对数公式

对数公式
对数公式

对数

目录

对数的概念

定义

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质

如果a>0,且a≠1,M>0,N>0,那么:

1、a^log(a)(b)=b

2、log(a)(a)=1

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

第5条的公式写法

5、log(a)(M^n)=nlog(a)(M)

6、log(a)[M^(1/n)]=log(a)(M)/n

(注:下文^均为上标符号,例:a^1即为a)

推导

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、因为a^b=a^b

令t=a^b

所以a^b=t,b=log(a)(t)=log(a)(a^b)

令b=1,则1=log(a)(a)

3、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

4、与(3)类似处理

M/N=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指数的性质

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

5、与(3)类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下:

由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(b^m)÷ln(a^n)

换底公式的推导:

设e^x=b^m,e^y=a^n

则log(a^n)(b^m)=log(e^y)(e^x)=x/y

x=ln(b^m),y=ln(a^n)

得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

由基本性质4可得

log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] =

(m÷n)×{[ln(b)]÷[ln(a)]}

再由换底公式

log(a^n)(b^m)=m÷n×[log(a)(b)]

--------------------------------------------(性质及推导完)

函数图象

1.对数函数的图象都过(1,0)点.

2.对于y=log(a)(n)函数,

①,当0

②当a>1时,图象上显示函数为(0,+∞)单增,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.

3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.

其他性质

性质一:换底公式

log(a)(N)=log(b){N}/log(b){a}

推导如下:

N = a^[log(a){N}]

a = b^[log(b){a}]

综合两式可得

N = {b^[log(b){a}]}^[log(a){N}] = b^{[log(a){N}]*[log(b){a}]} 又因为N=b^[log(b){N}]

所以 b^[log(b){N}] = b^{[log(a){N}]*[log(b){a}]}

所以 log(b){N} = [log(a){N}]*[log(b){a}]...... [这步不明白或有疑问看上面的]

所以log(a){N}=log(b){N} / log(b){a}

公式二:log(a){b}=1/log(b){a}

证明如下:

由换底公式 log(a){b}=log(b){b}/log(b){a} ----取以b为底的对数log(a){b}=1 =1/log(b){a} 还可变形得: log(a){b}×log(b){a}=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进制整数或小数的对数。例如lg10=1,

lg100=lg10^2=2, lg4000=lg(10^3×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。

141以内自然对数表

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

《对数与对数运算》教学设计

2.2.1 对数与对数运算(一) 教学目标 (一) 教学知识点 1. 对数的概念; 2.对数式与指数式的互化. (二) 能力训练要求 1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用. 教学重点 对数的定义. 教学难点 对数概念的理解. 教学过程 一、复习引入: 假设 20XX 年我国国民生产总值为 a 亿元,如果每年平均增长 8%,那么经过多少年国民生产总值是 20XX 年的 2 倍? 1 8% = 2 x=? 也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容: aa 0,a 1 的b 次幂等于 N ,就是a b N ,那么数 b 叫做以 a 为底 N 的对 ⑴ 负数与零没有对数(∵在指数式中 ⑵ log a 1 0 , log a a 1 ; ∵对任意 a 0且 a 1, 都有 a 0 1 ∴log a 1 0 同样易知: log a a 1 ⑶对数恒等式 如果把 a b N 中的 b 写成 log a N , 则有 a logaN N . 定义:一般地,如果 数,记作 log a N b , a 叫做对数的底数, N 叫做真数. a b log a Nb 例如: 42 16 log 4 16 2 2 102 100 log 10 100 2 ; 探究: 1。 1 42 2 log 42 12 ; 是不是所有的实数都有对数? 10 2 0.01 log 10 0.01 2. log a N b 中的 N 可以取哪些值? 2. 根据对数的定义以及对数与指数的关系, log a 1 ? log a a ?

对数运算法则公式及其练习题

b n m b a m a n log log =对数运算法则公式 1、b a b a =log 2、n m n m a a a log log )(log +=? 3、n m n m a a a log log )(log -= 4、b n b a n a log log ?= 5、b n b a a n log 1log = 6、a b b c c a log log log =(换底公式) 7、1log log =?a b b a

1、求值: 1、log 89log 2732 2、lg 243 lg9 3、44912log 3log 2log 32?- 4、9 1log 81log 251log 532?? 5、4839(log 3log 3)(log 2log 2)++ 6、2345log 3log 4log 5log 2 7、0.21log 35 - 8、log 427·log 94+log 44 64; 9、(log 2125+log 425+log 85)(log 52+log 254+log 1258) 10、log 932·log 6427+log 92·log 427.

