军用望远镜的构造原理与使用

军用望远镜的构造原理与使用
军用望远镜的构造原理与使用

军用望远镜的构造原理与使用工作原理:远处的物体(或目标)发出或反射的光线被物镜接收,经物镜作用成一个倒立的物像,再通过上下直角棱镜倒像后,成正立的物象在目镜的焦平面上,通过目镜放大供人眼观察。左支系统像焦平面上放置了一块分划板,通过分划板

即可进行方向、高低测角和测距。

构造、作用与机构动作:

1、镜身组:镜身组为望远镜的主体,分左、右镜身,通过连接轴连接在一起,其作用是支承上、下直角棱镜,连接物镜组和目镜组。

2、物镜组:物镜组由透镜、物镜筒等组成。物镜组与镜身用螺纹连接在一起,其作用是接收远处物体(或目标)的光线成像在焦平上。

3、目镜组:目镜组由透镜、目镜框、视度手轮等组成。目镜组与镜身用螺纹压圈连接在一起,其作用是把物镜所成的像放大后供人眼观察,转动视度手轮可调节目镜的视度,以满足不同视度人眼的使用要求,其范围是±4屈光度。

4、分划板:望远镜左目镜内的分划板可对被观察的已知目标的方向、高低夹角及视距进行测量。

分划板上刻有垂直分划、水平分划和视距分划。水平和垂直分划每一小格格值为5密位、大格格值为10密位。视距分划以被测目标高度为2m进行设计,测量范围由400m到2000m,在1000m内,视距分划每小格格值为50m,每大格格值为100m;在1000m到2000m,每小格格值为100m,每大格格值为500m。5、连接轴:连接轴是望远镜左、右镜身的连接件,同时也是实现目距在58-74mm范围内的调节的枢纽,也是双目合像的核心。6、护盖和背带:物镜护盖和目镜护盖是为了保护物镜和目镜透镜而设计的。望远镜在不使用时应将护盖盖上,以保护镜片不受损伤。背带连接在望远镜左右镜身上,使用时可将背带挂在使用者颈上,以防失手而损坏望远镜。使用方法:1、目距调整首先将望远镜左右目镜的正负屈光度刻度调整至0刻度。双手分别握持望远镜的左、右镜身,搜寻远处目标同时拉展或按压左、右镜身,使望远镜的目距与人眼的瞳距相同时(人眼看到的

全视场为圆形),停止调整。

2、物像调整首先搜索目标,锁定目标后,转动左目镜视度手轮,使望远镜左支系统目标像和分划图象完全清晰后,再转动右目镜视度手轮,使右支系统目标像完全清晰,便完成对所观察目标的调整。因为望远镜光路设计具有动态自动聚焦功能,因此当望远镜清晰度调整好之后,再次观察距离不同的目标时不需重新调焦。

3、测方向角方向角是指被测两目标(或一目标在水平方向的两端)对望远镜在水平面上的夹角。a)当两目标方向角小于望远镜内方向测角分划范围,以分划板上一端的刻线对准目标(目标1),然后看另一目标(目标2)对准分伽利略望远镜原理示意图.jpg划刻度线的数值,即为所测得的方向角密位数。如图所示,两目标的方向角为0-65(65密)位。

b)当两目标的方向角大于望远镜内的方向测角分划时,可借助两目标(目标1,2)之间的任意一目标(目标3)进行分段测量,将每段,将每段测得的数值加起来,即为所测的方向角,所

测得的方向角为1-10(110密位)

4、测高低角任意两目标(或一目标的两端)对望远镜在垂直面上的夹角,称为高低夹

角。a)当目标的高低交角比较小时,以分划板十字中心(或任意一刻线)对准目标下方,看目标上方对应分划板刻线所夹的分划数值,即为所测高低夹角的密位数,如图所示,目标的

高低夹角为0-15(15密)位。

b)当目标的高低夹角比较大时,可采用分段测量的方法,将分段测量的数值相加,即为高低夹角。5、测距离利用视距曲线测距离a)当目标高度为2m时,目标下端对准视距分划的水平线,目标的上端与视距分划相切处的读数即为目标与观察者之间的距离,如图所示,目标与观察者间的距离为550m。b)当目标的高度大于(或小于)2m时,其实际距离按下式计算:L=L1xH/2(m) 式中:L---------观察者至目标实际距离

(m) L1-------观察者至目标测量距离(m)(用目标高度为2m的视距分划和方法进

行测量) H--------目标高度(m)

利用密位公式计算距离密位公式:L=1000xH/a 式中:L--------观察者至目标的距离(m) H--------目标的高度或宽度(m) a---------用望远镜分划板测

出的目标高低角或目标方向角(密位)

6、夜间使用望远镜当环境光线昏暗或夜间观察时候,建议使用出瞳直径在7mm以上的望远镜。因为人的眼睛瞳孔直径在白天时约为2-3mm,在黑暗时瞳孔直径约为6-7mm,因此望远镜可以收集到比肉眼更多的光线。

回复引用举报TOP

?? 返回主题列表

伽利略望远镜原理示意图.jpg

望远镜的原理及发展历史

望远镜的原理及发展历史 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年荷兰人汉斯·利伯希发明了第一部望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。 17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜。 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。BOSMA博冠望远镜. 一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽马射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 常用的双筒望远镜还为减小体积和翻转倒像的目的,需要增加棱镜系统,棱镜系统按形式不同可分为别汉棱镜系统(RoofPrism)(也就是斯密特。别汉屋脊棱镜系统)和保罗棱镜系统(PorroPrism)(也称普罗棱镜系统),两种系统的原理及应用是相似的。个人使用的小型手持式望远镜不宜使用过大放大倍率,一般以3~12倍为宜,倍数过大时,成像清晰度就会变差,同时抖动严重,超过12倍的望远镜一般使用三角架等方式加以固定。 与此同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年─1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有

