模式识别课程论文

模式识别课程论文
模式识别课程论文

模式识别课程学习感想

人类可以通过视觉信息识别文字、图片和周围的环境,通过听觉信息识别与理解语言,比如识别人脸,阅读手写文字,通过气味识别一种水果的种类等。我们希望给机器相同的模式识别能力。

模式识别主要是研究对象的特征或属性,利用以计算机为中心的机器系统运用一定的分析算法认定对象的类别,系统应使分类识别的结果尽可能地与真实情况相符合。模式识别方法最大的实用性在于“智能”仿真,可以说在同常生活中随处可见,如医疗诊断系统、地球资源探测系统、机器人辅助生产线、公安人员用于破案的指纹识别系统等。模式识别包含由特征和属性所描述的对象的数学模型,这罩所讲的特征和属性是指通常意义上的系统的输入/输出数据对。

模式识别系统主要由两个过程组成,即设计过程和实现过程。设计过程是指用一定数量的样本(也称训练集或学习集)进行分类器的设计;实现过程是指用所设计的分类器对待识别的样本进行分类决策。

通过这门课程的学习,对各种模型的模式识别算法有了一定程度的了解。

一、线性模型

我们使用线性神经网络来解决线性模型的模式识别。线性神经网络与感知器的主要不同之处在于其神经元有一个线性激活函数,这允许输出可以是任意值,而不仅仅只是像感知器中那样只能取0或1。它采用的是W—H学习法则,也称最小均方差(LMS)规则对权值进行训练。线性神经网络的主要用途是线性逼近一个函数式而进行模式联想。

二、非线性模型

1、Ada-Boosting

基于级联结构的AdaBoost算法目前被认为是较有效的检测算法。

Boosting是一个将弱学习(weak learn)算法融合为强学习算法(strong)的方法。Ada-Boost 算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将每次训练得到的分类器最后融合起来,作为最后的决策分类器。目前在人脸侦测的领域,就有人将Ada-Boost + cascade 作为一个很有效的运算法。Boost是一种常用来增进learning algorithm正确率的方法。使用boost 分类器可以排除一些不必要的特征,并将关键放在关键的特征上面。

AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(弱分类器)。理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零。AdaBoost算法中不同的训练集是通过调整每个样本的权重实现的。最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h1(x)。对于h1(x)错分的样本,则增加其对应样本的权重;而对于正确分类的样本,则降低其权重。这样可以使得错分的样本突出出来,得到一个新的样本分布。同时,根据错分的情况赋予h1(x)一个权重,表示该基本分类器进行训练,得到基本分类器h2(x)及其权重。依次类推,经过T 次这样的循环,就得到了T个基本分类器,以及T个对应的权重。最后把这T个基本分类器按一定的权重累加起来,就得到了最终所期望的强分类器。

2、多层感知机

神经网络具有强大的非线性映射能力,人工神经网络的实际应用中,绝大部分的神经网

络模型都采用bp神经网络及其变化形式。它也是前向网络的核心部分,体现了人工神经网络的精华。

bp神经网络是误差反向传播神经网络的简称,它由一个输入层,一个或多个隐含层和一个输出层构成,每一次由一定数量的的神经元构成。这些神经元如同人的神经细胞一样是互相关联的。

学习的过程:神经网络在外界输入样本的刺激下不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。

学习的本质:对各连接权值的动态调整。

学习规则:权值调整规则,即在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。

学习的类型:有导师学习。

核心思想:将输出误差以某种形式通过隐层向输入层逐层反传。

学习的过程:由信号的正向传播到误差的反向传播。

正向传播:输入样本———输入层———各隐层———输出层。

判断是否转入反向传播阶段:若输出层的实际输出与期望的输出(教师信号)不符。

误差反传误差以某种形式在各层表示———修正各层单元的权值。

网络结构:输入层有n个神经元,隐含层有p个神经元,输出层有q个神经元。

bp神经网络最主要的优点是具有极强的非线性映射能力。其次,bp神经网络具有对外界刺激和输入信息进行联想记忆的能力。再次,bp神经网络对外界输入样本有很强的识别与分类能力。由于它具有强大的非线性处理能力,因此可以较好地进行非线性分类,解决了神经网络发展史上的非线性分类难题。另外,bp神经网络具有优化计算能力。bp神经网络本质上是一个非线性优化问题,它可以在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。

3、SVM(支持向量机)

支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其推广能力明显优于一些传统的学习方法。支持向量机在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

机器学习本质上就是一种对问题真实模型的逼近,我们选择的模型与问题真实解之间究竟有多大差距,我们无法得知,因此统计学习引入了泛化误差界的概念,就是指真实风险应该由两部分内容刻画,一是经验风险,代表了分类器在给定样本上的误差;二是置信风险,代表了我们在多大程度上可以信任分类器在未知文本上分类的结果,第二部分是没有办法精确计算的,因此只能给出一个估计的区间,也使得整个误差只能计算上界,而无法计算准确的值(所以叫做泛化误差界,而不叫泛化误差)。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM 的解是全局唯一的最优解。

SVM方法的特点:①非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;②对特征空间划分的最优超平面是SVM的目标,最大化分类边界的思想是SVM方法的核心;③支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。

SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。

少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现

在:

①增、删非支持向量样本对模型没有影响;

②支持向量样本集具有一定的鲁棒性;

③有些成功的应用中,SVM 方法对核的选取不敏感。

SVM分类器算法能较好的完成对线性可分的样品集的分类。SVM分类器算法适用于线性可分情况,同时也能较好的处理线性不可分情况,它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界,在实际应用中有较好的优势。

