ANSYS第四章 利用工作平面

ANSYS第四章 利用工作平面
ANSYS第四章 利用工作平面

第四章利用工作平面

4.1什么是工作平面

尽管光标在屏幕上只表现为一个点,但它实际上代表的是空间中垂直于屏幕的一条线。为了能用光标拾取一个点,首先必须定义一个假想的平面,当该平面与光标所代表的垂线相交时,能唯一地确定空间中的一个点。这个假想的平面就是工作平面。从另一种角度想象光标与工作平面的关系,可以描述为光标就象一个点在工作平面上来回游荡。工作平面因此就如同在上面写字的平板一样。(工作平面可以不平行于显示屏)

图4-1显示屏、光标、工作平面及拾取点之间的关系。

工作平面是一个无限平面,有原点、二维坐标系,捕捉增量(下面讨论)和显示栅格。在同一时刻只能定义一个工作平面(当定义一个新的工作平面时就会删除已有的工作平面)。工作平面是与坐标系独立的。例如,工作平面与激活的坐标系可以有不同的原点和旋转方向。见§4.3.5,详细讨论了如何迫使激活的坐标系跟踪工作平面。

4.2生成一个工作平面

进入ANSYS程序时,有一个缺省的工作平面,即总体笛卡尔坐标系的X-Y平面。工作平面的X、Y轴分别取为总体笛卡尔坐标系的X轴和Y轴。

4.2.1生成一个新的工作平面

用户可利用下列方法生成一个新的工作平面。

· 由三点生成一个工作平面或能过一指定点的垂直于视向量的平面定义为工作平面,用下列方法:

命令:WPLANE

GUI : Utility Menu>WorkPlane>Align WP with>XYZ Locations

· 由三节点定义一个工作平面或通过一指定节点的垂直于视向量的平面定义为工作平面,用下列方法:

命令:NWPLAN

GUI : Utility Menu>WorkPlane>Align WP with>Nodes

· 由三关键点定义一个工作平面或能过一指定关键点的垂直于视向量的平面定义为工作平面,用下列方法:

命令:KWPLAN

GUI : Utility Menu>WorkPlane>Align WP with>Keypoints

·由过一指定线上的点的垂直于视向量的平面定义为工作平面,用下列方法:

命令:LWPLAN

GUI: Utility Menu>WorkPlane>Align WP with>Plane Normal to Line ·还可以通过现有坐标系的X─Y(或R─θ)平面上定义工作平面。

命令:WPCSYS

GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys

Utility Menu>WorkPlane>Align WP with>Global Cartesian

Utility Menu>WorkPlane>Align WP with>Specified Coord Sys

4.2.2控制工作平面的显示和样式

为获得工作平面的状态〔即位置、方向、增量〕可用下列方法:命令:WPSTYL,STAT

GUI: Utility Menu>List>Status>Working Plane

将工作平面重置为缺省状态下的位置和样式,利用命令WPSTYL,DEFA。

4.2.3移动工作平面

用户可将一个工作平面利用下列方法(都是将工作平面移到与原位置平行的新位置)移到新的位置(即新的原点):

? 将工作平面的原点移动到关键点的中间位置,分别用下列命令:

命令:KWPAVE

GUI : Utility Menu>WorkPlane>Offset WP to>Keypoints

? 将工作平面的原点移动到节点的中间位置,分别用下列命令:

命令:NWPAVE

GUI : Utility Menu>WorkPlane>Offset WP to>Nodes

? 将工作平面的原点移动到指定点的中间位置,分别用下列命令:

命令:WPAVE

GUI : Utility Menu>WorkPlane>Offset WP to>Global Origin

Utility Menu>WorkPlane>Offset WP to>Origin of Active CS

Utility Menu>WorkPlane>Offset WP to>XYZ Locations

? 偏移工作平面,使用下列方法:

命令:WPOFFS

GUI : Utility Menu>WorkPlane>Offset WP by Increments

4.2.4工作平面的旋转

用户可用两种方式将工作平面转到一个新的方向:在工作平面内旋转工作平面的X─Y轴,或使整个工作平面都旋转到一个新的位置(如果不清楚旋转的角度,利用上述方法之一可以很容易在正确的方向上定义一个新的工作平面)。

要旋转工作平面,利用下列方法:

命令:WPROTA

GUI : Utility Menu>WorkPlane>Offset WP by Increments

4.2.5还原一个已定义的工作平面

尽管实际上不能存贮一个工作平面,用户可以在工作平面的原点创建一个局部坐标系,然后利用这个局部坐标系还原一个已定义的工作平面。

·在工作平面的原点创建局部坐标系用下列方法:

命令:CSWPLA

GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At WP Origin

·利用局部坐标系还原一个已定义的工作平面利用下列方法:

命令:WPCSYS

GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys

Utility Menu>WorkPlane>Align WP with>Global Cartesian

Utility Menu>WorkPlane>Align WP with>Specified Coord Sys

4.3增强的工作平面

用WPSTYL命令或前面论述的GUI方法可以增强工作平面的功能。使其具有捕捉增量,显示栅格,恢复容差和坐标类型功能。然后,就可以迫使用户的坐标系随工作平面的移动而移动。可用如下方法:

命令:CSYS

GUI: Utility Menu>WorkPlane>Change Active CS to>Global Cartesian

Utility Menu>WorkPlane>Change Active CS to>Global Cylindrical

Utility Menu>WorkPlane>Change Active CS to>Global Spherical

Utility Menu>WorkPlane>Change Active CS to>Specified Coordinate Sys

Utility Menu>WorkPlane>Change Active CS to>Working Plane

Utility Menu>WorkPlane>Offset WP to>Global Origin

4.3.1捕捉增量:

如果没有捕捉增量功能,在工作平面上将光标定位到已定义的点上将是一件非常困难的事。为了能精确地拾取,可用WPSTYL命令或GUI建立捕捉增量功能。一旦建立了捕捉增量,拾取点将定位在工作平面上最近的捕捉点。数学上表示如下,当光标在区域

N*SNAP-SNAP/Z≤X

对任意正整数N,拾取点的X坐标为:

Xp=N*SNAP。

(在工作平面坐标系中的X,Y坐标的捕捉增量相同)捕捉增量也可以显示成方框,拾取到方框里的点将定位于方框的中心。

图4-2 捕捉增量

4.3.2显示栅格

可在屏幕上建立栅格以帮助用户观察工作平面上的位置和方向。栅格的间距、状况和边界可由WPSTYL命令来设定(栅格与要捕捉点无任何关系)。发出不带参量的WPSTYL命令控制栅格在屏幕上打开和关闭。

4.3.3恢复容差

需拾取的图元可能不是精确地在工作平面上,而是在工作平面的附近。这时,通过WPSTYL命令或GUI路径指定恢复容差,在此容差内的图元将认为是在工作平面上的。这种容差就如同在恢复拾取时,给了工作中的一个厚度。

4.3.4坐标系类型

有两种可选的工作平面:笛卡尔坐标系和极坐标系工作平面。讨论到这一点主要针对笛卡尔工作平面,但当几何体容易在极坐标(r,θ)系中表述时可能用到极坐标工作平面。图4-3所示为用WPSTYL命令激活了极坐标工作平面的栅格。在极坐标平面中拾取操作与在笛卡尔坐标工作平面中的是一致的。对捕捉参数进行定位的栅格点的标定是通过指定待捕捉点之间的径向距离(SNAP ON WPSTYL)和角度(SNAPANG)来实现的。

图4-3极坐标工作平面栅格

4.3.5工作平面的轨迹

如果用户用与坐标系会合在一起的工作平面定义几何体,可能发现工作平面是完全与坐标系分离的。例如,当改变或移动工作平面时,坐标系并不做出反映新工作平面类型或位置的变化。这可能使用户结合使用拾取(靠工作平面)和键盘输入体如关键点(用激活的坐标系)变得无效。例如;用户将工作平面从缺省位置移开,然后想要在新的工作平面的原点用键盘输入定义一个关键点(即K,1205,0,0)会发现关键点落在坐标系的原点而不是工作平面的原点。(见图4-4)

图4-4 工作平面/坐标系不匹配。

如果用户想强迫激活的坐标系在建模时跟着工作平面一起移动,可以在用CSYS命令或GUI路径时利用一个选项来自动完成。命令CSYS,WP或CSYS,4将迫使激活的坐标系与工作平面有相同类型(如笛卡尔)和相同的位置。那么,尽管用户离开了激活的坐标系WP或4,在移动工作平面时,坐标系将随其一起移动。如果改变所用工作平面的类型,坐标系也将相应更新。例如,当用户将工作平面从笛卡尔转为极坐标系时,激活的坐标系也将从笛卡尔坐标系转到柱坐标系。