望远镜使用维护常识

望远镜使用维护常识 1、不要用双筒望远镜来观察太阳否则将会使眼睛受伤。强烈的阳光经望远镜的聚焦,就像放大镜聚光一样,会灼伤你的眼睛! 2、不要用其它普通的布料擦拭物镜或目镜,用望远镜包里附带的绒布或其他柔软的布擦拭望远镜的目镜物镜。有指印及时擦除以免腐蚀,灰尘用吹风球清理。清除残留的脏点或污迹时,可滴上一、二滴酒精,用布沾点就行,因为滴的话不好控制量。当外露镜片沾上油污时,可用药用酒精和特殊微纤维布料把油污擦去。 3、非防水望远镜不要在雨雪天气里使用。尽管市面上有很多防水的望远镜,哪怕掉入水里也不会有任何的使用问题。但就保养望远镜而言,把望远镜保存在干燥的环境中对宝贝的镀膜和望远镜有益无害。防水、充氮功能只是以防万一落水和受潮,并不怕受潮而内部光学件长霉。 4、不要尝试清擦望远镜内部或拆卸望远镜,望远镜其实很复杂,光轴坏了要在望远镜的专用调试光轴的仪器上才能调试。望远镜只要一拆卸,其光轴就会变化,从而使左右筒的成像不会重合,使您的眼镜不舒服,严重时根本就不能使用。

5、不要对望远镜重摔、重压或做其他剧烈动作,主要还是出于对望远镜的光轴考虑,重摔、重压或其他剧烈动作也很容易破坏望远镜的光轴。双筒镜*忌撞击,尤其廉价机型。 6、长期不用时,将之调整到*小体积盖上防护盖放在装有防潮的密实袋或电子防潮箱内,但切勿放在皮盒内,因为皮盒易发霉和吸水。普通干燥剂其实对于防水的望远镜没太大意义,一年后失效就扔了好了。但不防水的望远镜,还是定期更换(半年到一年),以防内部受潮长霉。 7、使用完望远镜,在放置时,先看看桌上有其他硬物没,不要放于其它物品上,以防镜片上出现划痕。 8、望远镜还是要正放为好,不要目镜向下放置。因为有的部位涂有润滑的油脂,有些地方还设计有存油槽,倒放时间长或天气太热,可能会流到不该流的地方 目前望远镜高端的就要数蔡司品牌,还有其他品牌,例如视得乐,欧尼卡,星特朗,尼康等;望远镜正确使用,寿命才会长,不管是高端的,还是一般的望远镜,都需要维护好;

带你认识望远镜的结构与原理

带你认识望远镜的结构与原理 望远镜基本构造 一般来说,常规的双筒望远镜有以下几个部分组成:目镜,物镜,中间的棱镜,两个镜筒的连接部分,以及聚焦系统。根据不同的尺寸大小,放大倍率,和用途以及个人喜好,双筒望远镜又可细分为好几种类型(详见双筒望远镜类型一表)。下图是常规双筒望远镜的基本构造图:

望远镜常见问题解答 1.望远镜上的两个数字代表什么?

望远镜上的两个数字分别代表望远镜的放大倍率和物镜口径。例如10x42的双筒望远镜,代表该望远镜的放大倍率是10x,物镜口径是42mm。10x的倍率表示透过望远镜看到的物体被放大了10倍,即100米处的物体看起来是在10米处。 2.望远镜的放大倍率越大越好吗? 不是,放大倍数越大,表示远处的目标在视场中显得更大,但同时意味着实际的视场会变得更小,也就是说进入望远镜的光通量会减少,也就是说你看到的目标会变得黯淡审视模糊。同时,放大倍率过大,会造成晃动不易于手持,也会引起眼睛疲劳,不利于观察。 3.双筒望远镜能否选择变倍的? 可以选择,但最好可变倍数不要太大。变倍望远镜很方便、适合多种用途,是牺牲如下指标为代价的:价格稍高;结构复杂,容易损坏;视角一般偏小;镜片多,分辨能力稍差;逆光表现不如固定倍数,反差会低一点。 4.双筒望远镜和单筒望远镜到底哪一个好? 如同字面所示,双筒望远镜有左右对称的镜头,便于人用双眼观察。而单筒望远镜是用单眼观察。不过,我们并不能武断地认为双筒望远镜更好。一般来讲单筒望远镜的倍率比双筒望远镜高,可以将远处的物体放得更大。而双筒望远镜虽然比单筒望远镜的倍率低,但由于可以用双眼观察,可以得到立体感。同时由于倍率较低,可以用手

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

望远镜系统结构设计

光学课程设计 望远镜结构系统设计 姓名:曾茂桃 班级:光通信082 学号:2008031126 指导老师:张翔

摘要 该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW 法基本原理。并应用光学设计软件对系统误差、成像质量进行理论分析。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。 关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅

目录 一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选………………………………………………页 3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页 3.3内调焦望远镜…………………………………………………………页 四.目镜组的主要种类及其结构:………………………….. 页 4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页 4.3Porro、Roof棱镜结构及其特点…………………………………页 五.望远镜像差设计PW法………………………………….. 页 5.2物体在有限距离时的P,W的规化……………………………………页5.5用C ,表示的初级像差系数………………………………………页 P, W 六.光学系统中的光栅分析……………………………………页