三、总结

在本课程的学习过程中,我逐渐明白模式识别的流程,以及对于给定的一个问题,如何进行建模,特征提取等。首先通过给定的训练数据建立对应的决策模型,然后利用已建立的模型对具体数据进行预测,处理一般模式识别问题的流程为:信息输入->数据获取->预处理->待征选择/提取->决策分析-> 信息输出。

对于简单的线性分类问题,我们可采用单层感知机或线性神经网络来对具体问题进行建模。而对于非线性问题,我们需要分析具体的情况,综合比较各种因素,选择一种综合性能较好的模型来处理对应问题。

模式识别是人工智能的基础技术,已经广泛应用于文字和语音识别、遥感和医学诊断等方面,对人们的日常生活和工作提供了很大的方便。

模式识别论文

模式识别综述与应用 院系:计算机与通信工程学院 班级:电子信息10-01班 姓名: 学号:

模式识别综述与应用 摘要 模式识别就是研究用计算机实现人类的模式识别能力的一门学科,目的是利用计算机将对象进行分类。模式识别技术近年来得到了迅速的发展。 关键词 模式识别应用发展状况 前言 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。模式识别是一个多领域的交叉学科,它涉及人工智能、统计学、计算机科学、工程学、医学等众多的研究问题。随着2 0世纪4 0年代计算机的出现以及5 0年代人工智能的兴起,模式识别在2 0世纪6 0年代初迅速发展并成为一门新学科。 一、模式与模式识别的概念 广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。 模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 模式识别的研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家、神经生理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。 二、模式识别方法——统计模式识别方法和结构(句法)模式识别方法 把图像或图像系列分割为线条、边缘,结点,区域等并提供相应的特征,诸如灰度值、颜色、形状、纹理,深度等[5]。目的是要利用这些信息对模式进行分类或者对模式进行分析(描述)。分类是实现一个模式与

模式识别课件

模式识别 参考材料: [1]边肇祺,张学工等编,模式识别(第二版)清华大学出版社 2000 [2]R.O.Duda, P.E.Hart. Pattern Classification and Scene Analysis.NewYork: John wiley & sons. 1973 [3]Nello Cristianini & Jogn Shawe –Jaylor. An Introduction to Support Vector Machines and other Kernel –based learning method. Cambridge University Press 2000 学习目标: 模式识别这个词是Pattern Recognition翻译来的,通俗一点讲究就是机器识别,计算机识别,或机器自动识别。Pattern这个词翻译成模式,模式是要让机器自动识别的事物(辨别是否相同或是否相似)。如一个具体数字,是印刷体还是手写体。 本课程学习目标为,使学生能应用模式识别方法处理计算机自动识别事物、机器学习、数据分析中有关的技术问题。能掌握模式识别技术中最基本的概念,以及基本的处理问题方法。 课程要求: 本课程主要是学习让计算机自动识别的基本概念,方法的课程,但它与相关学科的术语都有密切联系,如人工智能也是让计算机具有智能,因此这两门课程有许多相通、互助的方面。 模式识别技术中十分重要的概念是让机器通过学习确定参数改进性能,因此是机器学习这个学术名词中的重要与基础内容。 模式识别主要是对视频、图像、声音等多媒体信息进行分类识别,因此具有这方面的背景也是比较有利的。

模式识别课程设计

模式识别导论课程设计 学号: 班级: 姓名:

课程名称模式识别考试性质考查试卷类型 A 使用班级电信1101-1103 考试方法大作业人数100 题号一二三四五六七八九十总成绩成绩

(2)分类器设计方法概述及选择依据分析;(10分) (3)感知器算法原理及算法步骤;(20分) (4)感知器算法流程设计;(20分) (5)感知器算法程序;(10分) (6)程序仿真及结果分析;(20分) (7)结论;(5分) (8)参考文献。(5分) 四、请结合具体的应用背景,设计基于K-L变换的特征提取算法,并编写程序,分析结果,提交报告一份。 报告内容包括:(1)具体应用背景的介绍;(10分) (2)特征提取方法概述及选择依据分析;(10分) (3)基于K-L变换的特征提取算法原理及步骤;(20分) (4)基于K-L变换的特征提取算法流程设计;(20分) (5)基于K-L变换的特征提取算法程序;(10分) (6)程序仿真及结果分析;(20分) (7)结论;(5分) (8)参考文献。(5分)

1具体应用背景的介绍 随着社会经济的发展、人口的增多,人们对水资源的利用更加重视,不同的水资源质量程度不一,为了更好地适应人类的需求,需要对水资源根据污染物有机物、无机物、重金属含量进行适当的分类。在这里将运用模式识别的方法简单的对其分类为一类水与二类水。 2分类器设计方法概述及选择依据分析 感知器是一种神经网络模型,是20世纪50年代中期到60年代初人们对模拟人脑学习能力的一种分类学习机模型的称呼,当时有些人认为它是一种学习记的强有力模型,后来发现估计过高,由于无法实现非线性分类,到60年代中期,从事感知器研究的实验室纷纷下马,但在发展感知器是所获得的一些数学概念,如“赏罚分明”今天仍在模式识别中起着很大的作用。 将用感知器的方法在本次设计中对水资源进行分类 3感知器算法原理及算法步骤 两类线性可分的模式类 21,ωω,设 X W X d T )(=其中,[]T 121,,,,+=n n w w w w W ,[]T 211,,,,n x x x =X 应具有性质 (3-1) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: 2)-(3 0)(T >=X W X d 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: ?? ?∈<∈>=2 1 T ,0,0)(ωωX X X W X 若若d

