段码LCD液晶屏驱动方法

段码LCD液晶屏驱动方法
段码LCD液晶屏驱动方法

TFT液晶屏:https://www.360docs.net/doc/312955680.html,

段码LCD液晶屏驱动方法

段码LCD液晶屏驱动方法

首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛。但在控制上LCD较复杂,因为LCD 电极之间的相对电压直流平均值必须为0,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。

LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态,为什么?

下面我们一起细细道来:

第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。

第二步,驱动方式:根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。

段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子:

TFT液晶屏:https://www.360docs.net/doc/312955680.html, 同时我们要注意,在COM输出高的时候,如果要屏幕亮,SEG就要输出低,那么在COM输出低的时候,SEG就要输出高,保证COM和SEG的压差大于1/2B工作电压就可以显示了时刻让SEG电平跟COM的电平反向,那么驱动段式液晶就基本上成功了。

段码lcd基本知识

液晶显示是一种被动的显示,它不能发光,只能使用周围环境的光。它显示图案或字元只需很小能量。正因为低功耗和小型化使LCD成为较佳的显示方式。

液晶显示所用的液晶材料是一种兼有液态和固体双重性质的有机物,它的棒状结构在液晶盒内一般平行排列,但在电场作用下能改变其排列方向。

对于正性TN-LCD,当未加电压到电极时,LCD处于“OFF”态,光能透过LCD呈白态;当在电极上加上电压LCD处于“ON”态,液晶分子长轴方向沿电场方向排列,光不能透过LCD,呈黑态。有选择地在电极上施加电压,就可以显示出不同的图案。

对于STN-LCD,液晶的扭曲角更大,所以对比度更好,视角更宽。STN-LCD是基于双折射塬理进行显示,它的基色一般为黄绿色,字体兰色,成为黄绿模。当使用紫色偏光片时,基色会变成灰色成为灰模。当使用带补偿膜的偏光片,基色会变成接近白色,此时STN成为黑白模即为FSTN,以上叁种模式的偏光片转90°,即变成了蓝模,效果会更佳。

从图中可以看出,液晶显示器是一个由上下两片导电玻璃製成的液晶盒,盒内充有液晶,四周用密封材料-胶框(一般为环氧树脂)密封,盒的两个外侧贴有偏光片。

液晶盒中上下玻璃片之间的间隔,即通常所说的盒厚,一般为几个微米(人的準确性直径为几十微米)。上下玻璃片内侧,对应显示图形部分,镀有透明的氧化甸-氧化锡(简称ITO)导电薄膜,即显示电极。电极的作用主要是使外部电信号通过其加到液晶上去。

液晶盒中玻璃片内侧的整个显示区覆盖着一层定向层。定向层的作用是使液晶分子按特定的方向排列,这个定向层通常是一薄层高分子有机物,并经摩擦处理;也可以通过在玻璃表面以一定角度用真空蒸镀氧化硅薄膜来製备。

在TN型液晶显示器中充有正性向列型液晶。液晶分子的定向就是使长棒型的液晶分子平行于玻璃表面沿一个固定方向排列,分子长轴的方向沿着定向处理的方向。上下玻璃表面的定向方向是相互垂直的,这样,在垂直于玻璃片表面的方向,盒内液晶分子的取向逐渐扭曲,从上玻璃片到下玻璃片扭曲了90°(参

TFT液晶屏:https://www.360docs.net/doc/312955680.html, 见下图),这就是扭曲向列型液晶显示器名称的由来。

实际上,靠近玻璃表面的液晶分子并不完全平行于玻璃表面,而是与其成一定的角度,这个角度称为预倾角,一般为1°~2°。

液晶盒中玻璃片的两个外侧分别贴有偏光片,这两片偏光片的偏光轴相互平行(黑底白字的常黑型)或相互正交(白底黑字的常白型),且与液晶盒表面定向方向相互平行或垂直。偏光片一般是将高分子塑胶薄膜在一定的工艺条件下进行加工而成的。