望远镜的工作原理

望远镜的工作原理 望远镜是如何工作的 1.1 光线的聚集和图像的形成 光学望远镜是利用了两种现象: 光线的反射,由镜面产生(图1)和光线的折射,由透镜产生(图2) 图1:光线通过平面反射 折射是光线从一种介质传播到另一种介质时产生的光线弯曲。它遵守Snell定律: n1sinθi=n2sinθr (1) 这里的n是折射率,是光线所穿过的材料的特征属性: n=1.0000 理想的真空 n=1.0002 空气 n=1.5 玻璃 n实际上是光线在真空中的速度与光线在介质中的速度的比值。图2是一个n2> n1的例子。 图2:光线在两种介质的边界发生折射 图3将告诉你如何制作一个透镜。标定的距离 f 是透镜的焦距,一个位于“无限远”处的物体将成像在透镜后面距离为 f 的地方。我们在第2节中将会知道,望远镜是一些光学元件的组合。许多设计都包含折射和反射光学元件,但是为了简化后面的介绍,我们举例的望远镜只包含透镜。实际上,就我们的目的而言,反射和折射是等效的,从某种意义上说,一个人在原则上可以建造一个只使用透

镜的系统或是只使用反射镜的系统,而这两者在光学上来说是不可分辨的。当我们拿一个透镜收集来自遥远天体的光线从而得到图像的时候,就已经建造了基本的天文折射望远镜。 图3:透镜的折射 1.2 成像的大小依赖焦距的长短 注意我们到现在为止描述的折射望远镜是没有目镜的,因此它将不允许一个人直接看到它已经产生的图像,因为人类的视觉系统不适用于已经汇聚了的光线。虽然如此,我们简单的仪器实际上是个望远镜。如果想看到像是如何形成和在哪里形成的,你可以拿一片白色的纸或者一张照相底片放在焦点上。图4显示的就是两颗在天空中角距为θ的星,和它们正在被观察的样子。 图4:焦平面 由于相似三角形中θ是不改变的,所以星在图像上的分离大小与它们在天空中角距是成正比的。 图5:角距离转化为线距离 同时,从图5中可以看出: tanθ=d/fobj (2) 这里d是所成图像中星星们之间的线距离,fobj是透镜的焦距。现在,(物理学家们总爱耍一些这样的小把戏),因为这些星必然都很远,θ是如此之小, tan θ≈θ。这样, θ=d/fobj ==》1/fobj=θ/d

望远镜的基本常识及保养

望远镜的基本常识及保养一、望远镜的表示方法: 望远镜的基本表示方法是:倍率x物镜口径(直径,mm),不同类型望远镜的规格表示方法会有一些细小的差别: 1、定倍望远镜的表示方法:倍率x物镜口径(直径,mm),比如8X21,表示该望远镜的放大倍率为8倍,物镜口径21毫米。 2、变倍望远镜的表示方法:变倍望远镜分连续变倍和固定变倍两种。连续变倍望远镜是用“最低倍率-最高倍率x物镜口径(直径mm)”来表示,如7-21X40表示该望远镜的最低放大倍率是7倍,最高放大倍率是21倍,在7倍和21倍之间可以自由变换,物镜口径是40毫米;固定变倍望远镜是用“最低倍率/最高倍率x物镜口径(直径mm)”来表示,如15/30X80表示该望远镜最低放大倍率是15倍,最高放大倍率是30倍,在15倍和30倍之间不能自由变换,只能固定变换,物镜口径是80毫米。 3、一些望远镜在上述技术参数后面会出现“WA”、“LE”等英文字样,“WA”表示广角,视场范围更广;“LE” 表示长出瞳,适合带眼镜的朋友使用,可以不脱下眼镜进行观察;“WP”表示防水;“GD”表示广角定焦。 二、望远镜的放大倍率: 望远镜的放大倍率可以理解为望远镜拉近物体的能力。倍率越

小,视场越大,图像的轮廓越清晰,越易于调焦;倍率越大,视场越小,图象的局部被放大的更清楚,但同时图象的稳定性也就不能保证(此时要借助三脚架)。望远镜的合理倍率也与其口径和观测方式相关:口径大的倍数可以适当高一些,带支架的的可以比手持的高一些。手持观测的双筒望远镜,7-12倍之间是最合适的,最好不要超过20倍,如果望远镜的倍率超过20倍,那么手持观察将会很不方便,呼吸的起伏和空气的波动都会对其产生影响,最好配合三角架使用。 三、望远镜的口径: 口径是指望远镜物镜的直径。口径越大,观测视场、亮度就越大,有利于暗弱光线下的观测,但口径越大体积就越大,一般可根据需要在21-80mm之间选择。 四、望远镜的视场: 视场是望远镜在一定距离所看到的图像的实际宽度,是一个很重要的性能参数。视场一般用千米处视界(可观测的宽度)来表示,比如7X50望远镜可以使你在1000米处看到119米宽的一个图像范围。视场由望远镜的放大倍率、物镜聚焦长度及目镜决定。但是有一点是肯定的,倍率越大、视场越小。 五、望远镜的出瞳直径: 出瞳直径就是影像通过望远镜后在目镜上形成的光斑大小,用