如果重新来看上面讨论的例子,假如用户想在已移动工作平面之后将一个关键点放置在工作平面的原点,但这次在移动工作平面之前激活跟踪工作平面(CSYS,WP),然后象前面一样移动工作平面,现在,当用户使用键盘定义关键点(即K,1205,0,0)这个关键点被放在工作平面的原点,因为坐标系与工作平面的方位一致(见图4-5)

图4-5 工作平面与坐标系匹配(CSYS,WP)。

ansys坐标系的总结

ANSYS坐标系总结 直角坐标系 在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y 轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。 平面极坐标系 坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。 柱面坐标系 柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞, 0 ≤φ≤ 2π -∞

x=rsinθcosφ y=rsinθsinφ z=rcosθ https://www.360docs.net/doc/3e14652815.html,/zhishi/184852.html ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0 默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点

ansys考题

1. ANSYS交互界面环境包含交互界面主窗口和信息输出窗口。 2. 通用后处理器提供的图形显示方式有变形图、等值线图、矢量图、粒子轨迹图以及破裂和压碎图。 3. ANSYS软件是融结构、流体、电场、磁场、声场和耦合场分析于一体的有限元分析软件。 4. 启动ANSYS 10.0的程序,进入ANSYS交互界面环境,包含主窗口和输出窗口。 5. ANSYS程序主菜单包含有前处理、求解器、通用后处理、时间历程后处理器等主要处理器,另外还有拓扑优化设计、设计优化、概率设计等专用处理器。 6. 可以图形窗口中的模型进行缩放、移动和视角切换的对话框是图形变换对话框。 7. ANSYS软件默认的视图方位是主视图方向。 8. 在ANSYS中如果不指定工作文件名,则所有文件的文件名均为 file 。 9. ANSYS的工作文件名可以是长度不超过 64 个字符的字符串,必须以字母开头,可以包含字母、数字、下划线、横线等。 10. ANSYS常用的坐标系有总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系、单元坐标系和结果坐标系。 11. ANSYS程序提供了4个总体坐标系,分别是:总体直角坐标系,固定内部编号为0;总体柱坐标系,固定内部编号为;总体球坐标系,固定内部编号为2;总体柱坐标系,固定内部编号为5。 12. 局部坐标系的类型分为直角坐标系、柱坐标系、球坐标系和环坐标系。 13. 局部坐标系的编号必须是大于或等于 11 的整数。 14. 选择菜单路径Utility Menu →WorkPlane→Display Working Plane,将在图形窗口显示工作平面。 15. 启动ANSYS进入ANSYS交互界面环境,最初的默认激活坐标系(当前坐标系)总是总体直角坐标系。 16. ANSYS实体建模的思路(方法)有两种,分别是自底向上的实体建模和自顶向下的实际建模。 17. 定义单元属性的操作主要包括定义单元类型、定义实常数和定义材料属性等。 18. 在有限元分析过程中,如单元选择不当,直接影响到计算能否进行和结果的精度。 19. 对于各向同性的线弹性结构材料,其材料属性参数主要有弹性模量和泊松比。

ANSYS坐标系和工作平面介绍

!总体和局部坐标系:用来定位几何形状参数(节点,关键点)的空间位置 !显示坐标系:用于几何形状参数的列表和显示 !节点坐标系:定义每个节点的自由度方向和节点结果数据的方向!单元坐标系:确定材料特性主轴和单元坐标系结果数据的方向 !结果坐标系:用来列表,显示或在统一后处理操作中将节点或单元转换到一个特定的坐标系 1局部坐标系定义方法:workplane-local coordinate system-create local cs- at specified loc (1)局部坐标系的激活,workplane –change active cs to-specified coord sys (2)显示坐标系:workplane –change display cs to –specified coord sys (3)节点坐标系:节点坐标系用于节点自由度的方向,每个节点 都有自己的节点坐标系 Preprocessor –modeling- move modify-rotate node cs to-active cs (4)单元坐标系:加面压力和结果的输出方向preprocessor –modeling-move-elements- modify attribute (5)结果坐标系:general postprocessor –options for output List –results- options