我们通常所见的多是反向型的液晶显示器,这种显示器在下边的偏振片后还贴有一片反光片。这样,光的入射和观察都是在液晶盒的同一侧。

显示方式

LCD有叁种显示方式:反射型,透射型和透反射型。反射型LCD的底偏光片后面加了一块反射板,它一般在户外和光线良好的办公室使用。透射型LCD的底偏光片是透射偏光片,它需要连续使用背光源,一般在光线差的环境使用。透反射型LCD是处于以上两者之间,底偏光片能部分反光,一般也带背光源,光线好的时候,可关掉背光源;光线差时,可点亮背光源使用LCD。

LCD显示方式还分正性和负性。正性LCD呈现白底黑字,在反射和透反射型LCD中显示最佳;负性LCD呈现黑底白字,一般用于透射型LCD,加上背光源,字体清晰,易于阅读。

背光源

透射型和半透射型LCD一般都需要加背光源,其放置位置根据实际情况下面介绍几种常见的背光源:电致发光(EL):EL背光源厚度薄,重量轻、发光均匀。它可用于不同颜色,但最常用于LCD白光背光。EL背光源功耗低,只需电压80-100VAC,通过变压器将5V,12V或24VDC转变得到。EL背光源的半衰期约为2000~3000小时。

发光二极体(LED):LED背光源主要用于字元型模组。比EL寿命更长(最少5000小时),光更强,但能耗更大。作为固态装置,它直接使用5VDC。LCD一般直接排列在LCD的后面,厚度要增加5mm,LED可以发不同颜色的光,最常见的是黄绿光。

冷阴极萤光灯(CCFL):CCFL能够提供能耗低,光亮强的白光。它由冷阴极萤光管发光,通过散射器将光均匀分散在视窗区。侧背光源体积小,能耗低,但CCFL需要一个变压器来供应270-300VAC的电源。它主要用于图形LCD,寿命达10000~15000小时。

TN和STN是液晶显示器的二种形式。TN显示的液晶在液晶盒内扭曲90°,一般用于低路数的LCD 产品。

STN显示的液晶在液晶盒内扭曲180°~360°,扭曲角越大,电光曲线越陡,V on和V off值越接近。可用于32路以上LCD产品生产。

LCD的视角

TFT液晶屏:https://www.360docs.net/doc/312955680.html, 视角简单地说就是显示图案能看得清楚的角度。它是由定向层的摩擦方向决定,不能通过旋转偏光片改变。视角以时针的鐘点来命名,如6:00视角,12:00视角等等。6:00视角就是指在6点时针的平面方向到法线方向这个区域LCD显示效果理想;12:00视角是指12点时针的玉米麵到法线方向区域显示理想。

LCD的视角是由LCD显示屏在仪器上的位置来确定。例如计算器一般放在桌上或拿在手上使用,LCD 做成6:00视角最好。有些仪器上的LCD屏装在低于人眼视线以下,一般做成12:00视角。汽车上的时鐘一般装在驾驶员的右边,做成9:00的视角最佳。

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

液晶屏驱动板原理维修代换方法

液晶屏驱动板的原理与维修代换方法 1、液晶屏驱动板的原理介绍 液晶屏驱动板常被称为A/D<模拟/数字)板,这从某种意义上反应出驱动板实现的主要功能所在。液晶屏要显示图像需要数字化过的视频信号,液晶屏驱动板正是完成从模拟信号到数字信号<或者从一种数字信号到另外一种数字信号)转换的功能模块,并同时在图像控制单元的控制下去驱动液晶屏显示图像。液晶显示器的驱动板如图1、图2所示。 图1 品牌液晶显示器采用的驱动板 图2部分液晶显示器采用的是通用驱动板 如图3所示,液晶屏驱动板上通常包含主控芯片、MCU微控制器、ROM存储器、电源模块、电源接口、VGA视频信号输入接口、OSD按键板接口、高压板接口、LVDS/TTL驱屏信号接口等部分。 液晶屏驱动板的原理框图如图4所示,从计算机主机显示卡送来的视频信

