半导体二极管及其基本电路

半导体二极管及其基本电路
半导体二极管及其基本电路

半导体二极管及其基本电路

二、半导体二极管及其基本电路

基本要求

?正确理解:PN结的形成及单向导电性

?熟练掌握:普通二极管、稳压二极管的外特性及主要参数

?能够查阅电子器件相关手册

难点重点

1.PN结的形成

(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。

图(1)浓度差使载流子发生扩散运动

(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。

(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。

图(2)内电场形成

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠

近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。

(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。

当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。

2.PN结的单向导电性

(1)外加正向电压(正偏)

在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。

(2)外加反向电压(反偏)

在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要作用。漂移运动产生的漂移电流的方向与正向电流相反,称为反向电流。因少子浓度很低,反向电流远小于正向电流。

当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。

内容提要

2.1半导体的基本知识

1.半导体的导电性能介于导体和绝缘体之间,半导体具有光敏、热敏和掺杂特性。

2.本征半导体

(1)在0K时,本征半导体中没有载流子,呈绝缘体特性。

(2)温度升高→热激发→共价键中价电子进入导带→自由电子+空穴。

(3)两种载流子:导带中的自由电子,电荷极

性为负;价带中挣脱共价键束缚的价电子所剩下的空穴,电荷极性为正。

(4)热激发条件下,只有少数价电子挣脱共价键的束缚,进入导带形成电子空穴对,所以本征半导体导电率很低。

3.杂质半导体

(1)两种杂质半导体:N型---掺入微量五价元素;P型---掺入微量三价元素。

(2)两种浓度不等的载流子:多子---由掺杂形成,少子---由热激发产生。

(3)一般情况下,只要掺入极少量的杂质,所增加的多子浓度就会远大于室温条件下本征激发所产生的载流子浓度。所以,杂质半导体的导电率高。

(4)杂质半导体呈电中性。

4.半导体中载流子的运动方式

(1)漂移运动---载流子在外加电场作用下的定向移动。

(2)扩散运动---因浓度梯度引起载流子的定向运动。

2.2PN结的形成及特性

1.PN结的形成

当P型半导体和N型半导体结合在一起的时侯,由于交界面处存在载流子浓度的差异→多子扩散→产生空间电荷区和内电场→内电场阻碍多子扩散,有利少子漂移

当扩散和漂移达到动态平衡时,交界面形成稳定的空间电荷区,即PN结。

2.PN结的单向导电性

外加正向电压→多子向PN结移动,空间电荷区变窄,内电场减弱→扩散运动大于漂移运动→正向电流。

外加反向电压→多子背离PN结移动,空间电荷区变宽,内电场增强→漂移运动大于扩散运动→反向电流。

当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。

2.3半导体二极管

1.半导体二极管按其结构的不同可分为点接触型、面接触型和平面型这样几类。

2.伏安特性

它可划分为三个部分:

(1)正向特性(外加正向

电压)

当正向电压超过某一数值

后,二极管才有明显的正向电

流,该电压值称为导通电压,用Vth表示。

在室温下,硅管的Vth约为0.5V,锗管的Vth约为0.1V。当流过二极管的电流I比较大时,二极管两端的电压几乎维持恒定,硅管约为0.6~0.8V(通常取0.7V),锗管约为0.2~0.3V(通常取0.2V)。

(2)反向特性(外加反向电压)

在反向电压小于反向击穿电压的范围内,由少数载流子形成的反向电流很小,而且与反向电压的大小基本无关。

由二极管的正向与反向特性可直观的看出:①二极管是非线性器件;②二极管具有单向导电性。

(3)反向击穿特性

当反向电压增加到某一数值VBR时,反向电流急剧增大,这种现象叫做二极管的反向击穿。

3.电容效应:势垒电容与扩散电容

4.主要参数

器件的参数是其特性的定量描述,是我们正确使用和合理选择器件的依据。

(1)正向---最大整流电流IF

(2)反向---反向击穿电压VBR

2.4二极管应用电路

1.分析方法:

二极管是一种非线性器件,因而由二极管构成的电路一般要采用非线性电路的分析方法。

(1)图解分析法

其步骤为:①把电路分为线性和非线性两部分;②在同一坐标上分别画出非线性部分的伏安

特性和线性部分的特性曲线;③由两条特性曲线的交点求电路的V和I。

(2)模型分析法(非线性器件线性化处理)

①理想二极管模型---正向导通时,压降为0;反向截止时,电流为0。

②恒压降模型---当二极管工作电流较大时,其两端电压为常数(通常硅管取0.7V,锗管取0.2V)。

③交流小信号模型--若电路中除有直流电源外,还有交流小信号,则对电路进行交流分析时,二极管可等效

为交流电阻 r

d =26mV/I

DQ

(I

DQ

静态电流)