@ 工作平面 工作平面是一个无限平面,有原点,二维坐标系,捕捉增量和显示栅格。当定义一个新的工作平面就会删除已有的工作平面,工作平面与坐标系是独立的,它们可以有不同的原点和旋转方向 定义一个新的工作平面 Workplane –align Wp with-specified coord sys 移动工作平面 workplane-offset wp to-global original 工作平面旋转:workplane-offset wp by increment

ANSYS坐标系以及工作平面的区别联系

ANSYS坐标系以及工作平面的区别联系 基本概念: 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 总体坐标系 在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系 数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。 局部坐标系 局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径Workplane>Change active CS to>。 节点坐标系 每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用"Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 单元坐标系 单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。 结果坐标系 /Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体

(完整版)ansys内部例题详解

郑重申明:本人能力有限,文中不可避免会有错误,欢迎朋友们批评指正,希望大家相互提高,呵呵,谢谢啦! 12.8. Sample Rigid Body Dynamic Analysis 刚体动力学分析实例 This sample analysis demonstrates how to model a flexible component in ANSYS and export the flexible body information to a file for use in ADAMS. The example also provides brief instructions on how to perform the rigid body dynamic analysis in ADAMS, and details on how to transfer the loads from ADAMS to ANSYS in order to perform a stress analysis. 该实例演示了如果在ANSYS中制作柔性部件及输出可在ADAMS中使用的柔性体信息文件。同样该例子也提供了有关于在ADAMS中进行动力学分析的简单介绍,和如何将载荷信息从ADAMS转换到ANSYS中进行应力分析的详细介绍。 12.8.1. Problem Description 问题描述 In the linkage assembly shown below, Link3 is a flexible component. Link3 is modeled as a rectangular rod in ANSYS using SOLID45elements. The joints in ADAMS will be attached to interface points (nodes) at the middle of the holes at either end of Link3. These middle points are connected to the cylindrical joint surfaces by a spider web of BEAM4 elements. 联动装置装配如下图所示,连杆3是一个柔性部件,为矩形杆件在ANSYS中采用SOLID45单元构造。ADAMS中连接铰将连接在位于杆两端的孔中心接触节点上。这些节点会通过BEAM4单元构造的蜘蛛网格与圆柱铰表面连接。 Figure 12.5: Linkage Assembly联动装置转配图

ANSYS第三章 坐标系

第三章坐标系 3.1坐标系的类型 ANSYS程序提供了多种坐标系供用户选取。 2 总体和局部坐标系用来定位几何形状参数(节点、关键点等)的空间位置。 2 显示坐标系。用于几何形状参数的列表和显示。 2 节点坐标系。定义每个节点的自由度方向和节点结果数据的方向。 2 单元坐标系。确定材料特性主轴和单元结果数据的方向。 2 结果坐标系。用来列表、显示或在通用后处理(POST1)操作中将节点或单元结果转换到一个特定的坐标系中。 工作平面与本章的坐标系分开讨论,以在建模中确定几何体素,参见§4中关于工作平面的详细信息。 3.2总体和局部坐标系 总体和局部坐标系用来定位几何体。缺省地,当定义一个节点或关键点时,其坐标系为总体笛卡尔坐标系。可是对有些模型,定义为不是总体笛卡尔坐标系的另外坐标系可能更方便。ANSYS程序允许用任意预定义的三种(总体)坐标系的任意一种来输入几何数据,或在任何用户定义的(局部)坐标系中进行此项工作。 3.2.1总体坐标系 总体坐标系统被认为是一个绝对的参考系。ANSYS程序提供了前面定义的三种总体坐标系:笛卡尔坐标、柱坐标和球坐标系。所有这三种系统都是右手系。且由定义可知它们有共同的原点。它们由其坐标系号来识别:0是笛卡尔坐标,1是柱坐标,2是球坐标(见图总体坐标系)