模式识别论文

模式识别 课题:基于支持向量机人工神经网络的水质预测研究专业:电子信息工程

摘要 针对江水浊度序列宽频、非线性、非平稳的特点,将经验模态分解(EMD)和支持向量机(SVM)回归方法引入浊度预测领域,建立了基于EMD2SVM的浊度预测模型.通过EMD分解,将原始非平稳的浊度序列分解为若干固有模态分量(IMF),根据各IMF序列的特点,选择不同的参数对各IMF序列进行预测,最后合成原始序列的预测值.将该方法应用于实际浊度预测,并与径向基神经网络(RBF)预测及单独支持向量机回归预测结果进行比较,仿真结果表明该方法预测精度有明显提高.水质评价实际上是一个监测数据处理与状态估计、识别的过程,提出一种基于支持向量机的方法应用于水质评价,该方法依据决策二叉树多类分类的思想,构建了基于支持向量机的水环境质量状况识别与评价模型。以长江口的实际水质监测数据为例进行了实验分析,并与单因子方法及单个BP神经网络方法进行了比较分析。实验结果表明,运用该模型对长江口的实际水质监测数据进行的综合水质评价效果较好,且具有较高的实用价值。 关键词:浊度;预测;经验模态分解;支持向量;BP神经网络 一.概述 江水浊度受地表径流、温度以及人类活动等的影响,波动明显,在不同的月份有着很大的变化,表现出非平稳、非线性的特点.对其进行分析和预测,对于河流生态评价、航运安全以及以江河水为原水的饮用

水生产具有重要的指导意义.国内外在浊度序列分析方面的研究文献较少,通常都是综合考虑各种水质参数而对浊度进行预测,采用较多的是人工神经网络等非线性模型方法[1,2].这种模型结构复杂,要求原始数据丰富,在实际操作中实现较为困难.此外,对于江水浊度这一具有宽带频谱的小样本混沌时间序列,采用单一的预测方法,将会把原始浊度序列中的各种不同特征信息同质化,势必影响其预测精度.采用经验模态分解(Empirical Mode Decomposition,EMD)将浊度序列分解后分别预测,再进行合成将可能提高其预测精度.不同于小波变换,在对信号进行经验模态分解时不需要先验基底,每一个固有模态函数(In2trinsic Mode Function,IMF)包含的频率成分不仅与采样频率有关,并且还随着信号本身的变化而变化,具有自适应性,能够把局部时间内含有的多个模态的非线性、非平稳信号分解成若干个彼此间影响甚微的基本模态分量,这些分量具有不同的尺度,从而简化系统间特征信息的干涉或耦合[3].支持向量机(Support Vector Ma2chines,SVM)是建立在统计学习理论上的一种机器学习方法,是目前针对小样本统计估计和预测学习的较好方法[4],对统计学习理论的发展起到巨大推动作用并得到广泛应用[5~8].SVM有良好的泛化能力,并解决了模型选择与欠学习、过学习问题及非线性问题,避免了局部最优解,克服了“维数灾难”,且人为设定参数少,便于使用,已成功应用于许多分类、识别和回归问题[5,6,8].根据江水浊度序列的特点,结合EMD和SVM两种方法的不同功能,本文提出了基于EMD2SVM模型的预测方法,用于江水浊度的

模式识别课程设计

模式识别 课程设计 关于黄绿树叶的分类问题 成员:李家伟2015020907010 黄哲2015020907006 老师:程建 学生签字:

一、小组分工 黄哲:数据采集以及特征提取。 李家伟:算法编写设计,完成测试编写报告。 二、特征提取 选取黄、绿树叶各15片,用老师给出的识别算法进行特征提取 %Extract the feature of the leaf clear, close all I = imread('/Users/DrLee/Desktop/kmeans/1.jpg'); I = im2double(I); figure, imshow(I) n = input('Please input the number of the sample regions n:'); h = input('Please input the width of the sample region h:'); [Pos] = ginput(n); SamNum = size(Pos,1); Region = []; RegionFeatureCum = zeros((2*h+1)*(2*h+1)*3,1); RegionFeature = zeros((2*h+1)*(2*h+1)*3,1); for i = 1:SamNum P = round(Pos(i,:)); rectangle('Position', [P(1) P(2) 2*h+1 2*h+1]); hold on Region{i} = I(P(2)-h:P(2)+h,P(1)-h:P(1)+h,:); RegionFeatureCum = RegionFeatureCum + reshape(Region{i},[(2*h+1)*(2*h+1)*3,1]); end hold off RegionFeature = RegionFeatureCum / SamNum 1~15为绿色树叶特征,16~30为黄色树叶特征,取n=3;h=1,表示每片叶子取三个区域,每个区域的特征为3*3*3维的向量,然后变为27*1的列向量,表格如下。

模式识别结课论文

中国传媒大学2014~2015 学年第 1 学期 智能视频分析技术课程 题目人工智能在模式识别中的运用学生姓名刘晶晶 学号201110013208 班级数字媒体技术 学生所属学院信息工程学院 任课教师吕朝辉 教师所属学院信息工程学院 时间2014.11.27