2.二极管应用电路

(1)限幅电路---利用二极管单向导电性和导通后两端电压基本不变的特点组成,将信号限定在某一范围中

变化,分为单限幅和双限幅电路。多用于信号处理电路中。

(2)箝位电路---将输出电压箝位在一定数

值上。

(3)开关电路---利用二极管单向导电性以接通和断开电路,广泛用于数字电路中。

(4)整流电路---利用二极管单向导电性,将交流信号变为直流信号,广泛用于直流稳压电源中。

(5)低电压稳压电路---利用二极管导通后两端电压基本不变的特点,采用几只二极管串联,获得3V以下输

出电压

2.5特殊二极管

1.稳压二极管

(1)工作原理

稳压管是一种特殊的二极管,它利用PN结反向击穿后特性陡直的特点,在电路中起稳压作用。稳压管工作在反向击穿状态。

(2)主要参数:稳定电压Vz、稳定电流Iz、最大工作电流IzM和最大耗散功率PzM

2.发光二极管

发光二极管是一种将电能转化为光能的特殊二极管。

发光二极管简写成了LED,其基本结构是一个PN结,它的特性曲线与普通二极管类似,但正向导通电压

一般为1~2V,正向工作电流一般为几~几十毫安。

3.光电二极管

光电二极管又叫光敏二极管,是一种将光信号转换为电信号的特殊二极管。

4.变容二极管

利用二极管结电容随反向电压的增加而减少的特性制成的电容效应显著的二极管。多于高频技术中。

例题解析

例1.求图所示电路的静态工作点电压和电流。

解:(1)图解分析法

首先把电路分为线性和非线性两部分,然后分别列出它们的端特性方程。在线性部分,其端特性方程为

V=V1-IR

将相应的负载线画在二极管的伏安特性曲线上,如图所示,其交点便是所求的(IQ,VQ)。(2)模型分析法

①理想二极管模型

V=0,I=V1/R

②恒压降模型

设为硅管,V=0.7V,I=(V1-V)/R

例2.如何用万用表的“欧姆”档来判别一只二极管的正、负极?

分析:指针型万用表的黑笔内接直流电源的正端,而红笔接负端。利用二极管的单向导电性,其正向导通电阻一般在几百欧~几千欧,而反向偏置电阻一般在几百千欧以上。

测量时,利用万用表的“R×100”和

“R×1K”档,若两个数值比值在100以上,认为二极管正常,否则认为二极管的单向导电性已损坏。

例3.图所示电路中,设D为理想二极管,试画出其传输特性曲线(Vo~Vi)。

解:(1)vi<0,二极管D1、D2均截止,vo=2.5V。

(2)vi>0

当0<vi<2.5V时,二极管D1、D2均截止,vo=2.5V;

当vi>2.5V时,D1导通,假设此时D2尚未导通,则vo=(2/3).(vi-2.5)+2.5V;

令vo=10V,则vi=13.75V,可见当vi>13.25V 时,D1、D2均导通,此时vo=10V。传输特性曲线略。

例4.试判断图中二极管是导通还是截止?并求出AO两端电压VA0。设二极管为理想的。

解:

分析方法:(1)将D1、D2从电路中断开,分别出D1、D2两端的电压;

(2)根据二极管的单向导电性,二极管承受正向电压则导通,反之则截止。若两管都承受正向电压,则正向电压大的管子优先导通,然后再按以上方法分析其它管子的工作情况。

本题中:V12=12V,V34=12+4=16V,所以D2优先导通,此时,V12=-4V,所以D1管子截止。VA0 = -4V。

例5.两个稳压管的稳压值VZ1=5V,VZ2=7V,它们的正向导通压降均为0.6V,电路在以下二种接法时,输出电压Vo为多少?若电路输入为正弦信号VI=20sinωt(V),画出图(a)输出电压的波形。

解:图(a)中D1、D2都承受反向偏压,所以输出电压Vo=VZ1+VZ2=5V+7V=12V

若输入正弦信号VI=20sinωt(V):