图3-1总体坐标系 2 (a) 笛卡尔坐标系(X, Y, Z) 0 (C.S.0) 2 (b)柱坐标系(R,θ, Z com ponents) 1 (C.S.1) 2 (c) 球坐标系(R,θ,φcomponents) 2 (C.S.2) 2 (d)柱坐标系 (R,θ,Y components) 5 (C.S.5) 3.2.2局部坐标系 在许多情况下,有必要建立自己的坐标系。其原点与总体坐标系的原点偏移一定的距离,或其方位不同于先前定义的总体坐标系(如图3-2所示用局部、节点或工作平面坐标系旋转定义的一个坐标系的例子)。用户可定义局部坐标系,按以下方式创建: 图3-2欧拉旋转角 2按总体笛卡尔坐标定义局部坐标系。 命令:LOCAL GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At Specified Loc 2通过已有节点定义局部坐标系。 命令:CS GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Nodes 2通过已有关键点定义局部坐标系。 命令:CSKP GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Keypoints 2在当前定义的工作平面的原点为中心定义局部坐标系。 命令:CSWPLA

ANSYS建模实例

第一部分自由网格划分 (1)确定单元类型 GUI:执行“Main Menu→Preprocessor→Element Type→Add/Edit/Delete”菜单命令。 执行上命令后,打开如下左图所示对话框。在左图中单击(Add)按钮,打开右图对话框,然后再左侧的窗口中选取“Solid”单元,右侧窗口中选取“10node 92”单元。 (2)建立几何模型 GUI:执行“Main Menu→Preprocessor→Create→Volumes→Block→By Dimensions”菜单命令,在弹出的对话框中输入“X1=0,X2=4,Y1=0,Y2=4,Z1=0,Z2=4”,得到立方体。 执行“Main Menu→Preprocessor→Create→Volumes→Cylinder→Solid Cylinder” 菜单命令,在弹出的对话框中输入“X=2,Y=2,Radius=0.5,Depth=6”,得到圆柱体。如下图:

(3)布尔加运算 GUI:执行“Main Menu→Preprocessor→Modeling→Operate→Booleans-Add→Volumes”菜单命令。执行命令后,将打开如图的对话框中单击(Pick All)按钮,将所有面积组合在一起。如上图。 (4)自由网格划分 GUI:执行“Main Menu→Preprocessor→Meshing→Mesh Tool”菜单命令,在弹出 的对话框中选择“Global→set”,接着在对话框中输入“SIZE=0,NDIV=10”,如图: 得到自由网格划分结果如下图:

第二部分映射网格划分 (1)确定单元类型 GUI:执行“Main Menu→Preprocessor→Element Type→Add/Edit/Delete”菜单命令。 执行上命令后,打开如下左图所示对话框。在左图中单击(Add)按钮,打开右图对话框,然后再左侧的窗口中选取“Magnetic-Edge”单元,右侧窗口中选取“3D Brick 117”单元。

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

ansys工作平面和坐标

ansys工作平面和坐标 ANSYS坐标系总结 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 4.1什么是工作平面 尽管光标在屏幕上只表现为一个点,但它实际上代表的是空间中垂直于屏幕的一条线。为了能用光标拾取一个点,首先必须定义一个假想的平面,当该平面与光标所代表的垂线相交时,能唯一地确定空间中的一个点。这个假想的平面就是工作平面。从另一种角度想象光标与工作平面的关系,可以描述为光标就象一个点在工作平面上来回游荡。工作平面因此就如同在上面写字的平板一样。(工作平面可以不平行于显示屏) 工作平面是一个无限平面,有原点、二维坐标系,捕捉增量(下面讨论)和显示栅格。在同一时刻只能定义一个工作平面(当定义一个新的工作平面时就会删除已有的工作平面)。工作平面是与坐标系独立的。例如,工作平面与激活的坐标系可以有不同的原点和旋转方向。见§4.3.5,详细讨论了如何迫使激活的坐标系跟踪工作平面。 4.2生成一个工作平面 进入ANSYS程序时,有一个缺省的工作平面,即总体笛卡尔坐标系的X-Y平面。工作平面的X、Y轴分别取为总体笛卡尔坐标系的X轴和Y轴。 4.2.1生成一个新的工作平面 用户可利用下列方法生成一个新的工作平面。 ·由三点生成一个工作平面或能过一指定点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:WPLANE GUI : Utility Menu>WorkPlane>Align WP with>XYZ Locations ·由三节点定义一个工作平面或通过一指定节点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:NWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Nodes ·由三关键点定义一个工作平面或能过一指定关键点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:KWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Keypoints ·由过一指定线上的点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:LWPLAN GUI: Utility Menu>WorkPlane>Align WP with>Plane Normal to Line ·还可以通过现有坐标系的X─Y(或R─θ)平面上定义工作平面。 命令:WPCSYS GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys Utility Menu>WorkPlane>Align WP with>Global Cartesian