人工智能在模式识别中的应用 摘要 计算机硬件的迅速发展,计算机应用领域的不断开拓,迫切地要求计算机能够更有效地感知诸如声音、文字、图像、温度、震动等人类赖以发展自身、改造环境所运用的信息资料。但就一般意义来说,目前一般计算机却无法直接感知它们,键盘、鼠标等外部设备,对于这样五花八门的外部世界显得无能为力。纵然电视摄像机、图文扫描仪、话筒等设备业已解决了上述非电信号的转换,并与计算机联机,但由于识别技术不高,而未能使计算机真正知道采录后的究竟是什么信息。计算机对外部世界感知能力的低下,成为开拓计算机应用的瓶颈,也与其高超的运算能力形成强烈的对比。于是,着眼于拓宽计算机的应用领域,提高其感知外部信息能力的学科——模式识别,便得到迅速发展。人工智能所研究的模式识别是指用计算机代替人类或帮助人类感知模式,是对人类感知外界功能的模拟,研究的是计算机模式识别系统,也就是使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。现将人工智能在模式识别方面的一些具体和最新的应用列举如下。 关键词:人工智能、模式识别、应用 (一)人工智能 人工智能(Anificial InteUigence)是相对人的自然智能而言,即用人工的方法和技术,模仿、延伸和扩展人的智能,实现某些“机器思维”。作为一门学科,人工智能研究智能行为的计算模型,研制具有感知、推理、学习、联想、决策等思维活动的计算系统,解决需要人类专家才能处理的复杂问题。人工智能就其本质而言,是对人的思维的信息过程的模拟。 (二)模式识别 模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,我们把环境与客体统称为“模式”,随着计算机技术的发展,人类有可能研究复杂的信息处理过程。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个最关键的突破口,也为人类认识自身智能提供线索。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要

《模式识别基础》课程标准

《模式识别基础》课程标准 (执笔人:刘雨审阅学院:电子科学与工程学院)课程编号:08113 英文名称:Pattern Recognition 预修课程:高等数学,线性代数,概率论与数理统计,程序设计 学时安排:40学时,其中讲授32学时,实践8学时。 学分:2 一、课程概述 (一)课程性质地位 模式识别课基础程是军事指挥类本科生信息工程专业的专业基础课,通信工程专业的选修课。在知识结构中处于承上启下的重要位置,对于巩固已学知识、开展专业课学习及未来工作具有重要意义。课程特点是理论与实践联系密切,是培养学生理论素养、实践技能和创新能力的重要环节。是以后工作中理解、使用信息战中涉及的众多信息处理技术的重要知识储备。 本课程主要介绍统计模式识别的基本理论和方法,包括聚类分析,判别域代数界面方程法,统计判决、训练学习与错误率估计,最近邻方法以及特征提取与选择。 模式识别是研究信息分类识别理论和方法的学科,综合性、交叉性强。从内涵讲,模式识别是一门数据处理、信息分析的学科,从应用讲,属于人工智能、机器学习范畴。理论上它涉及的数学知识较多,如代数学、矩阵论、函数论、概率统计、最优化方法、图论等,用到信号处理、控制论、计算机技术、生理物理学等知识。典型应用有文字、语音、图像、视频机器识别,雷达、红外、声纳、遥感目标识别,可用于军事、侦探、生物、天文、地质、经济、医学等众多领域。 (二)课程基本理念 以学生为主体,教师为主导,精讲多练,以用促学,学以致用。使学生理解模式识别的本质,掌握利用机器进行信息识别分类的基本原理和方法,在思、学、用、思、学、用的循环中,达到培养理论素养,锻炼实践技能,激发创新能力的目的。 (三)课程设计思路 围绕培养科技底蕴厚实、创新能力突出的高素质人才的目标,本课程的培养目标是:使学生掌握统计模式识别的基本原理和方法,了解其应用领域和发展动态,达到夯实理论基础、锻炼理论素养及实践技能、激发创新能力的目的。 模式识别是研究分类识别理论和方法的学科,综合性、交叉性强,涉及的数学知识多,应用广。针对其特点,教学设计的思路是:以模式可分性为核心,模式特征提取、学习、分类为主线,理论上分层次、抓重点,方法上重比较、突出应用适应性。除了讲授传统的、经典的重要内容之外,结合科研成果,介绍不断出现的新理论、新方法,新技术、新应用,开拓学生视野,激发学习兴趣,培养创新能力。 教学设计以章为单元,用实际科研例子为引导,围绕基本原理展开。选择两个以上基本方法,辅以实验,最后进行对比分析、归纳总结。使学生在课程学习中达到一个思、学、用、

数字图像处理结课论文

数字图像处理结课作业 --数字图像频域增强方法 及在matlab中的实现 学生姓名: 学号: 学院:理学院 班级:电科班 指导教师:

摘要:图像增强的目的是使处理后的图像更适合于具体的应用,即指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。从总体上可以分为两大类:空域增强和频域增强。频域处理时将原定义空间中的图像以某种形式转换到其他空间中,利用该空间的特有性质方便的进行图像处理。而空域增强是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。本文主要从空域展开图像增强技术,重点阐明数字图像增强处理的基本方法,介绍几种空域图像增强方法。 关键词:图像增强 MATLAB 空域增强锐化空间滤波平滑空间滤波

目录: 1、何为数字图像处理及MATLAB的历史 2、空间域图像增强技术研究的目的和意义 3、空间域的增强 3.1 背景知识 3.2 空间域滤波和频域滤波之间的对应关系 3.3 锐化滤波 3.4 平滑滤波 4、结论 1、何为数字图像处理及MATLAB的历史 数字图像处理(digital image processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。总的来说,数字图像处理包括运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。 MATLAB是由美国Math Works公司推出的软件产品。MATLAB是“Matric Laboratory”的缩写,意及“矩阵实验室”。MATLAB是一完整的并可扩展的计算机环境,是一种进行科学和工程计算的交互式程序语言。它的基本数据单元是不需要指定维数的矩阵,它可直接用于表达数学的算式和技术概念,而普通的高级语言只能对一个个具体的数据单元进行操作。它还是一种有利的教学工具,它在大学的线性代数课程以及其它领域的高一级课程的教学中,已成为标准的教学工具。