天文望远镜的光学形式与优缺点简介

望远镜的光学形式与优缺点简介 望远镜的光学形式分为折射式、反射式、折反射式等三种。 折射望远镜 折射镜的镜片结构是由二片到三片所组合的消色差设计。 优点:焦距长、视野较大、解析力强、拍摄出的星点锐利,星像明亮,最适合于做天体测量方面的工作、观测月球、行星、双星表现出色,较大口径的产品易于地面观景、非常适合做月面及行星的扩大摄影。影像清晰锐利,高对比度、较好的消色差设计、极好的APO高消色差、好的镜片几乎无色差、使用寿命很长,但须注意不要让镜片发霉、易于设置和使用、保养容易,很少或不需要维护、底片比例尺大、对镜筒弯曲不敏感、简单和可靠的设计、密封的镜筒避免了空气扰动图像并保护光学镜片、物镜永久固定式安装,无需校正。 缺点:价格高昂。大口径规格比较昂贵、较重、长度和体积比同等口径和焦距的牛顿反射或折反望远镜更大、存在一些色彩畸变(消色差双胶合透镜)、有残余的色差,从而降低了分辨率、优质折射镜的物镜是2片双分离消色差物镜或3片复消色差物镜。不过,消色差或复消色差并不能完全消除色差,所谓消色差物镜只是对白光中7种色光的2种色光(红和兰光)消除色差,而复消色差物镜除了对2种色光

消色差之外,还对第3种色光(黄光)消除了剩余色差。短焦的折射镜有周边像差的现象,但这些缺点现已可解决。口径无法做太大,增大口径的成本因素限制了商业产品的最大尺寸,经济的设计大多为中小口径产品、巨大的光学玻璃浇制也十分困难,对紫外、红外波段的辐射吸收很厉害、到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。反射式望远镜: 优点:口径较大,影像明亮。成本低,没有色差,可做较大的口径,适合做星云、星团的摄影。没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。 缺点:口径越大,视场越小,光轴需常调整,反射镜面镀膜易氧化,物镜需要定期镀膜(三至五年),否则星星愈看愈暗,保养较为繁复。反射镜的慧差和像散较大,使得视野边缘像质变差,周边像差使星象肥大。彗形像差,这已被克服。 常用的反射镜有牛顿式和卡塞格林式2种。 牛顿反射望远镜 光学系统简单、价格便宜,球面反射镜在后端,目镜在前端侧面;牛顿反射望远镜采用一面凹面镜作为主要物镜,光进入镜筒的底端,然后折回开口处的第二反射镜,再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。牛顿反射望远镜用

望远镜光路设计

至今没有一个光学系统是完美的。为了平坦且清晰的成像,往往必须把光学系统设计的十分复杂。如此一来,不但透光度变差,还得付出很高的制造成本。因此简单的镜片组而且能保有高品质成像的光学系统是光学设计的努力目标。 一个好的光学系统都出自设计者的巧思。它能在最简单的镜片组合下产生最佳的成像品质。不过在许多设计中,往往会遇到球面像差与彗形像差难以取舍的窘境(天文望远镜光学与机械)。当你能同时处理这些像差的时候,系统却又发生严重的色差。最后好不容易解决了所有的色像差,却又发生成像的变形。因此光学系统的设计在在考验设计者的经验与智力。希望透过以下的天文望远镜的演进,让你了解前人的成果。 折射式望远镜系统 由于白光经过透镜会有色散的现象(Dipersion),因此使得光学系统除了球面像差与彗形像差之外又多了影像不清晰的光源。由上图可知,蓝光的折射率较大,其次为绿光,最后为红光,因此不同颜色的入射光产生,却有不同的聚焦点。好的光学系统除了成像品质之外,还必须考虑消色差的效果。 基本上,我们在处理可见光的光路分析时,是用蓝色的F line(486.13nm)、红色的C line(656.27nm)与绿色的e line(546.07nm) 作为分析的主要光源。要查看镜片的色差情形,可以用色散数值V( Dispersion Number or Abbe number)。V越大表示镜片的色散的情况越小。 V=(ne-1) / ( nF-nC) 对於一个D= 5公分,f=20公分的两片镜片组合,我们可以由下图的光路分析了解他们各自聚焦的一致性。其实这就是球面像差的检测工作! D=5公分f=20公分 第一片镜片R1=18公分R2=-19公分中心厚度=0.84公分 间隙0.1公分 第二片镜片R3=-19公分R4=-22公分中心厚度=0.98公分

显微镜和望远镜的工作原理

xx 光学显微镜是为了使肉眼看不清楚的标本影像,人们设想经过一种装置,使肉眼能够观察到该标本组织形态和其间的结构。这种设想的装置就被后人创造问世了。当前广泛应用在各种微小物体的观察、测定、分析、分类、鉴定等。在波长范围上也不限於可见光波段(4000~7000)而且(>2000)到红外(1~2u)以及用眼睛观察、显微、摄影和一般辐射检测器放大。 显微镜的分类是根据照明方法,有透射型与反射(落射)型二种。透射型显微镜是应用透射照明通过透明物体的打光方法。反射型显微镜是以物镜上方打光到(落射照明)不透明的物体上。另一种分类方法,系根据观察方法的差异,分为明视野显微镜、暗视野显微镜、相位差显微镜、偏光显微镜、干涉相位差显微镜、萤光显微镜等。每种显微镜一般又各有透射型和反射型二种。在这些显微镜中,特别是明视野显微镜是构成所有显微镜中组成最基本的基础。通过这种显微镜观察的物体,穿过透过(吸收)率、反射率,因场所不同而各不相同,这种物体被称为随照明光强度(振幅)变化振幅物体,无色透明物体只有在照明相位改变时,才能被肉眼观察到,由於明视野显微镜不能改变相位,所以对透明不染色标本不能被观察到。 倍率、数值孔径与视场数 显微镜的综合倍率是物镜倍率G1与目镜倍率G2的乘积,G=G1×G2。G1是1~100倍,G2是5~20的范围。 数值孔径(NumericalAperture)N. A.是决定物镜的分辨率、焦深、图像亮度的基本数据,如图所示,当物镜焦点对好后,物镜前透镜最边缘处的倾斜光线与显微镜光轴所交角成α,此即该物镜的半孔径角设标本数据空间的折射率为n,则N. A.=n×sinα。 n通常在空气中为1,在物镜与标本间浸入水、甘油、油脂时,该标本折射率,即随浸液不同而异。这种物镜称为浸液系物镜;如是空气时,称为乾燥系物镜。