号,通过驱动板上的VGA视频信号输入接口送入驱动板的主控芯片,主控芯片根据MCU微控制器中有关液晶屏的资料控制液晶屏呈现图像。同时,MCU微控制器实现对整机的电源控制、功能操作等。因此,液晶屏驱动板又被称为液晶显示器的主板。 图3 驱动板上的芯片和接口 液晶屏驱动板损坏,可能造成无法开机、开机黑屏、白屏、花屏、纹波干扰、按键失效等故障现象,在液晶显示器故障中占有较大的比例。 液晶屏驱动板广泛采用了大规模的集成电路和贴片器件,电路元器件布局

紧凑,给查找具体元器件或跑线都造成了很大的困难。在非工厂条件下,它的可修性较小,若驱动板因为供电部分、VGA视频输入接口电路部分损坏等造成的故障,只要有电路知识我们可以轻松解决,对于那些因为MCU微控制器内部的数据损坏造成无法正常工作的驱动板,在拥有数据文件<驱动程序)的前提下,我们可以用液晶显示器编程器对MCU微控制器进行数据烧写,以修复固件损坏引起的故障。早期的驱动板,需要把MCU微控制器拆卸下来进行操作,有一定的难度。目前的驱动板已经普遍开始采用支持ISP<在线编程)的MCU微控制器,这样我们就可以通过ISP工具在线对MCU微控制器内部的数据进行烧写。比如我们使用的EP1112最新液晶显示器编程器就可以完成这样的工作。 图4 驱动板原理框图 在液晶显示器的维修工作中,当驱动板出现故障时,若液晶显示器原本就使用的是通用驱动板,就可以直接找到相应主板代换处理,当然,仍需要在其MCU中写入与液晶屏对应的驱动程序;若驱动板是品牌机主板,我们一般采用市场上常见的“通用驱动板”进行代换方法进行维修; “通用驱动板”也称“万能驱动板”。目前,市场上常见的“通用驱动板”有乐华、鼎科、凯旋、悦康等品牌,如图5所示,尽管这种“通用驱动板”所用元器件与“原装驱动板”不一致,但只要用液晶显示器编程器向“通用驱动板”写入液晶屏对应的驱动程序<购买编程器时会随机送液晶屏驱动程序光盘),再通过简单地改接线路,即可驱动不同的液晶屏,通用性很强,而且维修成本也不高,用户容易接受。

段码LCD液晶屏驱动方法

段码LCD液晶屏驱动方法 生活中小电器见到最多的lcd模组就是段码lcd液晶屏,段码lcd有普通的数码管的特征,又有点阵LCD的特征,固定的图形,优点是省成本而有好看,那么段码LCD液晶屏是怎么驱动的呢?下面我们就来简单了解一下: 首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例 如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛【1】。但在控制上LCD较复杂,因为LCD电极之间的相对电压直流平均值必须为0【2】,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。 但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态, 为什么?下面我们一起细细道来: 第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。 第二步,驱动方式:根据LCD 的驱动原理可知,LCD 像素点上只能加上AC 电压,LCD 显示器的对比度由COM脚上的电压值减去SEG 脚上的电压值决定,当这个电压 差大于 LCD 的饱和电压就能打开像素点,小于LCD 阈值电压就能关闭像素点,LCD 型MCU 已经由内建的LCD 驱动电路自动产生LCD 驱动信号,因此只要I/O 口能仿真输出该驱动信号,就能完成 LCD 的驱动。 段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果 给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子: 只要模拟出以上波形,液晶屏已经成功了一大半了。 1. void display_sub(u8 y) //lcd display subroutine 2. { 3. switch(y) //4*com,VDD and -VDD LCD display,so 8 timebase interrupt one sacn period 4. { 5. case 1: 6. {com1_output_high();break;} 7. case 2: 8. {com1_output_low();break;} 9. case 3: 10. {com2_output_high();break;}