模式识别课程论文

模式识别课程学习感想 人类可以通过视觉信息识别文字、图片和周围的环境,通过听觉信息识别与理解语言,比如识别人脸,阅读手写文字,通过气味识别一种水果的种类等。我们希望给机器相同的模式识别能力。 模式识别主要是研究对象的特征或属性,利用以计算机为中心的机器系统运用一定的分析算法认定对象的类别,系统应使分类识别的结果尽可能地与真实情况相符合。模式识别方法最大的实用性在于“智能”仿真,可以说在同常生活中随处可见,如医疗诊断系统、地球资源探测系统、机器人辅助生产线、公安人员用于破案的指纹识别系统等。模式识别包含由特征和属性所描述的对象的数学模型,这罩所讲的特征和属性是指通常意义上的系统的输入/输出数据对。 模式识别系统主要由两个过程组成,即设计过程和实现过程。设计过程是指用一定数量的样本(也称训练集或学习集)进行分类器的设计;实现过程是指用所设计的分类器对待识别的样本进行分类决策。 通过这门课程的学习,对各种模型的模式识别算法有了一定程度的了解。 一、线性模型 我们使用线性神经网络来解决线性模型的模式识别。线性神经网络与感知器的主要不同之处在于其神经元有一个线性激活函数,这允许输出可以是任意值,而不仅仅只是像感知器中那样只能取0或1。它采用的是W—H学习法则,也称最小均方差(LMS)规则对权值进行训练。线性神经网络的主要用途是线性逼近一个函数式而进行模式联想。 二、非线性模型 1、Ada-Boosting 基于级联结构的AdaBoost算法目前被认为是较有效的检测算法。 Boosting是一个将弱学习(weak learn)算法融合为强学习算法(strong)的方法。Ada-Boost 算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将每次训练得到的分类器最后融合起来,作为最后的决策分类器。目前在人脸侦测的领域,就有人将Ada-Boost + cascade 作为一个很有效的运算法。Boost是一种常用来增进learning algorithm正确率的方法。使用boost 分类器可以排除一些不必要的特征,并将关键放在关键的特征上面。 AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(弱分类器)。理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零。AdaBoost算法中不同的训练集是通过调整每个样本的权重实现的。最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h1(x)。对于h1(x)错分的样本,则增加其对应样本的权重;而对于正确分类的样本,则降低其权重。这样可以使得错分的样本突出出来,得到一个新的样本分布。同时,根据错分的情况赋予h1(x)一个权重,表示该基本分类器进行训练,得到基本分类器h2(x)及其权重。依次类推,经过T 次这样的循环,就得到了T个基本分类器,以及T个对应的权重。最后把这T个基本分类器按一定的权重累加起来,就得到了最终所期望的强分类器。 2、多层感知机 神经网络具有强大的非线性映射能力,人工神经网络的实际应用中,绝大部分的神经网

人工智能2014结课论文

内蒙古科技大学2015/2016 学年第一学期《人工智能》结课报告 课程号:76807376-01 考试方式:结课报告 使用专业、年级:计算机应用2013-3,4 任课教师:陈淋艳 班级:13级计算机3班 学号:13768073** 姓名:李**

目录 前言 (3) 一、专家系统简介 (5) 二、关键字: (5) 三、专家系统概念和理论 (6) 四、专家系统的发展概况 (7) 五、专家系统的应用分析 (8) 六、专家系统的发展前景 (11) 七、专家系统的总结 (12) 八、学习心得 (12) 参考文献 (13)

人工智能是近年来引起人们很大兴趣的一个领域:它的研究目标是用机器,通常为电子仪器、电脑等,尽可能地模拟人的精神活动,并且争取在这些方面最终改善并超出人的能力;其研究领域及应用范围十分广泛、例如,自动定理证明、推理、模式识别、专家知识系统、智能机器人、学习、博彩、自然语言理解等等。 模式识别可能是人工智能这门学科中最基本也是最重要的一部分。简单来说,模式识别就是让电脑能够认识它周围的事物,使我们与电脑的交流更加自然与方便。它包括文字识别(读)、语音识别(听)、语音合成(说)、自然语言理解与电脑图形识别。 现在的电脑可以说是又耸又哑,而且还是个瞎子,如果模式识别技术能够得到充分发展并应用于电脑,那我们就能够很自然地与电脑进行交流,开也不需要记那些英文的命令就可以立接向电脑下命令。这也为智能机器人的研究提供了必要条件,它能使机器人能够像人一样与外面的世界进行交流。 在人工智能的应用当中最有趣的应该就是机器人了其实机器人的范围很广,不仅包括各种外型的智能机器人,还包括一些用于工业生产的、用于代替人类劳动的机器人、现在的机器人技术在制造只有某一种功能的机器人方面已经取得了一定的成果、但是要研制一种多功能、人性化的智能机器人,还需要不少时间。 到了那时,我们在科幻片中看到的人类与机器人的矛盾不知会不会成为现实。专家系统具有一定的商业特性、它先把某一种行业(譬如医