新手入门天文望远镜使用小常识

新手入门——天文望远镜使用小常识 一、如何调试寻星镜 1、白天,先将主镜筒对准远处的一个目标(约500米远),如烟囱、空调室外机等。装上低倍率目镜(如20MM目镜)寻找目标。将镜筒大致对准目标后,调节焦距系统直到目标清晰,并使之处于主镜中心点,然后将脚架全部锁紧。 2、小心调整寻星镜上的三个螺丝,将主镜看到的目标调到寻星镜的十字架中心。 3、更换高倍率目镜(如10MM目镜),重复上述的步骤。调试时,主镜里的目标始终控制在寻星镜的十字架中心。 *寻星镜调准后,千万不要动它。观测月亮,尽量选择在“弯月”,这时能更清晰的看到环形山、月海等。 二、赤道仪的简介和调整 (一)赤道仪简介 赤道仪有三个轴: 1、地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2、极轴(赤经轴)。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3、赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)赤道仪的调整 极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1、主镜与赤道仪、三角架连接好,把将有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2、松开极轴(赤经轴)螺钉,把主镜旋转到左边或右边。松开平衡锤螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3、松开地平螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。 4、松开极轴与地平轴连接螺钉,上下扳动极轴,使指针对准观测地点的地理纬度,制紧螺钉。 5、松开赤纬轴螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。 6、从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。 7、拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针。 至此,望远镜就与地球自转轴、观测点子午面完全平行。

教您天文望远镜基础知识入门知识讲解

教您天文望远镜基础知识入门 一、望远镜种类 (一)折射式望远镜 折射式望远镜的构造如下图: 折射式望远镜由两个透镜组成:固定在镜筒前端的是物镜(其口径大小直接决定望远镜的性能);在镜筒尾端可以调换的是目镜。

上图为星特朗AstroMaster系列 90EQ 优点:视野较大、星像明亮,使用和维护比较方便,反差及锐利度较同口径的反射镜佳,摄影及高倍行星观测,效果都相当不错。缺点:有色像差(色差)问题,会降低分辨率。 (二)反射式望远镜 反射式望远镜的构造如下图:

上图为牛顿式反射式望远镜。

上图为星特朗AstroMaster系列130EQ 优点:无色差、强光力和大视场,非常适合深空天体的目视观测。缺点:彗差和像散较大,视野边缘像质变差,操作不太容易, 维护相对复杂。 (三)折反射式望远镜 折反射式望远镜的构造如下图:

上图为星特朗Omni XLT 127

综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。 三种类型望远镜优缺点对比: (1)折射式:通常小型(口径80毫米以下)折射望远镜具有便携优势,结构简单可靠性高,可以在旅行时随身携带。在拍摄要求不高的情况完全可以满足摄影需求,而且与相机连接简单可以作为长焦镜头使用。 (2)反射式:大口径反射虽然不便携,但比其他类型望远镜有很多优势。首先,造价低廉,很多爱好者可以自己磨制。其次,大口径成像效果更好,利于高倍观测,而且焦比较小,适合观测和拍摄深空天体。 (3)折反式:折反同时具备折射式望远镜的便携和反射式望远镜的成像优势,但价格较贵。 三种望远镜优缺点对比: 折射式 优点:结构简单,便携,成像锐度好, 缺点:镜筒封闭维护保养容易有色差、球差,口径大的价格相对较贵 光学结构:物镜——目镜结构 反射式 优点:口径大,成像亮度高,无色差,价格相对便宜 缺点:不便携,有球差,镜筒开放维护保养相对困难 光学结构:反射镜——副镜——目镜结构 折反式 优点:便携,成像质量较好,镜筒封闭维护保养容易,

光学课程设计 ——望远镜系统

望远镜系统结构设计 指导教师: 张 翔 专 业:光信息科学与技术 班 级:光信息08级1班 姓 名: 学 号: 20080320 光学课程设计

目录 第一部分设计背景 (1) 第二部分设计目的及意义 (1) 第三部分望远镜介绍 (1) 3.1望远镜定义 (1) 3.2望远镜分类及相应工作原理 (2) 第四部分望远镜系统设计 (3) 4.1开普勒望远镜 (3) 4.2望远镜系统常用参数 (4) 4.3外形尺寸计算 (6) 4.4伽利略望远镜 (8) 4.5物镜组的选取 (9) 4.6望远镜像差类型及主要结构 (10) 4.7双胶物镜与双分离物镜分析 (12) 4.8内调焦望远物镜分析 (14) 4.9目镜组的选取 (14) 4.10目镜主要像差及分析 (17) 4.11棱镜转像系统 (17) 4.12转折形式望远镜系统 (18) 4.13光学系统初始结构参数计算方法 (18) 4.14应用光学系统中的光栅 (20) 第五部分设计总结 (21) 第六部分参考文献 (21)

一.设计背景 在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。 其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。 二.设计目的及意义 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、 物镜组、目镜组及转像系统的简易或远离设计。了解光学设计中的PW法基本原理。 三.望远镜介绍 3.1 望远镜定义 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽吗射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 【望远镜基本工作示意图】