1.82log 9log 3 的值是 2.34 3的值是 3.2323223log 2log 3(log 2log 3)log 3log 2 +--的值是 4.若02log 2log m n >>时,则m 与n 的关系是 A .1m n >> B .1n m >> C .10m n >>> D .10n m >>> 5.233351log 5log 15log 5log 3 ?--的值是 A .0 B .1 C .5log 3 D .3log 5 6.若3log 124 x =,则x =_____________. 7.有下列五个等式,其中a>0且a ≠1,x>0 , y>0 ①log ()log log a a a x y x y +=+, ②log ()log log a a a x y x y +=?, ③1log log log 2 a a a x x y y =-, ④log log log ()a a a x y x y ?=?, ⑤22log ()2(log log )a a a x y x y -=- 将其中正确等式的代号写在横线上______________. 8.化简下列各式: (1)14lg 23lg5lg 5+- (2)3lg lg 70lg 37+- (3) 2lg 2lg5lg 201+?-

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

教案对数的运算法则

教案 对数的运算法则 【教学目标】 知识目标: ⑴ 理解对数的概念,了解常用对数的概念. ⑵ 掌握对数的运算法则. 能力目标: 会运用对数的运算法则进行计算. 【教学重点】 对数的概念和对数的运算法则. 【教学难点】 对数的运算法则. 【教学过程】 一、课程导入 以复习指数的相关知识导入新课.(板书,提问等.5分钟) 问题1:2的多少次幂等于8? 问题2:2的多少次幂等于9? 显然,这是同一类问题.就是已知底数和幂如何求指数的问题.为了解决这类问题,我们引进一个新数——对数. 二、新课教学 1.新概念 法则1 lg lg lg MN M N =+(M >0,N >0). 法则2 lg lg lg M M N N =-(M >0,N >0). 法则3 lg n M =n lg M (M >0,n 为整数). 上述三条运算法则,对以)1,0(≠>a a a 为底的对数,都成立. 2.概念的强化 例4 (讲授)用lg x ,lg y ,lg z 表示下列各式: (1)lg xyz ;(2)lg x yz ;(3)z .

解 (1) lg xyz =lg x +lg y +lg z ; (2) lg x yz =lg lg lg lg lg x yz x y z -=-+()=lg lg lg x y z --; (3) z 2lg x +3lg z -=2lg x +2 1lg y 3lg z -. 例5 (启发学生回答或提问)已知2ln =0.6931,3ln =1.0986.计算下列各式的值(精确到0.0001): (1))34ln(75?; (2)18ln . 分析 关键是利用对数的运算法则,将所求的对数用2ln 与3ln 来表示. 解 (1))34ln(75?=54ln +73ln =54ln +73ln =522ln +73ln (2)18ln =2118ln =2192ln ?=2 1(2ln +9ln )=21(2ln +23ln ) =0986.16931.02 1+?=1.44515≈1.4452. 例6 求下列各式的值: (1)lg2lg5+; (2)lg600lg2lg3--. 分析 逆向使用运算法则,再利用性质lg101=进行计算. 解 (1)lg2lg5lg(25)lg101+=?==; (2)2600lg600lg2lg3lg( )lg100lg102lg10223 --=====?. 3.巩固性练习 练习3.3.3 ( 12分钟) 1.用lg x ,lg y ,lg z 表示下列各式: (1) (2)lg xy z ; (3)2lg()y x ; (4) 2.已知2ln =0.6931,3ln =1.0986,计算下列各式的值(精确到0.0001): (1)ln 36; (2)ln 216; (3)ln12; (4)911ln(23)?. 答案:1.(1)1lg 2 x ;(2)lg lg lg x y z +-;(3)2lg 2lg y x -;(4)111lg lg lg 243x y z +-. 2.(1) 3.5834;(2)5.3751;(3)1.2424;(4)18.3225. 三、小结(讲授,5分钟) 1.本节内容

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

对数公式总结

1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am?an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1

对数的基本概念及运算

第十讲 对数的基本概念及运算 一:问题思考 问题1:一尺之棰,日取其半,万世不竭。 (1)取5次,还有多长? (2)取多少次,还有0.125尺? (1)为同学们熟悉的指数函数的模型,易得 (2)可设取x 次,则有 二:新知引入 1. 对数的概念:一般地,如果,那么数叫做以为底的对 数,记作: ,其中叫做对数的底数, 叫做真数。 注意:①是否是所有的实数都有对数呢? 负数和零没有对数 ②底数的限制:a>0且a ≠1。 思考:为什么对数的定义中要求底数a>0且a ≠1? 对数的书写格式 2、对数式与指数式的互化 N x N a a x log =?= 幂底数 ← a → 对数底数 指数(指数函数的自变量) ← b → 对数 幂(指数函数的函数值) ← N → 真数