数字图像处理课程设计人脸检测与识别

数字图像处理课程设计

人脸检测与识别课程设计一、简介人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技 术,根据数据库的人脸图像,分析提取出有效的识别信息,用来 “辨认”身份的技术。人脸识别是模式识别研究的一个热点, 它 在身份鉴别、信用卡识别, 护照的核对及监控系统等方面有着广 泛的应用。人脸图像由于受光照、表情以及姿态等因素的影响, 使得同一个人的脸像矩阵差异也比较大。因此, 进行人脸识别时, 所选取的特征必须对上述因素具备一定的稳定性和不变性. 主 元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成 一个列向量, 经过PCA 变换后, 不仅可以有效地降低其维数, 同 时又能保留所需要的识别信息, 这些信息对光照、表情以及姿态 具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设 计具有良好分类能力和鲁棒性的分类器. 支持向量机(SVM ) 模 式识别方法,兼顾训练误差和泛化能力, 在解决小样本、非线性及 高维模式识别问题中表现出许多特有的优势。 本此课程设计基于MATLAB,将检测与识别分开进行。其中检测 部分使用实验指导书上的肤色模型算法进行,不进行赘述。识别 部分采用PCA算法对检测出的人脸图像进行特征提取, 再利用最

邻近距离分类法对特征向量进行分类识别,将在后文具体表述。仿真结果验证了本算法是有效的。 二、人脸检测源码 1.img=imread('D:\std_test_images\face3.jpg'); figure; imshow(img); R=img(:,:,1); G=img(:,:,2); B=img(:,:,3); faceRgn1=(R>95)&(G>40)&(B>20)&max(img,[],3)-min(img,[],3)>15& abs(R-G)>15&R>B; figure; imshow(faceRgn1); r=double(R)./double(sum(img,3)); g=double(G)./double(sum(img,3)); Y=0.3*R+0.59*G+0.11*B; faceRgn2=(r>0.333)&(r<0.664)&(g>0.246)&(g<0.398)&(r>g)& g>=0.5-0.5*r; figure; imshow(faceRgn2); Q=faceRgn1.*faceRgn2;

时间序列分析中模式识别方法的应用-模式识别论文

时间序列分析中模式识别方法的应用 摘要:时间序列通常是按时间顺序排列的一系列被观测数据,其观测值按固定的时间间隔采样。时间序列分析(Time Series Analysis)是一种动态数据处理的统计方法,就是充分利用现有的方法对时间序列进行处理,挖掘出对解决和研究问题有用的信息量。经典时间序列分析在建模、预测等方面已经有了相当多的成果,但是由于实际应用中时间序列具有不规则、混沌等非线性特征,使得预测系统未来的全部行为几乎不可能,对系统行为的准确预测效果也难以令人满意,很难对系统建立理想的随机模型。神经网络、遗传算法和小波变换等模式识别技术使得人们能够对非平稳时间序列进行有效的分析处理,可以对一些非线性系统的行为作出预测,这在一定程度上弥补了随机时序分析技术的不足。【1】 本文主要是对时间序列分析几种常见方法的描述和分析,并重点介绍神经网络、遗传算法和小波变换等模式识别方法在时间序列分析中的典型应用。 关键字:时间序列分析模式识别应用 1 概述 1.1 本文主要研究目的和意义 时间序列分析是概率论与数理统计学科的一个分支,它是以概率统计学作为理论基础来分析随机数据序列(或称动态数据序列),并对其建立数学模型,即对模型定阶、进行参数估计,以及进一步应用于预测、自适应控制、最佳滤波等诸多方面。由于一元时间序列分析与预测在现代信号处理、经济、农业等领域占有重要的地位,因此,有关的新算法、新理论和新的研究方法层出不穷。目前,结合各种人工智能方法的时序分析模型的研究也在不断的深入。 时间序列分析已是一个发展得相当成熟的学科,已有一整套分析理论和分析工具。传统的时间序列分析技术着重研究具有随机性的动态数据,从中获取所蕴含的关于生成时间序列的系统演化规律。研究方法着重于全局模型的构造,主要应用于对系统行为的预测与控制。 时间序列分析主要用于以下几个方面:

基于matlab的人脸识别课程设计

目录 摘要...................................................................... III 第1章绪论............................................................. - 1 - 1.1人脸识别技术的细节 . (1) 1.2人脸识别技术的广泛应用 (1) 1.3人脸识别技术的难点 (2) 1.4国内外研究状况 (2) 1.5人脸识别的研究内容 (3) 1.5.1人脸识别研究内容............................................... - 3 - 1.5.2人脸识别系统的组成............................................. - 4 - 第2章人脸识别方法..................................................... - 6 - 2.1基于特征脸的方法 (6) 2.2基于神经网络的方法 (6) 2.3弹性图匹配法 (7) 2.4基于模板匹配的方法 (7) 2.5基于人脸特征的方法 (7) 第3章 PCA人脸识别方法................................................. - 9 - 3.1引言 (9) 3.2主成分分析 (9) 3.3特征脸方法 (11) 第4章仿真实验........................................................ - 13 - 4.1流程图 (13) 4.2仿真结果 (14) 第5章总结与展望...................................................... - 15 - 5.1总结.. (15) 5.2展望 (15)

