > Change active CS to > 选择一个已经定义的坐标系。

四、工作平面坐标系 可以以工作平面作为参考的直角坐标系,其x,y 轴在工作平面上,z 轴垂直工作平面,由右手定则确定。工作平面坐标系的初始状态与总体直角坐标系相同,即:初始的原点在总体坐标系的原点,三个坐标轴与总体直角坐标系一致;以后,随着工作平面的移动、旋转而改变。 注意:其它坐标系,在定义(ANSYS 预先定义或用户自己定义) 后,其方向和原点就不再改变,除非重新定义,而工作平面坐标系也属于预先定义的坐标系,但是会随着工作平面的移动或旋转而改变,即它的原点和方向都不是固定的。 工作平面坐标系的编号为 4 (或用WP 表示),参见CSYS 命令。 五、节点坐标系 每一个节点都有一个附着的坐标系。无论当前的激活坐标系是什么,节点坐标系缺省总是笛卡尔坐标系。节点力和节点位移边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果,默认是在总体笛卡尔坐标系中,但可以使用RSYS 命令修改节点结果显示时所使用的坐标系。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个局部柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用: Prep7 > Move/Modify > Rotate Nodal CS to active CS, 使所选择节点的节点坐标系与激活坐标系的方向一致。未被选择的节点保持原来坐标系方向不变。 节点坐标系的显示可以使用菜单路径: Pltctrls > Symbols > Nodal CS。 这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。

相关文档
最新文档