3、对数的形式 ①常用对数:以10为底的对数 ,简记为: lgN ②自然对数:以无理数e=2.71828…为底的对数的对数 简记为: lnN . (在科学技术中,常常使用以e 为底的对数) ③一般对数:(含有常用对数和自然对数) 注意:对数的书写 课堂练习 1 将下列指数式写成对数式: (1) (2) (3) (4) 2 将下列对数式写成指数式: (1) (2) (3) 3 求下列各式的值: (1) (2) 2. 对数运算 (1) 基本性质 ①0和负数没有对数,即N>0 ②1的对数是0,即01log =a ③底数的对数等于1,即1log =a a ④对数恒等式:N a N a =log (2) 运算法则 如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=; 3 ) ∈=n M n M a n a (log log R )。(例题 p111,例 4 ,计

对数函数基础运算法则及例题-答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x =4 9时,不等式 (x 2 – x – 2)> (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x =49使原不等式成立. ∴[249)49(2--]> )34 9 2)49(1[2+?+? 即16 13>16 39. 而16 13<16 39. 所以y = 为减函数,故0<a <1. ∴原不等式可化为??? ????++-<-->++->--3220 320222 2 2x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5, 2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212 221log log 11x x x x ---2 1221 (1) log (1)x x x x -=-= .11log 2 1 122 x x x x --? ∵0<x 1<x 2<1,∴1 2x x >1,2111x x -->1. 则2 1 122 11log x x x x --? >0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = (a – ) (a >1).

对数

对数 导读:本文是关于对数,希望能帮助到您! 教学目标 1.理解对数的概念,掌握对数的运算性质. (1) 了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系. (2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算. (3) 能根据概念进行指数与对数之间的互化. 2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力. 3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神. 教学建议 教材分析 (1) 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻

画,表示为当时,.所以指数式中的底数,指数,幂与对数式中的底数,对数,真数的关系可以表示如下: (2) 本节的教学重点是对数的定义和运算性质,难点是对数的概念. 对数首先作为一种运算,由引出的,在这个式子中已知一个数和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对的全面认识.此外对数作为一种运算除了认识运算符号“”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.对数运算的符号的认识与理解是学生认识对数的一个障碍,其实与+,等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难. 教法建议 (1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数和真数的要求,其次对于对数的性质及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

对数+常用公式方便搜到的人

对数 来自维基百科 各种底数的对数: 红色函数底数是e, 绿色函数底数是10,而紫色函数底数是1.7。在数轴上每个刻度是一个单位。所有底数的对数函数都通过点(1,0),因为任何数的0次幂都是1,而底数β的函数通过点(β, 1),因为任何数的1次幂都是自身1。曲线接近y轴但永不触及它,因为x=0的奇异性。 在数学中,数?x(对于底数?β)的对数是βy?的指数?y,使得?x=βy。底数?β?的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是e、?10或2。数x(对于底数β)的对数通常写为

。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。例如,因为 , 我们可以得出 , 用日常语言说,对81以3为基的对数是4。 对数函数 函数log αx依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如log αx的函数,在其中底数α是固定的而只有一个参数x。所 以对每个基的值(不得是负数、0或1)只有唯一的对数函数。从这个角度看,底数α的对数函数是指数函数y= αx的反函数。词语“对数”经常用来称呼对数函数自身和这个函数的1个特定值。 对数函数图像和指数函数图像关于直线y=x对称,互为逆函数。 对数函数的性质有:

1.都过(1,0)点; 2.定义域为|R|≠0,值域为R; 3.α>1,在(0,+∞)上是增函数;1>α>0时,在(0,+∞)上是减函数。常用公式 ?和差 ?基变换

?指系 ?还原 ?互换 ?倒数

链式 有理和无理指数 如果n是有理数,βn表示等于β的n个因子的乘积: 。 但是,如果β是不等于1的正实数,这个定义可以扩展到在一个域中的任何实数n(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数β,有一个对数函数和一个指数函数,它们互为反函数。

对数计算公式.