(整理)《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

ANSYS建模及分析

(一)创建模型 /PREP7 PCIRC,2.1,1.5,0,180, PCIRC,2.1,1.5,45,180, /PNUM,AREA,1 LPLOT RECTNG,-0.45,0.45,1.8,2.7 , RECTNG,-2.7,-1.8,0,0.45, WPAVE,9.75, CSYS,4 PCIRC,1.05,0.6,0,180, PCIRC,1.05,0.6,0,135, FLST,2,4,5,ORDE,2 FITEM,2,1 FITEM,2,-4 AOVLAP,P51X FLST,2,2,5,ORDE,2 FITEM,2,5 FITEM,2,-6 AOVLAP,P51X CSYS,0 K, ,3.75,0.75, K, ,4.875,0.6, K, ,6.0,0.495, K, ,7.125,0.42, CSYS,1 FLST,3,6,3 FITEM,3,5 FITEM,3,6 FITEM,3,7 FITEM,3,21 FITEM,3,24 FITEM,3,22 BSPLIN, ,P51X, , , , ,2.1,135,,1.05,45,, LSTR,1,18 /PNUM,LINE,1 LPLOT FLST,2,4,4 FITEM,2,1 FITEM,2,6 FITEM,2,7

FITEM,2,25 AL,P51X LFILLT,30,39,0.375, , LFILLT,40,31,0.375, , LFILLT,36,40,0.375, , LPLOT /REPLOT,RESIZE FLST,2,3,4 FITEM,2,13 FITEM,2,10 FITEM,2,12 AL,P51X FLST,2,3,4 FITEM,2,17 FITEM,2,15 FITEM,2,19 AL,P51X FLST,2,3,4 FITEM,2,23 FITEM,2,24 FITEM,2,21 AL,P51X APLOT FLST,2,12,5,ORDE,2 FITEM,2,1 FITEM,2,-12 AADD,P51X /PNUM,LINE,0 LPLOT /PNUM,AREA,0 LPLOT /NOPR CSYS,0 FLST,3,1,5,ORDE,1 FITEM,3,13 ARSYM,Y,P51X, , , ,0,0 FLST,2,2,5,ORDE,2 FITEM,2,1 FITEM,2,13 AADD,P51X /VIEW, 1 ,1,1,1

ANSYS坐标系以及工作平面几点心得

ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。 CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点 CSYS,4(WP) !激活工作平面,原点在工作平面的原点 CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点 ▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令: 1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN 注:所有点的坐标均是全局坐标。 XORIG, YORIG, ZORIG为要定义的工作平面原点O的位置,坐标类型为全局坐标系,与当前激活的坐标类型(CSYS)无关。XXAX, YXAX, ZXAX为确定局部坐标系的X轴的方向,坐标类型为全局坐标系,局部坐标系的X轴就沿着原点O与此点的连线方向。XPLAN, YPLAN, ZPLAN为确定局部坐标系的Y轴方向,类型为全局坐标系,原点O与此点的连线确定Y轴的方向,不要求与OX垂直,只要成一弧度就可以确定。 wplane,,1,0,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X和Y方向均

ANSYS第四章 利用工作平面

第四章利用工作平面 4.1什么是工作平面 尽管光标在屏幕上只表现为一个点,但它实际上代表的是空间中垂直于屏幕的一条线。为了能用光标拾取一个点,首先必须定义一个假想的平面,当该平面与光标所代表的垂线相交时,能唯一地确定空间中的一个点。这个假想的平面就是工作平面。从另一种角度想象光标与工作平面的关系,可以描述为光标就象一个点在工作平面上来回游荡。工作平面因此就如同在上面写字的平板一样。(工作平面可以不平行于显示屏) 图4-1显示屏、光标、工作平面及拾取点之间的关系。 工作平面是一个无限平面,有原点、二维坐标系,捕捉增量(下面讨论)和显示栅格。在同一时刻只能定义一个工作平面(当定义一个新的工作平面时就会删除已有的工作平面)。工作平面是与坐标系独立的。例如,工作平面与激活的坐标系可以有不同的原点和旋转方向。见§4.3.5,详细讨论了如何迫使激活的坐标系跟踪工作平面。 4.2生成一个工作平面 进入ANSYS程序时,有一个缺省的工作平面,即总体笛卡尔坐标系的X-Y平面。工作平面的X、Y轴分别取为总体笛卡尔坐标系的X轴和Y轴。 4.2.1生成一个新的工作平面 用户可利用下列方法生成一个新的工作平面。 · 由三点生成一个工作平面或能过一指定点的垂直于视向量的平面定义为工作平面,用下列方法:

命令:WPLANE GUI : Utility Menu>WorkPlane>Align WP with>XYZ Locations · 由三节点定义一个工作平面或通过一指定节点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:NWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Nodes · 由三关键点定义一个工作平面或能过一指定关键点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:KWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Keypoints ·由过一指定线上的点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:LWPLAN GUI: Utility Menu>WorkPlane>Align WP with>Plane Normal to Line ·还可以通过现有坐标系的X─Y(或R─θ)平面上定义工作平面。 命令:WPCSYS GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys Utility Menu>WorkPlane>Align WP with>Global Cartesian Utility Menu>WorkPlane>Align WP with>Specified Coord Sys 4.2.2控制工作平面的显示和样式 为获得工作平面的状态〔即位置、方向、增量〕可用下列方法:命令:WPSTYL,STAT GUI: Utility Menu>List>Status>Working Plane 将工作平面重置为缺省状态下的位置和样式,利用命令WPSTYL,DEFA。

Ansys建模分析实例

Project1 超静定桁架的有限元建模与分析1、模型 计算分析模型如图所示。 载荷:1.0e8N 图1 超静定桁架的计算分析模型 2、分析目的 利用ANSYS建模,分析超静定桁架的在外力下的变形。熟悉ANSYS的建模、网格划分、载荷约束和计算结果分析的过程。 3、建立模型 在ANSYS中,选择Link 2D spar 1的平面杆单元,定义材料参数。建立几何模型,根据几何模型划分网格,其划分完网格的模型如

图2所示 图 2 网格模型 4、载荷工况 1)分别给桁架的非公共端施加X、Y向的约束。 2)在桁架的公共端施加沿Y方向1.0e8 N的载荷。 5、约束处理 在ANSYS中,按载荷工况中的要求施加载荷。其模型如下图3

所示。 图 3 模型约束 6、结果评价 首先分析桁架的变形,其变形如图4和图5下所示。

图 4 变形图 由图可知,桁架最大变形DMX=0.112e-03m。 其DOF Solusion-Y向变形如图5 DOF Solution-Y图5 DOF Solution-Y所示

图 5 DOF Solution-Y 从图中可以看出铰接的应力较为集中,是桁架的危险区域。Project2 超静定梁的计算分析1、模型 计算分析模型如图6所示:

梁承受均布载荷:1.0e5 Pa 图6超静定梁的计算分析模型 2、分析目的 利用ANSYS建模,分析超静定桁架的在外力下的变形。熟悉ANSYS的建模、网格划分、载荷约束和计算结果分析的过程。 3、建立模型 在ANSYS中,选择Beam tapered 44单元,定义材料参数。建立几何模型,根据几何模型划分网格,其划分完网格的模型如错误!未找到引用源。和错误!未找到引用源。错误!未找到引用源。所示。

anays坐标系总结

ANSYS坐标系总结 2010-03-24 17:15 直角坐标系 在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。 平面极坐标系 坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p 的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。 柱面坐标系 柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞, 0 ≤φ≤ 2π

-∞

y=rsinθsinφ z=rcosθ https://www.360docs.net/doc/3e14652815.html,/zhishi/184852.html ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0 默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点 CSYS,4(WP) !激活工作平面,原点在工作平面的原点 CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点

ANSYS的工作平面与坐标系

工作平面WP与坐标系Cartesian的区别?如在建模area 时,创建的area的位置随Workplane的改变而改变。 回答:工作平面和坐标系是有区别的,同时通过一些操作也可以将两者联系其来。 Working Plane 是一个2D作图平面,主要用于实体模型的定向和定位。Working Plane是一个无限大的平面,有原点、2D坐标系、捕捉增量和显示栅格。在同一时刻只能定义一个Working Plane。Working Plane与坐标系无关,是独立的,如工作平面与激活的坐标系可以有不同的原点和旋转方向。在进入ANSYS时,系统有一个默认的Working Plane,即Global Cartesion 的XY平面,Cartesion坐标系的X、Y轴就是该Working Plane的WX、WY轴。 详细分析参下: 4.2. Working Plane Enhancements 4.2. 5. Working Plane Tracking If you've used working planes in conjunction with coordinate systems to define your geometry, you've probably discovered that working planes are