在输入信号正半周,若VI<12V 稳压管处于反向截止状态,Vo=VI;若VI ≥12V 稳压管处于反向击穿状态,Vo=12V。

在输入信号负半周,若VI> -1.2V稳压管处于截止状态,Vo=VI;若VI ≤-1.2V稳压管处于正向导通状态,Vo=-1.2V。

图(b)中D1承受正向电压、D2承受反向偏压,所以输出电压Vo=0.6V+7V=12.6V 。

肖特基光电二极管

肖特基势垒光电二极管原理及应用 引言 肖特基势垒光电二极管又称金属-半导体光电二极管,其势垒不再是p-n结,而是金属和半导体接触形成的阻挡层,即肖特基势垒。 1 肖特基势垒二极管结构原理及特性 1.1简述 图1 肖特基势垒二极管 肖特基二极管(如图1)是以其发明人肖特基博士(Schottky)命名的,SBD 是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用p型半导体与n型半导体接触形成p-n结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。这些优良特性是快恢复二极管所无法比拟的,中、小功率肖特基整流二极管大多采用封装形式。 1.2结构原理 图2 肖特基势垒二极管结构原理及等效电路

肖特基势垒二极管(也叫热载子二极管)在机械构造上与点接触二极管很相似,但它比点接触二极管要耐用,而且功率也更大。图2(a)给出了肖特基势垒二极管的基本构造。图2(b)是其等效电路。这种形式的电路是威廉姆·肖特基(William Schottky)在1938年研究多数载流子的整流现象时提出的。 肖特基二极管是贵金属(金、银、铝、铂等) A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而削弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和由于浓度不同引起的电子扩散运动达到相对的平衡,这时便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极(阻挡层)金属材料是钼。二氧化硅(SiO2)是用来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较N-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度变窄。加负偏压-E时,势垒宽度就变宽。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别,通常将PN 结整流管称作结整流管,而把金属-半导管整流管叫肖特基整流管。近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可以大量节省贵金属,而且还大幅度降低了成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题,使开关特性获得明显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用肖特基二极管的低压降这一特点,从而能够提高其在低压、大电流整流(或续流)电路的效率。 1.3 肖特基势垒二极管特性及应用 肖特基势垒二极管属于一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。但是,它也有一些缺点:耐压比较低,漏电流稍大些。选用时要全面考虑。 1.3.1 性能比较

半导体二极管及其应用

第1章半导体二极管及其应用 本章要点 ●半导体基础知识 ●PN结单向导电性 ●半导体二极管结构、符号、伏安特性及应用 ●特殊二极管 本章难点 ●半导体二极管伏安特性 ●半导体二极管应用 半导体器件是近代电子学的重要组成部分。只有掌握了半导体器件的结构、性能、工作原理和特点,才能正确地选择和合理使用半导体器件。半导体器件具有体积小、重量轻、功耗低、可靠性强等优点,在各个领域中得到了广泛的应用。半导体二极管和三极管是最常用的半导体器件,而PN结又是组成二极管和三极管及各种电子器件的基础。本章首先介绍有关半导体的基础知识,然后将重点介绍二极管的结构、工作原理、特性曲线、主要参数以及应用电路等,为后面各章的学习打下基础。 1.1 PN结 1.1.1 半导体基础知识 1. 半导体特性 自然界中的各种物质,按其导电能力划分为:导体、绝缘体、半导体。导电能力介于导体与绝缘体之间的,称之为半导体。导体如金、银、铜、铝等;绝缘体如橡胶、塑料、云母、陶瓷等;典型的半导体材料则有硅、锗、硒及某些金属氧化物、硫化物等,其中,用来制造半导体器件最多的材料是硅和锗。 半导体之所以用来制造半导体器件,并不在于其导电能力介于导体与绝缘体之间,而在于其独特的导电性能,主要表现在以下几个方面。 (1) 热敏性:导体的导电能力对温度反应灵敏,受温度影响大。当环境温度升高时,其导电能力增强,称为热敏性。利用热敏性可制成热敏元件。 (2) 光敏性:导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为光敏性。利用光敏性可制成光敏元件。 (3) 掺杂性:导体更为独特的导电性能体现在其导电能力受杂质影响极大,称为掺杂性。这里所说的“杂质”,是指某些特定的纯净的其他元素。在纯净半导体中,只要掺入极微量的杂质,导电能力就急剧增加。一个典型的数据是:如在纯净硅中,掺入百万分之

3 半导体二极管的识别检测与选用(二)

[复习提问] 1、半导体二极管的结构、符号及分类? 2、半导体二极管的重要特性是什么? [导入新课]二极管是电路中的关键器件,种类繁多,应用十分广泛,识别常用半导体二极管,掌握检测质量及选用方法是学习电子技术必须掌握的一项基本技 能,下面我们来学习相关知识。 [讲授新课] 1.1半导体二极管的识别、检测与应用(二) 九、二极管的型号命名 1、国产二极管 国产二极管的型号命名分为五个部分,各部分的含义见下表。 第一部分用数字“2”表示主称为二极管。 第二部分用字母表示二极管的材料与极性。 第三部分用字母表示二极管的类别。 第四部分用数字表示序号。