模式识别人工智能论文

浅谈人工智能与模式识别的应用 一、引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展,同时也成为了未来电子信息产业发展的必然趋势。 人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。近年来电子产品中也加入了诸多此类的功能:如手机中的指纹识别解锁功能;眼球识别解锁技术;手势拍照功能亦或是机场先进的人耳识别技术等等。这些功能看起来纷繁复杂,但如果需要一个概括的话,可以说这都是模式识别技术给现代生活带来的福分。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知,从而将非电信号转化为计算机可以识别的电信号。 二、人工智能和模式识别 (一)人工智能。人工智能(Artificial Intelligence),是相对与人的自然智能而言的,它是指采用人工的方法及技术,对人工智能进行模仿、延伸及扩展,进而实现“机器思维”式的人工智能。简而言之,人工智能是一门研究具有智能行为的计算模型,其最终的目的在于建立一个具有感知、推理、学习和联想,甚至是决策能力的计算机系统,快速的解决一些需要专业人才能解决的问题。从本质上来讲,人工智能是一种对人类思维及信息处理过程的模拟和仿真。 (二)模式识别。模式识别,即通过计算机采用数学的知识和方法来研究模式的自动处理及判读,实现人工智能。在这里,我们将周围的环境及客体统统都称之为“模式”,即计算机需要对其周围所有的相关信息进行识别和感知,进而进行信息的处理。在人工智能开发,即智能机器开发过程中的一个关键环节,就是采用计算机来实现模式(包括文字、声音、人物和物体等)的自动识别,其在实现智能的过程中也给人类对自身智能的认识提供了一个途径。在模式识别的过程中,信息处理实际上是机器对周围环境及客体的识别过程,是对人参与智能识别的一个仿真。相对于人而言,光学信息及声学信息是两个重要的信息识别来源和方式,它同时也是人工智能机器在模式识别过程中的两个重要途径。在市场上具有代表性的产品有:光学字符识别系统以及语音识别系统等。 在这里的模式识别,我们可以将之理解成为:根据识别对象具有特征的观察值来将其进行分类的一个过程。采用计算机来进行模式识别,是在上世纪60年

人脸识别课程设计论文完美版

前言 在人类社会的发展进入到21世纪的今天,安全问题已经成为困扰人们日常生活的重要问题之一。社会的发展促进了人的流动性,进而也增加了社会的不稳定性,使得安全方面的需求成为21世纪引起广泛关注的问题。不论是享受各项服务如网上冲浪、还是居家、办公等都涉及到安全,以往这些行为基本上是通过符号密码来进行安全保护,但是随着服务数量的不断增加,密码越来越多以致无法全部记住,而且密码有时也会被他人所窃取,各种密码被破解的概率越来越高,因为通常由于记忆的原因,人们经常会选用自己或亲人的生日、家庭地址、电话号码等作为密码并长期使用,这些很容易被一些不法分子获取。可见在现代社会中,身份识别已经成为人们日常生活中经常遇到的一个基本问题。人们乎时时刻刻都需要鉴别别人的身份和证明自己的身份,以获得对特定资源的使用权或者制权,同时防止这些权限被他人随意的取得。传统的身份识别方法主要基于身份标识物(如证件、卡片)和身份标识知识(如用户名、密码)来识别身份,这在很长一段时期是非常可靠和方便的识别方法,得到了广泛的应用。但是,随着网络、通信、交通等技的飞速发展,人们活动的现实空间和虚拟空间不断扩大,需要身份认证的场合也变得无不在。人们需要携带的身份标识物品越来越多,身份标识知识也变得越来越复杂和冗长在这种情况下,传统身份识别方式的弊端日益彰显。身份标识物品容易被丢失和伪造,份标识知识容易被遗忘、窃取和破解,而身份标识的重要性又使得一旦失去了身份标识会给标识的所有者甚至整个社会带来重大的甚至难以弥补的损失。在美国,每年约有上百万的福利款被人以假冒的身份领取;每年发生的信用卡、ATM、移动电话和冒领支票等成的损失达数百亿美元[2]。面临着这样的状况,人们对身份识别的安全性、可靠性、准确和实用性提出了更高的要求,必须寻求身份识别的新途径。 于是,近年来人类生物特征越来越广泛地用于身份识别,而且生物特征可以更好的进行安全控制,世界各国政府都在大力推进生物识别技术的发展及应用。与原有的人类身分识别技术(如:个人密码、磁卡、智能卡等)相比,基于人类生物特征的识别技术具有安全可靠、特征唯一、不易伪造、不可窃取等优点。人类本身具有很多相对独特的特征,如DNA、指纹、虹膜、语音、人脸等。基于这些相对独特的人类特征,结合计算机技术,发展起众多的基于人类生物特征的人类身份识别技术,如DNA识别技术、指纹识别技术、虹膜识别技术、语音识别技术、人脸识别技术。 人脸识别和其他的生物识别比起来有以下几个优点:1、其他的生物特征识别方法都需要一些人为的行为配合,而人脸识别不需要。2、人脸识别可应用在远距离监控中。3、针一对现在的第一、二代身份证,每个身份证都有人脸的正面照片,也就是人脸库将是最完善的,包括人最多的,我们可以利用这个库来更直观、更方便的核查该人的身份。 4、相对于其他基于生物特征识别技术,人脸识别技术具有特征录入方一便,信息丰富,使用面广等优点,同时人脸识别系统更加直接友好。人脸识别技术作为生物识别技术的

模式识别的核方法结课报告 - 副本 (3)