关于LCD电视机屏驱动板的维修方法

关于LCD电视机屏驱动板的维修方法 LCD电视机屏驱动板是由屏厂家和屏配套提供的,屏驱动板又称为中心控制板,逻辑板等,它的作用是把从数字板送过来的LVDS信号转换成TTL信号。屏驱动板损坏造成的故障现象有:黑屏、白屏、灰屏、负像、噪波点、竖带、图像太亮或太暗等。 屏驱动板图片: LCD电视机屏驱动板工作条件: 正确的供电: 电压有:+3.3V、+5V、+12V,这个电压是从主板供过来的,在主板上靠近LVDS 插座处附近会有一个切换LVDS 供电的MOS 管开关,靠近MOS 管处有选择LVDS 电压的磁珠或跳线。根据具体使用的液晶屏的型号确定供电电压是多少伏 来选择对应的磁珠或跳线。 正确的LVDS信号: LCD电视机屏分为高清屏(1366*768)和全高清屏(1920X1080)高清屏(1366*768)均为单8位LVDS传输,包括8位数据,2位时钟共10条数据线;全高清屏(1920X1080)均为双路LVDS传输,包括8位奇数据,8位偶数据,2位奇时钟和2位偶时钟,共20条数据线,所以从数字板过来的LVDS线的根数是不一样的。因为LVDS信号电平为1V左右,通过万用表可以测出来。 三、液晶屏信号格式选择电压: LVDS信号格式有两种:VESA格式和JEIDA格式。在靠近LVDS 插座处会有2 个选择LVDS 格式的电阻,根据液晶屏的要求来选择其阻值。一般有0V,3.3V,5V 和12V 几种选

择。不同的屏应该选择不同的电压。 四:帧频选择端口: 有些屏具有这个端口,如奇美屏。在该端口接上选择电平,可以使屏的显示频率在50Hz和60Hz帧频进行选择,以适应输入信号的帧频。如果该端口的选择电平错误,屏的显示频率和输入信号的帧频不相同,会出现无显示的故障。 五:对应的程序: 不同的液晶屏一般需要选择不同的LVDS 程序,当程序不匹配时多会出现彩色不对或图像不正常等现象。 常见故障维修实例: 一、三星屏,黑屏,中心控制板上的保险开路,测5V供电滤波电容C50.C51.C52.C53.C54.C55其中的一个对地漏电,更换后故障排除。 二、奇美V260B1-L07屏,黑屏,测从数字板过来的5V正常,5V经供电经电感LP1,二极管DP11,MOS管Q2等元件组成的升压电路把此电压升高到13V,查此电压不对,更换电感LP1后故障排除。 三、中华屏,黑屏,此处电容C501、C502、C512、C513、C514、C515、C516易漏电,造成保险FU101开路,更换后故障排除. 四、在中心控制板上, LVDS线插座和从中心控制板到屏去的TTL线插座由于插座变形和空气灰尘等原因而造成接口接触不良,从而出现黑屏、白板、花屏、负像、竖线干扰等故障; 五、MS18机芯在更换不同的屏时如出现负像,可以把数字板上LVDS插座的第39脚接线取下,如原来是高电平可接地,原来是低电平可接到3.3V就可以了,就不用再更改电阻R316、R317了。 机型:L32M61B 机芯:LCD-MS88机芯烧大电容 通电,PFC工作了就烧大电容,电压瞬间达到500V左右,待机很正常 原因:J6位号那颗精密电阻470K坏。