例如: 2、日本半导体器件的型号命名(JIS-C-7012工业标准)由五部分组成,各部分含义见下表。 第一部分用数字表示器件的类型或有效电极数。 第二部分用字母S表示该器件已在日本电子工业协会(JEIA)注册登记。 第三部分用字母表示器件的类别。 第四部分用数字表示登记序号。 第五部分用字母表示产品的改进序号。 日本半导体器件型号命名及含义

例如: 2SA733(PNP型高频晶体管)2SC4706(NPN型高频晶体管)2——三极管2——三极管 S——JEIA注册产品S——JEIA注册产品A——PNP型高频管C——NPN型高频管733——JEIA登记序号4706——JEIA登记序号 3、美国半导体器件型号命名由四部分组成。各部分的含义见下表。 第一部分用数字表示器件的类别。 第二部分用字母“N”表示该器件已在EIA注册登记。 第三部分用数字表示该器件的注册登记号。 第四部分用字母表示器件的规格号。 美国半导体器件型号命名及含义 例如: lN 4007 2N 2907 A l——二极管2——晶体管 N——ElA注册标志N——ElA注册标志 4007——ElA登记号2907——ElA登记号 A——规格号 1、整流二极管 整流二极管主要用于整流电路,即把交流电变换 成脉动的直流电。整流二极管都是面结型,因此结 电容较大,使其工作频率较低。一般为3kHZ以下。 从封装上看,有塑料封装和金属封装两大类。常用 的整流二极管有2CZ型、2DZ型、IN400 X型及用于 高压、高频电路的 2DGL型等。

半导体二极管及其基本电路

半导体二极管及其基本电路

二、半导体二极管及其基本电路 基本要求 ?正确理解:PN结的形成及单向导电性 ?熟练掌握:普通二极管、稳压二极管的外特性及主要参数 ?能够查阅电子器件相关手册 难点重点 1.PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。

图(1)浓度差使载流子发生扩散运动 (2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。 图(2)内电场形成 (4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠

近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。 2.PN结的单向导电性 (1)外加正向电压(正偏) 在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。

半导体发光二极管灯具介绍

半导体发光二极管灯具介绍 一、定义 半导体发光二极管灯具即LED(Light Emitting Diode)灯具,是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。LED照明产品就是利用LED作为光源制造出来的照明器具。 半导体发光二极管灯具 二、前景 当前全球能源短缺的忧虑再度升高的背景下,节约能源是我们未来面临的重要的问题,在照明领域,LED发光产品的应用正吸引着世人的目光,LED作为一种新型的绿色光源产品,必然是未来发展的趋势,二十一世纪将进入以LED为代表的新型照明光源时代。

LED灯具 LED被称为第四代照明光源或绿色光源,具有节能、环保、寿命长、体积小等特点,可以广泛应用于各种指示、显示、装饰、背光源、普通照明和城市夜景等领域。近年来,世界上一些经济发达国家围绕LED的研制展开了激烈的技术竞赛。美国从2000年起投资5亿美元实施“国家半导体照明计划”,欧盟也在2000年7月宣布启动类似的“彩虹计划”。我国科技部在“863”计划的支持下,2003年6月份首次提出发展半导体照明计划。 三、优点 高节能:节能能源无污染即为环保。直流驱动,超低功耗(单管 0.03-0.06瓦)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 LED灯泡 寿命长:LED光源有人称它为长寿灯,意为永不熄灭的灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰等缺点,使用寿命可达6万到10万小时,比传统光源寿命长10倍以上。 多变幻:LED光源可利用红、绿、蓝三基色原理,在计算机技术控制下使三种颜色具有256级灰度并任意混合,即可产生256×256×256=16777216种颜色,形成不同光色的组合变化多端,实现丰富多彩的动态变化效果及各种图像。 利环保:环保效益更佳,光谱中没有紫外线和红外线,既没有热量,也没有辐射,眩光小,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。

半导体电子元器件基本知识

半导体电子元器件基本知识 四、光隔离器件 光耦合器又称光电耦合器,是由发光源和受光器两部分组成。发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。受光器引出的管脚为输出端。光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。 光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。如在:高压开关、信号隔离转换、电平匹配等电路中。 光隔离常用如图: 五、电容 有电解电容、瓷片电容、涤纶电容、纸介电容等。 利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。电解电容是有极性的(有+、-之分)使用时注意极性和耐压。 电路原理图一般用C1、C2、C?等表示。 半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。 导电能力介于导体和绝缘体之间的物质称为半导体。具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。 PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。 一、二极管 将PN结加上相应的电极引线和管壳就成为半导体二极管。 P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。 二极管正向导通特性(死区电压):硅管的死区电压大于0。5V,诸管大于0。1V。用数字式万用表的二极管档可直接测量出正极和负极。利用二极管的单向导电性可以组成整流电路。将交流电压变为单向脉动电压。 使用注意事项: 1、在整流电路中流过二极管的平均电流不能超过其最大整流电流; 2、在震荡电路或有电感的回路中注意其最高反向击穿电压的使用问题; 3、整流二极管不应直接串联(大电流时)或并联使用,串联使用时,每个二极管应并联一个均压电阻,其大小按100V(峰值)70K左右计算,并联使用时,每个二极管应串联10