completely separate from coordinate systems. When you change or move the working plane, for instance, the coordinate system does not change to reflect the new working plane type or location. This can be frustrating if you are using a combination of picking (based on the working plane), and keyboard input of entities such as keypoints (based on active coordinate system). For instance, if you move the working plane from its default position, then wish to define a keypoint at the new origin of the working plane with keyboard input (that is K,1205,0,0,0), you'll find that the keypoint is located at the coordinate system origin rather than the working plane origin (see Figure 4.4: Working Plane/Coordinate System Mismatch) If you find yourself forcing the active coordinate system to follow the

[工学]测量学试题库

1.地面上一点得空间位置在测量工作中是怎样表示的 2.何谓绝对高程,相对高程,高差 3.试述测量工作平面直角坐标系与教学计算中平面直角坐标系的不同点 4.普通测量学的任务是什么 5.何谓水准面 6.水平面与水准面有何区别 7.确定地面点位要做哪些基本测量工作 8.在测量中,采取哪些措施来保证测量成果的正确性 9.何谓正、反方位角 10.为了保证一般距离丈量的境地,应注意哪些事项 11.直线定向的目的是常用什么来表示直线方向 12.距离丈量有哪些主要误差来源 13.直线定向与直线定线有何区别 14.试述罗盘仪测定磁方位角的主要操作步骤。 15.钢尺的名义长度与标准长度有何区别 16.何谓直线定线 17.何谓水准仪的视准轴误差怎样检校 18.何谓高差闭合差怎样调整高差闭合差 19.绘图说明水准仪用角螺旋使圆水准气泡居中的操作步骤。 20.影响水准测量成果的主要因素有哪些如何减少或消除 21.水准测量中转点应如何选择 22.绘图说明水准测量的基本原理。 23.视差产生的原因是什么如何消除 24.试述在一测站上测定两点高差的观测步骤。 25.如何进行圆水准器轴平行于竖轴的检校 26.为什么观测时要把水准仪安置在距两尺基本等远处 27.叙述用测回法观测水平角的观测程序。 28.指标差怎样检校 29.简述在一个测站上观测竖直角的方法和步骤。 30.水平角观测时应注意哪些事项 31.竖角测量中指标差是指什么 32.什么叫水平角 33.经纬仪上有几对制动、微动螺旋各起什么作用如何正确使用 34.对中和整平的目的是什么试述仅有一个水准管的经纬仪的整平操作方法。

35.什么是竖直角 36.何谓系统误差偶然误差有合区别 37.试述中误差,容许误差、相对误差的含义与区别 38.举例说明如何消除或减小仪器的系统误差 39.偶然误差具有什么特征 40.等精度观测中为什么说算术平均值是最可靠的值 41.从算术平均值中误差(M)的公式中,使我们在提高测量精度上能得到什么启示 42.什么叫观测误差产生观测误差的原因有哪些 43.观测值函数的中误差与观测值中误差存在什么关系 44.闭和导线的内业计算有几步有哪些闭合差 45.何谓基线闭合差、归零差、测回差、2C互差 46.绘图简述四个方向的方向观测方法 47.跨河水准测量中仪器与水准尺的安置为什么要构成平行四边形 48.简述四等水准测量(双面尺)一个测站的观测程序 49.导线布置的形式有哪几种 50.为敷设经纬仪导线,在选点时应考虑哪些问题 51.经纬仪导线测量中,应直接观测哪些元素 52.小三角测量的特点是什么它与导线测量相比有何异同 53.小三角测量的布置形式有哪几种 54.试述高等线的性质 55.何谓坡度在地形图上怎样确定两点间的坡度 56.何谓地形图及地形图比例尺 57.什么是比例尺的精度 58.表示地物的符号有哪几种举例说明。 59.什么是等高线等高距等高线有哪几种 60.一般的测图方法有哪几种 61.平板仪安置包括哪几项工作 62.试述经纬仪测绘法测绘地形图的操作步骤。 63.测绘地形图时,如何选择地形特征点 测量学试题库

相关文档
最新文档