段码式液晶屏开模

段码式液晶屏开模 1. 开模过程 资料核实:尺寸、显示图形、逻辑表、显示模式、驱动参数(V o 、Duty 、Bias) 、连接方式、温度条件等 出图:外形图设计 图纸确认:图纸修改 模具制作:版图设计、光刻菲林制作( 电极x2 、边框、银点、PI 、测试PCB) 、丝印网、凸版、测试架 出样:样品制作 样品确认:重新出样或修改模具后重新出样 2. 开模周期:一般出图1 ~3 天,视图纸复杂程度及原始资料完整性;出样时间( 包括模具制作) 一般在图纸确认后 2 周左右。样品制作因涉及环节较多,包括模具设计、模具制作、材料选择、工艺选择、试生产、样品测试等,故一次成功的几率约在90 %左右,如不成功,周期可能明显延长。 3. 样品数量:5 ~10pcs( 特殊情况另商定) 4. 图纸修改:在图纸正式确认前,可对图纸提出任意修改意见,我们将在第一时间内修改图纸,不限次数,也不收取任何修改费用,当然这可能会影响周期。 5. 以下重新出样不需重新收取开模费:修改V o ,修改偏光模式、由于供方原因导致样品和需方确认图纸不一致等。 6. 以下重新出样或模具制作后修改需重新收取开模费:样品和需方确认图纸一致,但需方要求修改( 尺寸、显示图案、逻辑表、观察方向等) 导致需重新制作模具。 目前定制屏最多的就是TN,HTN,STN显示类型 的屏,也是最早广发应用于各个行业的最基础的人际交换界面显示器 件:仪器仪表,小电子产品,医疗工控行业应用居多。 针对现时很多定制屏DIY的朋友选购液晶屏时应注意的几个方面大致 说明一下。 视角 视角和反应速度是他们的共同特性和共同区别。 现在人们接触最多的是手机上的屏,统称TFT屏,基本上看不出有视 角范围的衰减,而低端类的TN,HTN,STN显示屏有着明显的视角区别。 行业内名词参数:6H,9H,3H,12H.也就是6点钟方向,9点钟方向,3点 钟方向,12点钟方向的意思。以一挂时钟做为参考说明视角方向,6 点为仰视,3点为左侧视,9点为右侧视,12点为俯视。选购时尤为关 键。 温度 温度也是液晶屏主要的参数之一,在定制期间屏厂会发一份图纸, 里面就有这类必不可少的参数,“工作温度,储存温度”两 项。在设计时要注意这个参数,考虑产品在哪种环境下工作。液晶屏 一般分为3-4个范围,常温(0-50)范围,宽温(-20-75)范围,超 宽温(-30-85)范围。选择错误时会出现如下反应:低温下会显示反 应缓慢,高温下会有底影存在。 驱动模式及电压

LED液晶显示器的驱动原理

LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之 中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs. For personal use only in study and research; not for commercial use

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因 素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方 式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显 示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时, 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因. For personal use only in study and research; not for commercial use

第十七节:液晶屏第三大类定律—任意位置显示一个点(HT1621驱动段码液晶屏

第十七节:液晶屏第三大类定律—任意位置显示一个点(HT1621驱动段码液晶屏) (1)开场白: 段码液晶屏往往应用在出货量比较大的家用消费类电子,比如空调遥控器,小时候带的电子手表等,都是段码屏。段码屏是非标屏,都是客户定做的,第一次开模费大概一两千元,厂家一般都会有起订量的要求,除此之外,它的单位成本相对要比点阵屏要便宜,而且我个人认为显示的效果要比点阵屏漂亮。 段码屏的驱动程序跟数码管的静态驱动程序一样,只要我们弄懂了怎样显示一个基本单位,根据此基本单位编写一个字库表,然后用与(&)和或(|)这两种位运算符就可以随心所欲编写我们要显示的数字或者形状。有两种常用的驱动方案: 第一种:如果单片机内部集成了seg和com引脚的液晶驱动模块,直接用单片机驱动。第二种:单片机用3个IO口跟HT1621进行通讯,用 HT1621驱动段码屏。 这节我重点介绍第二种。HT1621有4个COM,分别是com3,com2,com1,com0。有32个SEG,分别是SEG0,SEG1….SEG31。 什么是COM,什么是SEG?用鸿哥的思路来解释,COM就是横向上的X坐标,SEG就是纵向上的Y坐标。X坐标与Y坐标组合成一张表格,每格代表一个显示点。比如 HT1621,有4个COM,32个SEG,组成一个32行,每行装4个点的表格,一共有128个点,也就是最多可以显示128个点,用数码管的思路,最多可以显示128个LED灯。因为纵向上有32行,因此Y轴的地址范围是0到31。每一行X轴上的4个点,我们用一个字节来表示。一个字节有8位,高4位分别代表这个4个点,低4位为空。比如第一行(SEG0行)的第1个(COM3)要显示,第2个(COM2)要显示,第3个(COM1)不要显示,第4个(COM0)不要显示,那么用一个字节来表示就是十六进制的0xc0.要把这两个点点亮,只要把X轴的数据设置成0xc0,Y轴的数据设置成0x00,然后放到鸿哥精心研制的 seg_display(unsigned char col, unsigned char pag)驱动程序里就可以了. (2)功能需求: 在COM和SEG组成的4X32表格中,显示第二行的第3和第4两个点。 (3)硬件原理: 用单片机的3个IO口分别跟HT1621的CS,WR,DATA连接。 (4)源码适合的单片机:STC11F04E,晶振为11.0592MHz。 (5)源代码讲解如下: #include "REG52.H" #include "absacc.h" #include "intrins.h" #include "stdio.h" #define BIAS 0X52 //此处千万小心,鸿哥在上个月的一个项目中就是在这里被卡了7天。 //必须跟硬件电路的COM匹配。1个或者2个COM:0x42。3个COM:0x4A。4个COM:0x52