望远镜基本常识与鉴别

望远镜基本常识与鉴别 望远镜的倍数 手持双筒望远镜的倍数,基本都在7~10倍之间。并不是更高倍数的望远镜难做,而是因为长期的实践发现,7~10倍是最适合手持望远镜的倍数范围。军用手持望远镜严格遵循这个标准,像军用现役的手持望远镜,没有超过10倍的,最常用的,是7倍和8倍,如美军在伊拉克战场最常用的手持望远镜,是7倍的。而中国很经典的一款老军镜,为8倍。光学行业把7、8 和10倍定为手持望远镜的最佳标准倍数范围(普通的玩具望远镜倍数一般是2~3倍,古代的长筒望远镜的倍数在3~5倍)。 台式望远镜 根据需要的不同,光学仪器厂家也设计生产了各种类型的望远镜,有的人需要随身带在身上,外出旅游,那就是上面说的手持望远镜。有的时候不需要随身携带,不需要广阔的视野,而需要倍数高一点的,那就是高倍台式望远镜。为了减轻倍数太高带来的晃动,台式望远镜都需要三脚架来辅助固定。所以不太适合外出旅行旅游携带——这就需要消费者根据自己的需要,选择相应的产品了。 军用望远镜 真正的军用手持望远镜,首先价格方面,至少也是上千元,倍数和正规的民用手持望远镜都是一样的。都是7倍到10倍之间,民用的手持望远镜最多不超过12倍。而军用手持望远镜没有超过10倍的,但很多不道德商贩,利用人们的不了解,把自己的望远镜称为“军用望远镜”或“俄罗斯望远镜”,自称“20倍”“50倍”“9999倍”来误导和欺骗消费者。实际上市面上绝大多数所谓的“军用望远镜”,非但不是真正的军用望远镜,甚至其实绝大多数是一些小作坊生产的劣质产品,连正规产品都不是。 军用(图上方)和民用(图下方)的区别,从照片中就可以看出来,厚重的金属,密密麻麻的螺丝,军用级别产品的优势,主要是高坚固性和高防水性,有专门的国军标。普通老百姓,不去深山老林,不去伊拉克的沙漠参战,买军用望远镜干什么?等于说你在高速公路上,不开轿车,开坦克——浪费钱,速度还不见得快,对大多数人是完全没有必要的。虽然也有军用产品,但除非必要(专业的户外探险,军品爱好者,要求高的执法人员),不推荐普通人选择。对于真正确实需要此类产品的使用者,国内近几年研发出一批光学优异(已经极为接近或者达到一些欧洲顶级望远镜的光学水平)的军用产品,尽管还没有正式大量装备我军,或者仅仅用于对外军品出口,但也已经引起了我国不少望远镜和军品发烧友的关注。现在提供的这款军镜,就是一个最典型的代表。

应用光学课程设计-15倍双目望远镜

应用光学课程设计报告 ———15倍双目望远镜 姓名: 班级学号: 指导教师: 光电工程学院 2016年01月04日

一、望远镜系统的原理 (3) 二、课程设计的内容及要求 (3) 三、光学元件尺寸计算及数据处理总结 (4) (一)、目镜的计算 (4) (二)、物镜的结构形式及外形尺寸计算 (7) (三)、计算分划板 (7) (四)、计算棱镜 (8) (五)、像差计算 (9) (六)、建立数据文件 (15)

一、望远镜系统的原理 亥普勒望远镜的原理示意如下图1所示: 图 1 图中可见亥普勒望远镜是由正光焦度的物镜与正光焦度的目镜构成,与显微镜不同的是望远镜的光学间隔为0,平行光入射平行光射出。其系统的视觉放大倍率为: '//D D f f e o -=''-=Γ 式中,0f '为物镜的焦距;e f '为目镜的焦距;D 为入瞳直径;'D 为出瞳直径。在此成像过程中,有一个实像面位于分划面上,可以实现相应的瞄准或测量。 由于亥普勒望远镜成倒像不利于观察,故而需在系统中加入一个由透镜或棱镜构成的转像系统。军用望远镜的转像系统多是用两个互相垂直放置的 180-II D 棱镜(即保罗棱镜)组成。 伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其视觉放大率大于1,形成的是正立的像,无需加转像系统,也无法安装分划板,应用较少。 二、课程设计的内容及要求 1、根据已知的一些技术要求,进行外型尺寸计算; 1)目镜的选取及计算; 2)物镜的结构型式及外型尺寸计算; 3)分划板的外型尺寸计算; 4)棱镜的类型选取及外型尺寸计算; 2、像差计算 1)求取棱镜的初级像差; 2)求取物镜的初级像差; 3)根据物镜的像差求出双胶合物镜的结构参数。

望远镜常识

A。极端的问题——“这台望远镜能看清楚月球表面吗?”--购买天文望远镜前,请保持合理的期望值! 经常碰到顾客问的问题是“这台望远镜能看清楚月球表面吗?”或者更为极端的“这个望远镜能看清楚火星表面吗?”。我们的答复是:如果有人说“能”,那是扯淡。如果一台100来元的望远镜能看清楚月球表面的细节,那么国家为什么还要花上百亿元发射嫦娥飞船到月球去干什么? 光学产品是烧钱的。一个中档的天文望远镜目镜镜头可能就需要500元。合理的期望值是:这种价位的望远镜能分辨出月球环形山的形状,能看到土星的光环和几个主要的卫星。 B。天文观察是个技术活,对于那些连望远镜如何调焦都不知道的顾客,你别期望一下子能看到月球环形山或者土星的光环。 顾客经常问的一个哭笑不得的问题是“这个望远镜为啥什么都看不到呢?” 我的神啊!望远镜不是电视机,按下开关就能自己显示图像。望远镜更像是一件乐器,花的时间越多,体会到的细节就越多。如果连最基本的调焦都不熟悉,我只能请求你饶了我吧! 最简单的步骤是:初次使用,先在白天学习看风景,熟悉使用后再做天文观察;不要认为自己一拿到望远镜就可以在晚上做天文观察哦!天文观察受到大气层环流、天气、城市环境光线影响非常大,城市路灯光线往往比星星还亮。开始学习使用时,配件越简单越好。所以您只