半导体二极管及其基本电路

第二章半导体二极管及其基本电路 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。(一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导电工作原理、 ?二极管的V-I特性及主要性能指标

2.1 半导体的基本知识 2.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。 2.1.2 半导体的共价键结构 在电子器件中,用得最多的半导体材料是硅和锗,它们的简化原子模型如下所示。硅和锗都是四价元素,在其最外层原子轨道上具有四个电子,称为价电子。由于原子呈中性,故在图中原子核用带圆圈的+4符号表示。半导体与金属和许多绝缘体一样,均具有晶体结构,它们的原子形成有排列,邻近原子之间由共价键联结,其晶体结构示意图如下所示。图中表示的是晶体的二维结构,实际上半导体晶体结构是三维的。 硅和锗的原子结构简化模型及晶体结构

最新半导体二极管及其基本电路

半导体二极管及其基 本电路

二、半导体二极管及其基本电路 基本要求 ?正确理解:PN结的形成及单向导电性 ?熟练掌握:普通二极管、稳压二极管的外特性及主要参数 ?能够查阅电子器件相关手册 难点重点 1.PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。 图(1)浓度差使载流子发生扩散运动

(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。 图(2)内电场形成 (4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。 2.PN结的单向导电性

半导体雪崩光电二极管(精)

半导体雪崩光电二极管 半导体雪崩光电二极管 semiconductor avalanche photodiode 具有内部光电流增益的半导体光电子器件,又称固态光电倍增管。它应用光生载流子在二极管耗尽层内的碰撞电离效应而获得光电流的雪崩倍增。这种器件具有小型、灵敏、快速等优点,适用于以微弱光信号的探测和接收,在光纤通信、激光测距和其他光电转换数据处理等系统中应用较广。 当一个半导体二极管加上足够高的反向偏压时,在耗尽层内运动的载流子就可能因碰撞电离效应而获得雪崩倍增。人们最初在研究半导体二极管的反向击穿机构时发现了这种现象。当载流子的雪崩增益非常高时,二极管进入雪崩击穿状态;在此以前,只要耗尽层中的电场足以引起碰撞电离,则通过耗尽层的载流子就会具有某个平均的雪崩倍增值。 碰撞电离效应也可以引起光生载流子的雪崩倍增,从而使半导体光电二极管具有内部的光电流增益。1953年,K.G.麦克凯和K.B.麦卡菲报道锗和硅的PN结在接近击穿时的光电流倍增现象。1955年,S.L.密勒指出在突变PN结中,载流子的倍增因子M随反向偏压V的变化可以近似用下列经验公式表示 M=1/[1-(V/VB)n] 式中VB是体击穿电压,n是一个与材料性质及注入载流子的类型有关的指数。当外加偏压非常接近于体击穿电压时,二极管获得很高的光电流增益。PN结在任何小的局部区域的提前击穿都会使二极管的使用受到限制,因而只有当一个实际的器件在整个PN结面上是高度均匀时,才能获得高的有用的平均光电流增益。因此,从工作状态来说,雪崩光电二极管实际上是工作于接近(但没有达到)雪崩击穿状态的、高度均匀的半导体光电二极管。1965年,K.M.约翰逊及L.K.安德森等分别报道了在微波频率下仍然具有相当高光电流增益的、均匀击穿的半导体雪崩光电二极管。从此,雪崩光电二极管作为一种新型、高速、灵敏的固态光电探测器件渐渐受到重视。 性能良好的雪崩光电二极管的光电流平均增益嚔可以达到几十、几百倍甚至更大。半导体中两种载流子的碰撞离化能力可能不同,因而使具有较高离化能力的载流子注入到耗尽区有利于在相同的电场条件下获得较高的雪崩倍增。但是,光电流的这种雪崩倍增并不是绝对理想的。一方面,由于嚔随注入光强的增加而下降,使雪崩光电二极管的线性范围受到一定的限制,另一方面更重要的是,由于载流子的碰撞电离是一种随机的过程,亦即每一个别的载流子在耗尽层内所获得的雪崩增益可以有很广泛的几率分布,因而倍增后的光电流I比倍增前的光电流I0有更大的随机起伏,即光电流中的噪声有附加的增加。与真空光电倍增管相比,由于半导体中两种载流子都具有离化能力,使得这种起伏更为严重。一般将光电流中的均方噪声电流〈i戬〉表示为 〈i戬〉=2qI0嚔2F(嚔)B