3.5寸液晶屏驱动板说明书

3.5央寸显示屏驱动板技术说明 .系统规格: 输入电源:USB接口DC5V,内置电池供电 驱动显示屏: 3.5英寸TFT显示屏320*240像素(具体型号由乙方来推荐,甲方来确认的。)USB 接口:MINI USB 接口1.1 信号输入输出接口:AV输入(指定摄像头信号)/ AV输出与摄像头同制式 充电接口:锂聚合物充电电池(3.7V ),支持给电池充电。 储存媒介:SD卡(最大容量4G ) 压缩格式:MPEG4 图像存储格式:JPEJ(640*480) 视频录制格式:ASF(320*240) 语言:英语+(任意一种语言) 工作温度:-10-70 度。 充电环境温度:0-40 度 .驱动板结构: 尺寸:105*75MM 接口:(以下接口由甲方提供结构尺寸或者模具,参考板。)

1 : SD存储卡接口; 2 :充电接口,给3.7V锂电池充电。(外接口,和手机充电接口一样) 3 :电源开关(用逻辑电平控制),电源开关与手机模式一样(常按键5秒开机),电源 开关要切断总电源,或者打开总电源。(6*6的按纽开关键,) 4 :供电接口,3.7V锂电池供电接口。(这个接口是电源座,把 3.7V的锂电池接到驱动板上,电源座子是3针,1.25,锂电池连同摄像头一起给你)。 5 : USB接口。与电脑连接,可以直接读取SD卡信息,也可给锂电池充电。 6 : AV输出口,由我CMOS摄像头输入的AV信号,可以直接连接其它显示器上的。例 如电视。(样板上已经有了) 7 : AV输入口视频/电源接口。(2.54间距,5针插头。) 由我CMOS模组提供的AV(模拟信号)。电源接口是提供我CMOS驱动板的3.3V电 源。(总电流连同LED灯80-100mA ) 8 :按键接口,数字按钮,低电平触发。(按钮我CMOS驱动板已经做好了,不需要确 定,只需要接口就可以,后一个没有器件的样板上有接口,接口按键是0电平有触发,) 线路板背面需要一个系统复位按钮,具体位置与样板相同。 长按电源按钮3-5秒开机,操作完毕后,长按3-5秒,关机。 开机显示公司商标信息,图片,开机后处于预览模式中。(商标信息随后给你) 9 : 3.5寸屏接口。(请注意液晶屏摆放位置,方向) 10 : SD卡接口,USB接口,AV输出接口,充电接口的位置以及线路板大小,厚度, 定位螺丝孔位置均参照甲方所提供的样品。