性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数. 2对数恒等式 a^logaN=N (a>0 ,a≠1) 3运算法则 ①loga(MN)=l ogaM+l ogaN; ②loga(M/N)=l ogaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数 的底。定义:若a^n=b(a>0且a≠1) 则n=log(a)(b)

基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=l og(a)(M)+l og(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nl og(a)(M) 5、log(a^n)M=1/nl og(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 M/N=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N)

10.对数的概念与运算

十、对数的概念与运算 一、选择题 1. 对于且,下列说法中正确的是 A. 若,则 B. 若,则 C. 若,则 D. 若,则 2. A. B. C. D. 3. 计算:的值是 A. B. C. D. 4. B. C. 5. 实数的值为 A. B. C. D. 6. 对数与互为相反数,则有 A. B. C. D. 7. 如果,那么 A. B. C. D. 8. 已知函数,那么的值为 A. B. D. 9. 下列算式中正确的是 A. B. C. D. 10. 已知,那么等于 11. 设,则用表示的形式是 A. B. C. D. 12. A. B. C. D. 13. 式子的值为 A. C. D. 14. C. D. 15. 计算:的值为

A. B. C. 16. 计算 A. B. 17. 若,则等于 B. C. D. 18. 设,且,则 A. B. C. D. 19. 若,则等于 A. C. D. 20. 已知,,则的值为 A. B. C. D. 二、填空题 21. 计算:. 22. 化简:. 23. . 24. 计算:. 25. . 26. . 27. 计算: (); (). 28. . 29. 的值是. 30. . 31. 已知,,则. 32. 若,则.

对数的概念与运算答案 第一部分 1. B 【解析】当,A项错误;若,则,即C 项错误;若,则D项错误. 2. C 3. C 【解析】. 4. A 5. A 6. C 【解析】. 7. C 8. D 9. C 10. C 【解析】由对数性质及, 得,,, 所以 11. A【解析】因为,所以. 12. B 【解析】由对数恒等式,得 . 13. A 14. D 【解析】利用对数运算法则求解. 方法一:. 方法二:. 15. C 【解析】 16. B 【解析】. 17. D 18. A 【解析】,,又, . 19. D 【解析】由换底公式,得,,. 20. A 【解析】, 第二部分 21.

(完整版)对数公式及对数函数的总结

对数运算和对数函数 对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数。③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>。 常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数函数及其性质 类型一、对数公式的应用

1计算下列对数 =-3log 6log 22 =?3 1log 12 log 2 22 2 =+2lg 5lg =61000lg =+64log 128log 22 =?)24(log 432 =++)2log 2)(log 3log 3(log 9384 =++3log 23log 2242 =?16log 27log 32 =+-2log 90log 5log 333 =++c b a 842log log log =+++200 199lg 43lg 32lg Λ =++32log 8log 8log 842 =+25.0log 10log 255 =-64log 325log 225 =)))65536(log (log (log log 2222 2 解对数的值: 18lg 7lg 37lg 214lg -+- 0 =-+-1)21 (2lg 225lg -1 1 3 341log 2log 8?? -? ??? 的值0 提示:对数公式的运算 如果0,1,0,0a a M N >≠>>,那么 (1)加法:log log log ()a a a M N MN += (2)减法:log log log a a a M M N N -= (3)数乘:log log ()n a a n M M n R =∈ (4)log a N a N = (5)log log (0,)b n a a n M M b n R b =≠∈ (6)换底公式:log log (0,1)log b a b N N b b a = >≠且 (7)1log log =?a b b a (8)a b b a log 1log = 类型二、求下列函数的定义域问题 1函数)13lg(13)(2 ++-= x x x x f 的定义域是)1,31 (- 2设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为 ()()4,11,4Y -- 3 函数()f x = ]1,0()0,1(Y - ) 提示:(1)分式函数,分母不为0,如0,1 ≠= x x y 。 (2) 二次根式函数,被开方数大于等于0,0,≥= x x y 。 (3)对数函数,真数大于0,0,log >=x x y a 。 类型三、对数函数中的单调性问题

对数的运算法则

对数的运算法则 教学目标 1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题. 2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神. 教学重点是对数的运算法则及推导和应用难点是法则的探究与证明. 一. 引入新课 我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题 如果看到这个式子会有何联想? 由学生回答(1)(2) (3)(4). 也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则. 二.对数的运算法则(板书) 对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则. 由学生回答后教师让学生看:,,.

然后直接提出课题:若是 否成立? 由学生讨论并举出实例说明其不成立(如可以举而 ),教师在肯定结论的正确性的同时再提出 可提示学生利用刚才的反例,把5改写成应为,而32 =2,还可以让学生再找几个例子, .之后让学生大胆说出发现有什么规律? 由学生回答应有成立. 现在它只是一个猜想,要保证其对任意都成立,需要给出相应的证明,怎么证呢? 你学过哪些与之相关的证明依据呢? 学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书. 证明:设则,由指数运算法则 得, 即.(板书) 法则出来以后,要求学生能从以下几方面去认识: (1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).

对数函数运算公式

对数函数运算公式标准化管理部编码-[99968T-6889628-J68568-1689N]

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M 和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M)

相关文档
最新文档