光电二极管特性参数的测量及原理应用(精)

工作总结实验报告 / / 光电池/光敏电阻/光电二极管特性参数的测量指导人:朱小姐实验类型:工作检验及年终总结实验地点:搏盛科技光电子半导体实验室实验目的:销售技能的考察,产品及相关知识的了解情况,年终总结实验日期:2011 年 12 月 26 日姓名:陈帅职位:销售工程师手机号:159******** Email: chenshuaisz1688@https://www.360docs.net/doc/311705851.html, 概述光电效应是指入射光子与探测器材料中的束缚电子发生相互作用,使束缚电子变成为自由电子的效应。光电效应分为内光电效应与外光电效应两类。入射光子引起探测器材料表面发射电子的效应称为外光电效应。入射光子激发的载流子(电子或空穴)仍保留在材料内部的效应称为内光电效应。内光电效应器件有光电导探测器(例如光敏电阻)、光生伏特器件(光电池、光电二极管、光电三极管)。实验内容测量三种内光电效应器件(光敏电阻、光电池、光电二极管)的特性参数。注意事项 a 做实验请关灯,以达到良好的测量效果。 b 拆卸数据线时不要用力硬拽,拆不下来请转个角度拆。 c 请在自己的实验桌上做实验,不要到别的实验桌旁干扰同事做实验,更不要动他人的仪器。 d 请勿触摸光学镜片的表面。 e 测量时不要碰导线,否则数据不稳定。更不能用力拉扯导线,导致接头脱落。 f 实验完毕关闭所有电源开关。实验报告报告开头请填入姓名、职位、手机号、实验日期。实验完成后,请将报告打印出来,在有实验数据、图表的页脚签名,然后交到朱小姐办公桌上。 Word 文件请以“实验报告+姓名”命名,发到朱小姐邮箱。请在元旦节前完成。签名: 第 1页 光敏电阻的特性曲线测量一. 目的要求测量 CdS(硫化镉)光敏电阻的伏安特性和光照特性。实验要求达到: 1、使用 Excel 或绘图软件 Origin 绘制出伏安特性特性曲线 2、绘制出光照特性曲线 3、理解光敏电阻的光电特性二. 实验原理某些物质吸收了光子的能量产生本征吸收或杂质吸收,从而改变了物质电导率的现象称为物质的光电导效应。光电导效应只发生在某些半导体材料中,金属没有光电导效应。光敏电阻是基于光电导效应工作的元件。光敏电阻具有体积小,坚固耐用,价格低廉,光谱响应范围宽等优点。广泛应用于微弱辐射信号的探测领域。由于光敏电阻没有极性,纯粹是一个电阻器件,只要把它当作电阻值随光照度而变化的可变电阻器对待即可,使用时既可加直流电压,也可以加交流电压。因此光敏电阻在电子电路、仪器仪表、光电控制、计量分析以及光电制导、激光外差

常用的元器件半导体二极管

常用的元器件半导体二极管 5.1 半导体二极管的分类 半导体二极管是具有单向导电特性或非线性伏安特性的半导体两级器件。按用途分为检波二极管、混频二极管、参放二极管、开关二极管、稳压二极管、整流二极管、光电二极管、发光二极管等;按采用材料不同可分为锗二极管、硅二极管、砷化镓二极管等;按结构不同又可分为点接触和面接触二极管;按工作原理分为隧道二极管、变容二极管、雪崩二极管等。 5.2 国产半导体二、三极管型号命名名方法 半导体二极管、三极管的型号由五部分组成。 第一部分用数字表示半导体管的电极数目。 例如:2——二极管 3——三极管 第二部分用汉语拼音字母表示半导体管的材料和极性。 例如:A——表示二极管时为N型锗材料 表示三极管时为PNP型锗材料 B——表示二极管时为P型锗材料 表示三极管时为NPN型锗材料 C ——表示二极管时为N型硅材料 表示三极管时为PNP 型硅材料

型硅材料P——表示二极管时为D 表示三极管时为NPN型硅材料 第三部分用汉语拼音字母表示半导体管的类型,各字母及其代表类型见表1-17。 表1-17 二极管、三极管型号第三部分各字母的代表类型