液晶显示器驱动板几种常见故障的检修

液晶显示器驱动板几种常见故障的检修 2011-06-16 10:34:56 来源:致远维修评论:0点击:63 自己总结的驱动板几种常见故障的检修,如下: 现象:电源板输出电压正常,但是按开关没反应: 从先易后难的顺序着手检查 1、目测板子有无元件异常,通电用手触摸板子各处,看有无温度异常,有时处理芯片坏了温度很高,一摸就发现了 2、然后我习惯先检查驱动板上的各个供电。 由于电源板输出通常只有12v和5v,所以驱动板上都有几个DC/DC稳压器来转换驱动板所需的电压。 (少量机型的电源板也会输出3.3v,2.5v等电压给驱动板) 稳压器的样子看图 一目了然 一般有5v,3.3v,2.5v,1.8v等,测量一下几个稳压芯片的输入和输出电压,此机如果是供电问题引起的故障那么很快就找到故障点了。 3、如果各稳压器电压都正常,那么继续查,还是先简单的来, 供电都正常,那么按键板上的各个按键应该已经有电压了,然后用万用表测量,当按开关件时,按键上的电压有没有被拉低0v,如果没有,那么开关键坏了,换个按键就能修复故障了。 4、如果有开关电压跳变,那么开关按键也排除了,继续检查,供电有了,那么再查芯片工作所需要的时钟。(不同的处理芯片所需要的晶振频率是不同的)

用万用表测晶振两端电压有无压差,当然这样只能大概判断下,有示波器看波形当然最好。 5、mcu芯片工作所需的时钟也有了,再检查芯片工作所需条件复位,因为芯片pdf不好找,而且即使找到了,不同厂商定义的引脚可能也不同,费时间。 一般复位都是由一个电容一个电阻二个二极管产生的,如图, 看下板子上元件的排列,大概的判断下,如下图

液晶显示器常用通用驱动板

液晶显示器常用通用驱动板 2009-12-31 18:22 1.常用“通用驱动板”介绍 目前,市场上常见的驱动板主要有乐华、鼎科、凯旋、华升等品牌。驱动板配上不同的程序,就驱动不同的液晶面板,维修代换十分方便。常见的驱动板主要有以下几种类型: (1) 2023 B-L驱动板 2023B-L驱动板的主控芯片为RTD2023B,主要针对LVDS接口设计,实物如图1所示。 图1 2023B-L驱动板实物 该驱动板的主要特点是:支持LVDS接口液晶面板,体积较小,价格便宜。主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:LVDS; 显示模式:640×350/70Hz~1600×1200/75Hz; 即插即用:符合VESA DDC1/2B规范; 工作电压:DC 12V±1.0V,2~3A; 适用范围:适用于维修代换19in以下液晶显示器驱动板。 2023B-L驱动板上的VGA输入接口各引脚功能见表2,TXD、RXD脚一般不用。

表2 VGA插座引脚功能 2023B-L驱动板上的按键接口可以接五个按键、两个LED指示灯,各引脚功能见表3。 表3 2023B-L驱动板上的按键接口引脚功能 2023B-L驱动板上的LVDS输出接口(30脚)引脚功能见表4。 表4 2023B-L驱动板LVDS输出接口各引脚功能 2023B-L驱动板上的高压板接口引脚功能见表5。

表5 2023B-L驱动板上的高压板接口引脚功能 (2)203B-L驱动板 2023B-L主要针对TTL接口设计,其上的LVDS接口为插孔,需要重新接上插针后才能插LVDS插头。2023B-T驱动板实物如图6所示。 图6 2023B-T驱动板实物图 2023B-T驱动板体积比2023B-L稍大,价格也相对高一些,其主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:TTL; 显示模式:640×350/70Hz~1280×1024/75 Hz: 即插即用:符合VESA DDC1/2B规范; 工作电压:DC 12V±1.0V,2~3A; 适用范围:适用于维修代换20in以下液晶显示器的驱动板。 2023B-T驱动板的VCA输入接口、按键接口、LVDS输出接口、高压板接口引脚功能与前面介绍的2023B-L驱动板基本一致。