需在天文望远镜镜筒上加一个H20标号的目镜,先不加其他任何部件,学习得循序渐进呢;对准500-1000米左右的显著景物,将镜筒调到最短焦距,然后看目镜,慢慢、慢慢调手轮,直到看到图像为止,然后微调清晰度。熟悉使用后,然后您就可以试试其他镜头、配件的功效和使用了。学会白天看景物之后,您再多看看网上资料,尝试做天文观察哦。 B。2个经典问题——“这个望远镜能看多远?”与“这个望远镜放大倍数多少?” 在我们望远镜的客服工作中,被问得最多的问题是这样的两个——“这台望远镜能看多远?”和“这台望远镜能放大多少倍?”你 是不是正好想到了其中一个? 这两个问题的问法其实都是错误的,别人一听就知道提问的人肯定是个门外汉。 首先说第一个经典问题,我一般会这样反问:“你认为人的肉眼能看多远?”提问者往往会说:“我也不知道。”但我相信他心里肯定认为人的肉眼最多看几公里了不起了。这时我会告诉他:“你看天上的月亮,那是在38万公里以外;你看天上的太阳,那是在1.5亿公里以外;你看到的满天恒星最近的都在几光年以外,而你能看到的最远的天体——”在这里我会停顿一下,让提问者能够重新整理一下思绪,“是著

光学望远镜的发展简介

光学望远镜的发展简介 天文学是研究天体和宇宙的科学,观测是天文学研究的主要实验方法.在17世纪以前,天文学家只能用肉眼观测星空中几千个比较亮的天体.17世纪初,伽利略发明了天文望远镜,人类的眼界随之大为开阔,望远镜成了近代天文观测的眼睛.本文就光学天文望远镜的发展作一简单介绍. 一、折射式望远镜 1.伽利略望远镜 图1 第一个望远镜是荷兰的一位眼镜商人里帕席于1608年做成的.据说,里帕席无意间将两块镜片重叠并使其相隔一定的距离观看时,发现远处教堂上的风标明显地放大了.于是,他把两块镜片装在一个铜管的两头,发明了最初的望远镜,这引起了许多人的兴趣.1609年,当伽利略得知荷兰人发明了望远镜的消息后,他激动不已,立即亲自动手制作望远镜.他用一个凸透镜作为物镜,一个凹透镜作为目镜,于1609年7月初制成了倍率为3的望远镜,这种望远镜的构造如图1所示,这种光学系统现称为伽利略望远镜.经过进一步的改进,到1610年9月,将倍率提高到了33倍.伽利略用自制的望远镜观察天空,发现了月球表面的环行山、太阳黑子、木星的卫星等一系列重大的天文现象,从此天文学进入了望远镜时代. 2.开普勒望远镜 图2 鉴于伽利略望远镜放大倍数和视场都较小的缺点,1611年,德国天文学家开普勒设计了用两片双凸透镜分别作为物镜和目镜的望远镜,使得放大倍数和视场都有了明显的提高,如图2所示,这种光学系统现称为开普勒望远镜.用这种望远镜看到的像是倒立的,这会使人很不习惯,不过对于天文观测则毫无影响.从17世纪中叶起,开普勒望远镜在天文观测中得到了普遍的应用. 当时的望远镜都采用单个透镜作为物镜,存在着严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,因此镜身越来越长,最长的竟达65米.直至英国光学仪器商杜隆用冕牌玻璃和火石玻璃制造了消色透镜,从此,长镜身望远镜被消色差折射望远镜所取代. 二、反射式望远镜 图3 由于伽利略和开普勒望远镜均存在明显的色差,所以人们又发明了消色差的反射式望远镜.牛顿在清楚地解释了“色差”问题后,于1688年制作了一种与众不同的反射式望远镜.他采用球面镜作为主镜,将金属磨制成一块凹面镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,如图3所示,这种光学系统称为牛顿式反射望远镜.它的球面镜虽然会产生一定的相差,但用反射镜代替折射镜却是一个巨大的成功.

光学课程设计望远镜系统结构设计

光学课程设计 ——望远镜系统结构设计 姓名: 学号: 班级: 指导老师:

一、设计题目:光学课程设计 二、设计目的: 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW法基本原理。 三、设计原理: 光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统. 常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。 物镜组(入瞳)目镜组 视场光阑出瞳 1 '1ω 2 '2'ω3 'f物—f目'l z '3 上图为开普勒式望远镜,折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸

透镜形式。为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。 伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。伽利略望远镜的优点是结构紧凑,筒长较短,较为轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。其原理图如下: 物镜组 目镜组 出瞳 '1 F F 2 f 2 d '1 f 伽利略望远镜示意图 为了更好的了解望远镜,下面介绍放大镜的各种放大率: 望远镜垂轴放大率:代表共轭面像高和物高之比。计算公式如下 1 '2 'f f -=β 望远镜角放大率:望远镜共轭面的轴上点发出的光线通过系统后,与光轴夹角的正切之比。计算公式如下: 2 '1'f f -=γ 望远镜轴向放大率:当物平面沿着光轴移动微小距离dx 时,像平面相应地移动距离dx',