用数字表示半导体管的序号。第四部分. 第五部分用汉语拼音字母表示区别代号。 5.3 半导体二极管的极性判别及选用 5.3.1 半导体二极管的极性判别 一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP17等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一端是正极,连半导体片的一端是负极。如果既无色点,管壳又不透明,则可用万用表来判别正、负极。根据二极管正向电阻小、反向电阻大的特点,将万用表拨到欧姆档(一般用R*100或R*1k档。不要用R*1或R*10k 档,因为R*1档使用的电流太大,容易烧坏管子,而R*10k 档使用的电压太高,可能击穿管子),用表分别与二极管的正极。同理,在测得阻值较大的一次,与黑表棒相接的一端为二极管的负极。 5.3.2 通常小功率锗二极管的正向电阻值为300Ω~500Ω,硅管为1000Ω或更大一些。锗管反向电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管要小得多)。正反向电阻差值越大越好。 点接触二极管的工作频率高,不能承受较高的电压和通过较

一讲:二极管及其基本电路

导言 我们为什么要学习模拟电子技术 在自然界以及人类活动中,存在着各种各样的信息。承载着这些信息的载体,就叫做信号。现实生活中,我们会遇到种类繁多的信号,比如声信号、光信号、温度信号等等,这些时间连续、幅值连续的信号叫做模拟信号,也就是数学当中的连续函数。在对这些信号进行处理时,为了方便研究,需要将它们转换成电信号。将各种非电信号转换为电信号的器件或装置叫做传感器,在电路中常将它描述为信号源。 然而,传感器输出的电信号通常是很微弱的,如细胞电生理实验中所检测到的电流仅有皮安(pA ,A 1210-)量级。对于这些过于微弱的信号,一般情况下既无法直接显示,也很难作进一步处理。因此,需要将这些信号输入到放大电路中进行放大处理。 如何利用各种元件设计出合理的放大电路,对信号源进行有效的、减少失真的处理,是这门课程的主要内容。可以说,“放大”一词,就是这门课的核心。

课时一:二极管及其基本电路 一、PN 结 1. 形成 通过一定的工艺,在同一块半导体的一边掺杂成P 型,另一边掺杂成N 型,当多子扩散与少子漂移达到动态平衡时,交界面上就会形成稳定的空间电荷区,又称势垒区或耗尽层,即为PN 结的形成。 2. 单向导电性 PN 结正向偏置时,耗尽层变窄,呈现低电阻,称为正向导通; PN 结反向偏置时,耗尽层变宽,呈现高电阻,称为反向截止。 3. 电容效应 PN 结的电容效应包括扩散电容D C 和势垒电容B C 。 4. 反向击穿特性 PN 结的反向击穿分为雪崩击穿和齐纳击穿两种现象。 二、半导体二极管 半导体二极管就是一个封装的PN 结。 1. 二极管的伏安特性 1) 伏安特性表达式 二极管是一个非线性器件,其伏安特性的数学表达式为