核方法课程大作业 二. 分别实现KPCA与PCA在Iris和Image Segmentation数据集上的实验分析。 实验准备 平台:matlab2018b 实验步骤 在两个数据集上,先用PCA或KPCA对数据进行降维处理,为了验证降维效果,后采用K-means进行聚类分析。 实验结果: 1. Iris数据集 1.1 直接用K-means算法对Iris数据集进行聚类分析,代码见文件夹2\iris的main.m,判正率达到90.67%。 1.2 先用PCA对Iris数据集进行降维,然后再用K-means进行聚类分析,代码见文件夹2\pcairis的PCAmain.m。 a.当分别选择第1、2、3、4个属性,降到一维后,K-means聚类分析的判正率分别为34.67%,35.33%,40.67%,94.67%。 降维后数据分布如下所示:

b.当分别选择第12、23、34个属性,降到二维后,K-means聚类分析的判正率分别为38%,50.67%,90%。 降维后数据分布如下所示:

c.当分别选择第123、234个属性,降到三维后,K-means聚类分析的判正率分别为53.33%,91.33%。 降维后数据分布如下所示:

上述实验发现,不降维时的K-means判正率为90.67%,选择第四个属性降至一维后K-means的判正率为94.67%,降至其他维后判正率略有下降,这说明第四个属性就能较好地表示原有数据集,再继续加入新的特征后不能再提高判正率,会引入噪声。 1.3 先用核函数为rbf的KPCA对Iris数据集进行降维,然后再用K-means进行聚类分析,代码见文件夹2\kpcairis的KPCAmain.m。调至最优后,判正率可达到99.33%。 结论:通过上述实验,发现对于Iris数据集,不经过降维的判正率为90.67%,经PCA降维后的最高判正率为94.67%,经过KPCA降维后的判正率为99.33%。这也说明了降维能消除数据的一部分冗余信息,并且恰当的核函数能进一步的提升数据的信息量。 2. Image Segmentation数据集 2.1 直接用K-means算法对Image Segmentation数据集进行聚类分析,代码见文件夹2\seg的main.m,判正率达到55.32%。 2.2 先用PCA对Image Segmentation数据集进行降维,然后再用K-means进行聚类分析,代码见文件夹2\pcaseg的PCAmain.m。经过多次验证发现,判正率最高可达到6 3.81%。 2.3 先用核函数为rbf的KPCA对Image Segmentation数据集进行降维,然后再用K-means进行聚类分析,代码见文件夹2\kpcaseg的KPCAmain.m。参数调至最优,判正率可达到78.27%。 结论:通过Image Segmentation数据集的实验,不经过降维的判正率为55.32%,经PCA降维后的最高判正率为63.81%,经过KPCA降维后的判正率为78.27%。证明了PCA和KPCA同样可以减少Image Segmentation数据的冗余信息。

模式识别课程设计教学内容

模式识别课程设计

模式识别课程设计 聚类图像分割 一.图像分割概述 图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。这些部分常称为目标或前景(其他部分称为背景)。它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。 图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图象分割应用在许多方面,例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结

果很大程度上依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果,原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。 二.常用的图像分割方法 1.基于阈值的分割方法 包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。

模式识别课程论文

模式识别课程设计 模式识别中基于概率统计的 Bayes 算 法分析 学号:1102100119 班级:自动化111班 姓名:许世坚

首先对模式识别所用到的理论、研究背景、研究现状及典型应用进行全面的阐述;其次,探讨了如何提取数字字符的特征值,并对各种分类器的设计方法及其优缺点进行了比较;最后采用了以模板库为基础的基于二值数据的Bayes分类实现的识别方法,并以VC++作为编程工具实现了具有友好的图形用户界面的自由手写体数字识别系统。给出了部分实现算法的代码。实现了对字体数字的识别。 下面介绍阐述模式识别中用到的Bayes算法理论,研究背景及其典型应用,在典型应用中,探讨提取数字字符bayes算法分类器的设计方法并比较其优缺点,给出其算法的C++实现,利用VC++实现编程工具实现图形界面。 模式识别就是机器识别,计算机识别或者机器自动识别,目的在于让机器自动识别事物,如手写数字的识别,智能交通管理信号的识别,文字识别,语音识别等。模式识别这个学科的目的就是让机器能做人类能做的事情,具备人类所具有的对各种事物与现象进行分析,描述与判断的部分能力。模式识别是直观的,无所不在。人与动物具有模式识别的能力是非常平常的事情,但是对计算机来说实现模式识别是非常困难的。让机器能够识别,分类需要研究识别的方法。而模式识别可以概括为两个类型,一个是直接形象的,例如图片,相片,

图案,字符图案等;另外的就是无知觉形象而只有数据或信号的波形,如语音,声音,心电图,地震波等。 Bayes决策所讨论的问题: 基于最小错误率的Bayes决策指出机器自动识别出现错分类的条件,错分类的可能性如何计算,如何实现使错分类实现可能性最小;基于最小错误风险的Bayes决策,引入了风险与损失概念,希望做到使风险最小,减小危害大的错分类情况。错分类造成损失不一样,不同的错误分类造成的损失也是不一样的,不同的错误分类造成的损失会不相同,后一种错误更加可怕,因此就考虑减小因错误分类造成的危害损失。 2.Bayes算法 若已知总共有M类物体,以及各类在这d维特征空间的统计分布,具体说来就是已知各类别wi=1,2,…M的先验概率P(wi)及类条件概率密度函数P(X|wi)。对于待测样品,Bayes公式可以计算出该样品分属于各类别的概率,叫做后验概率,看X属于哪个类的可能性最大,就把X归于可能性最大的那个类,后验概率作为识别对象归属的依据。Bayes公式如下: 识别的状态就是一个随机变量,而某种状态出现概率是可以估计的。Bayes公式体现了先验概率,类概率密度函数,后验概率三者

相关文档
最新文档