第一章 望远镜基本原理

望遠鏡基本原理 1.1望遠鏡光學原理 望遠鏡由物鏡和目鏡組成,接近景物的凸形透鏡或凹形反射鏡叫做物鏡,靠近眼睛那塊叫做目鏡。遠景物的光源視作平行光,根據光學原埋,平行光經過透鏡或球面凹形反射鏡便會聚焦在一點上,這就是焦點。焦點與物鏡距離就是焦距。再利用一塊比物鏡焦距短的凸透鏡或目鏡就可以把成像放大,這時觀察者覺得遠處景物被拉近,看得特別清楚。 折射鏡是由一組透鏡組成,反射式則包括一塊鍍了反光金屬面的凹形球面鏡和把光源作 90 度反射的平面鏡。兩者的吸光率大致相同。折射和反射鏡各有優點,現分別討論。 1.2 折射和反射望遠鏡的選擇 折射望遠鏡的優點 1.影像穩定 折射式望遠鏡鏡筒密封,避免了空氣對流現象。 2.彗像差矯正 利用不同的透鏡組合來矯正彗像差(Coma)。 3.保養

主鏡密封,不會被污濁空氣侵蝕,基本上不用保養。 折射望遠鏡的缺點 1.色差 不同波長光波成像在焦點附近,所以望遠鏡出現彩色光環圍繞成像。矯正色差時要增加一塊不同折射率的透鏡,但矯正大口徑鏡就不容易。 2.鏡筒長 為了消除色差,設計望遠鏡時就要把焦距儘量增長,約主鏡口徑的十五倍,以六吋口徑計算,便是七呎半長,而且用起來又不方便,業餘製鏡者要造一座這樣長而穩定度高的腳架很是困難的一回事。 3.價錢貴 光線要穿過透鏡關係,所以要採用清晰度高,質地優良的玻璃,這樣價錢就貴許多。全部完成後的價錢也比同一口徑的反射鏡貴數倍至十數倍。 反射望遠鏡的優點 1.消色差 任何可見光均聚焦於一點。 2.鏡筒短 通常鏡筒長度只有主鏡直徑八倍,所以比折射鏡筒約短兩倍。短的鏡筒操作力便,又容易製造穩定性高的腳架。 3.價錢便宜 光線只在主鏡表面反射,製鏡者可以購買較經濟的普通玻璃去製造反射鏡的主要部份。

望远镜基本知识

望远镜基本知识 1.望远镜的表示方法 望远镜的基本表示方法是:倍率x物镜口径(直径,mm),不同类型的望远镜的规格表示方法只有一些细小的差距,但都不脱离这个模式,下面一一说明: 1.1、固定倍率的望远镜(也是最常见的望远镜)的表示方法:倍率x物镜口径(直径,mm),比如7x35表示该种望远镜的倍率为7倍,物镜口径35毫米;10×50表示该种望远镜的倍率为10倍,物镜口径为50 毫米。 1.2、连续变倍望远镜规格的表示方法:连续变倍望远镜是用“最低倍率-最高倍率x物镜口径(直径mm)”来表示,如8-25x25表示该种望远镜的最低倍率是8倍、最高倍率是25倍、在8倍和25倍之间可以连续变换、口径是25毫米。 1.3、固定变倍望远镜的表示方法:低倍率/高倍率(/更高倍率)x物镜口径(直径mm),有时候也用最低倍率-最高倍率x物镜口径(直径mm)的表示方法,例如15/30*80指倍率为15倍和30倍固定变倍、口径为80毫米的望远镜。 1.4、防水望远镜的表示方法:一般在望远镜型号的后面加WP (Water proof),如8X30WP指倍率为8倍,物镜口径为30毫米的防水望远镜。 1.5、广角望远镜的表示方法:一般在望远镜型号的后面加 WA(Wide Angle),如7X35WA指倍率为7倍,物镜口径35毫米的广角望远镜 一些经销商把前后两数字相乘的积当作望远镜的倍率来哄骗消

费者是不道德的,更有一些经销商随意扩大两个数字来欺骗消费者,我曾经见过一款10x25的DCF望远镜,标注的规格竟是990x99990,天!990倍的、口径是99990mm的望远镜是什么概念? 2.望远镜的倍率指的是什么 望远镜的倍率是指一架望远镜的倍率是指望远镜拉近物体 的能力,如使用一具7倍的望远镜来观察物体,观察到的700米远的物体的效果和肉眼观察到的100米远的物体的效果是相似的(当然,由于环境的影响效果要差一些)。很多人总认为倍率越高越好,一些经销商和厂家也以虚假的高倍来吸引、欺骗消费者,市场上有些望远镜竟然标为990倍!实际上,一架望远镜的合理倍率是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,带支架的的可以比手持的高些。倍率越大,稳定性也就越差,观察视场就越小、越暗,其带来的抖动也大增加,呼吸的气流和空气的波动对其影响也就越大。手持观测的双筒望远镜,7-10倍之间是最合适的,最好不要超过12倍,如果望远镜的倍率超过12倍,那么手持观察将会很不方便。世界各国军用的望远镜也大多以6-10倍为主,如我国的军用望远镜主要是7倍和8倍的,这是因为清晰稳定的成像是非常重要的。 3.望远镜的口径指的是什么 口径是指望远镜物镜的直径。口径越大,观测视场、亮度就越大,有利于暗弱光线下的观测,但口径越大体积就越大,一般可根据需要在 21-50mm之间选用。近年来市场上也出现了一些口径为70mm、80mm、100mm 的大口径望远镜产品,体积很大且配有支架。 4.什么是望远镜的视场 视场(Field of view)是指在一定的距离内观察到的范围的大小。视场越大,观测的范围就越宽广越舒适,视场一般用千米处视界(可观测的宽

相关文档
最新文档