半导体光电器件的工作原理

半导体光电器件的工作原理 半导体光电器件是把光和电这两种物理量联系起来,使光和电互相转化的新型半导体器件。光电器件主要有,利用半导体光敏特性工作的光电导器件,利用半导体光伏打效应工作的光电池和半导体发光器件等。这一节中简略地向大家介绍一下这些光电器件的工作原理。 一、光电导器件 本章第一节曾介绍过半导体材料的光敏特性,即当半导体材料受到一定波长光线的照射时,其电阻率明显减小,或说电导率增大的特性。这个现象也叫半导体的光电导特性。利用这个特性制作的半导体器件叫光电导器件。 半导体材料的电导率是由载流子浓度决定的。载流子就是由半导体原子逸出来的电子及其留下的空位----- 空穴。电从原子中逃逸出来,必须吉凶服原子的束缚而做功,而光照正是向电子提供能量,使它有能力逃逸出来的一种形式。因此,光照可以改变载流子的浓度,从而必变半导体的电导率。 光电导器件主要有光敏电阻、光电二极管光电三极管等。 1.光敏电阻。 这是一种半导体电阻。在没有光照时,电阻很大;在一定波长范围的光照下,电阻值明显变小。制作光敏电阻的材料主要有硅、锗、硫化镉、锑化铟、硫化铅、硒化镉、硒化铅等。硫化镉光敏电阻对可见光敏感,用硫化镉单晶制造的光敏电阻对X射线、Γ射线也敏感;硫化铅和锑化铟对红线外线光敏感。利用这些光敏电阻可以制成各种光探测器。 感光面积大的光敏电阻,可以获得较大的明暗电阻差。如国产625-A型硫化镉光敏电阻,其光照电阻小于50千欧,暗电阻大于50兆欧。 2.光电二极管 光电二极管的管芯也是一个PN结,只是结面积比普通二极管大,便于接收光线。但和普通二极管不同,光电二极管是在反向电压下工作的。它的暗电流很小,只有0 1微安左右。在光线照射下产生的电子----空穴对叫光生载流子,它们参加导电会增大反向饱和电流。光生载流子的数量与光强度有关,因此,反向饱和电流会随着光强的变化而变化,从而可以把光信号的变化转为电流及电压的变化。 光电二极管主要用于近红外探测器及光电转换的自动控制仪器中,还可以作为光导纤维通信的接收器件。 3.光电三极度管: 光电三极管的结构与普通三极度管相同,但基区面积较大,便函于接收更多的入射光线。入射光在基区激发出电子----空穴时,形成基极电流,而集电极电流是基极电流Β倍,因此光照便能有效地控制集电极电流。光电三极管比光电二极管有更高的灵敏度。二、光伏打器件----硅光电池 半导体PN结在受到光照射时能产生电动势的效应,叫光伏打效应。硅光电池就是利用光伏打效应将光能直接换成电能的半导体器件。 硅光电池就是一个大面积PN结。光照可以使薄薄的P型区产生大量的光生载流子。这些光生电子和空穴,会向PN结方向扩散。扩散过程中,一部分电子和空穴复合消失,大部分扩散到PN结边缘。在结电场的作用下,大部分光生空穴被电场推回P型区而不能穿越PN结;大部分光生电阻却受到结电场的加速作用穿越PN结,到达N型区。随着光生电子在N型区的积累及光生空穴在P型号区的积累,会在在PN对的两侧产生一个稳定的电位差,这就是光生电动势。当光电池两端接有负载时,将有电流流过负载,起着电池的作用。 硅光电池的用途极度为广泛。主要用于下述几个方面:

半导体光电器件原理及参数简介

半导体光电器件原理及参数简介 半导体光电子器件包括将电能转换成光能的发光器件和将光能转换成电能的光电探测器件。光电器件种类很多,发光器件有发光二极管(LightEMittingDiode,简称LED)、半导体激光器(LaserDiode,简称LD)等,光电探测器件有光电二极管或称光敏二极管(photodiode or photosensitivediode)、太阳电池(solarcell)等。它们与集成电路的结合出现了各种光电耦合器件,智能显示器件,专用光传感器,电荷耦合摄像器件,各种光电子模块等等。半导体光电器件广泛地应用在光通信、激光、数字图像显示、自动控制、计算机、国防等领域,在21世纪将获得更迅速的发展和更广泛的应用。 1.物理基础 ● 电子、空穴与能带 半导体是由大量原子组成的晶体,由于原子之间距离很近,相邻原子上的电子轨道将发生一定程度的交迭,电子不再属于某个原子而可以穿行于整个晶体,由此导致了原子能级分裂为能带。以最常用的半导体硅为例,硅的最外层有4个价电子,每个硅原子近邻有4个硅原子,这样每两个相邻原子之间有一对电子,它们与两个原子核都有吸引作用,称为共价键。它们所处的能带为价带,比价带能量更高的能带是导带,它们中间隔着不允许存在的能量状态区域称为禁带。当共价键内的束缚电子获得足够能量(例如热能,光能),可以摆脱共价键的束缚成为自由电子,我们称此时价带中的电子跃迁到了导带。电子跃迁后,在原来的位置上留下了一个空位—“空穴”,邻键上的电子随时可以转移过来填补这个空位,共价键中这种束缚电子的移动用“空穴”的移动来表示。自由电子和空穴都能参与导电,统称为载流子。 ● 电子跃迁与吸收波长、发光波长 电子的跃迁是和能量的交换分不开的。电子必须吸收能量才能从低能级跃迁到高能级,电子从高能级跃迁到低能级则必须放出多余的能量。电子跃迁过程中交换的能量若是热运动的能量,称为热跃迁,若是光的能量,称为光跃迁。半导体光电器件的原理就是基于光跃迁的。 电子作光跃迁的过程中,光的吸收和发射都是取光子的形式。光子的能量由光的频率ν或 波长λ决定: 光子能量=h= 其中普朗克常数h=4.14×10-15电子伏·秒(eV·s),光速 c=2.998×1014微米/秒(μm/s),电子由价带跃迁到导带需要吸收的光子能量必须等于或大于禁带宽度(或称带隙)Eg,所以可以从带隙换算出相应吸收光的光子波 长: h=≥Eg,∴λ≤ 若以eV,μM作为能量和长度的单位,则吸收波长:

相关文档
最新文档