七种LCD液晶显示器驱动板

七种LCD液晶显示器驱动板 M5616 V1.1 模拟/数字双输入 SXGA分辨率 LVDS TFT LCD驱动板 产品说明: 输入接口: 电脑模拟VGA显示输出,板上接口形式可选为标准D-Sub接口或2.0MM间距的13-Pin插座; 电脑数字RGB(DVI)输出,板上接口形式可选为标准接口或2.0MM间距的14-Pin插座; 电脑声卡输出的立体声声音; 红外线遥控输入OSD控制(可选); 输出接口: 板上支持2 个8 欧 2W的喇叭 TFT LCD显示的支持: 单或双LVDS,6或8位的 LCD 接口; 支持的LCD的分辨率为VGA(640*480),或SVGA(800*600),或XGA(1024*768),或 SXGA(1280*1024),或其它需要定制的分辩率 ZAN3XS V1.1 SXGA分辨率 RSDS TFT LCD驱动板 产品说明: 输入接口: 电脑模拟VGA显示输出,板上接口形式可选为标准D-Sub接口或2.0MM间距的13-Pin插座; 电脑声卡输出的立体声声音; 红外线遥控输入OSD控制(可选); 输出接口: 板上支持2 个4 欧 1.5 ~ 2W的喇叭 TFT LCD显示的支持: 单或双 RSDS,6位的 LCD 接口; 支持的LCD的分辨率为VGA(640*480),或SVGA(800*600),或XGA(1024*768),或

SXGA(1280*1024),或其它需要定制的分辩率;常见支持的LCD包括: CPT-CLAA150XG08,CPT-CLAA170EA03,Hannstar-HSD150SXA1-A,LG-LS150X05,Innolux-MT170 ES01 尺寸:110(MM) * 81.5(MM) ZAN3SL V1.1 XGA分辨率 LVDS TFT LCD驱动板 产品说明: 输入接口: 电脑模拟VGA显示输出,板上接口形式可选为标准D-Sub接口或2.0MM间距的13-Pin插座; 电脑声卡输出的立体声声音; 红外线遥控输入OSD控制(可选) 输出接口: 板上支持2 个4 欧 1.5 ~ 2W的喇叭 TFT LCD显示的支持: 单或双LVDS,6或8位的 LCD 接口; 支持的LCD的分辨率为VGA(640*480),或SVGA(800*600),或XGA(1024*768),或 SXGA(1280*1024),或其它需要定制的分辩率 尺寸:110 MM(L) * 73 MM(W) ZAN3XL V1.1 XGA分辨率LVDS TFT LCD驱动板 产品说明: 输入接口: 电脑模拟VGA显示输出,板上接口形式可选为标准D-Sub接口或2.0MM间距的13-Pin插座; 电脑声卡输出的立体声声音; 红外线遥控输入OSD控制(可选)

段码LCD液晶屏驱动方法

TFT液晶屏:https://www.360docs.net/doc/312955680.html, 段码LCD液晶屏驱动方法 段码LCD液晶屏驱动方法 首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛。但在控制上LCD较复杂,因为LCD 电极之间的相对电压直流平均值必须为0,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。 LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态,为什么? 下面我们一起细细道来: 第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。 第二步,驱动方式:根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。 段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子:

TFT-LCD液晶显示器的驱动原理

TFT-LCD液晶显示器的驱动原理 LCD显示器在近年逐渐加快了替代CRT显示器的步伐,你打算购买一台LCD吗?你了解LCD吗?液晶显示器和传统的CRT显示器,在其发光的技术原理上有什么不同?传统的CRT 显示器主要是依靠显象管内的电子枪发射的电子束射击显示屏内侧的荧光粉来发光,在显示器内部人造磁场的有意干扰下,电子束会发生一定角度的偏转,扫描目标单元格的荧光粉而显示不同的色彩。而TFT-LCD却是采用“背光(backlight)”原理,使用灯管作为背光光源,通过辅助光学模组和液晶层对光线的控制来达到较为理想的显示效果。 液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。液晶本身并不能构发光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。 液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色滤光片构成的夹层所组成。偏光板、彩色滤光片决定了有多少光可以通过以及生成何种颜色的光线。液晶被灌在两个制作精良的平面之间构成液晶层,这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。简单的说就是后面的平面上的沟槽是纵向

排列的话,那么前面的平面就是横向排列的。位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。背光光源即灯管发出的光线通过液晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z 轴向的扭曲,从而能够通过前层平面。如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不能通过前层平面,以此来阻断光线。 LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 液晶显示器的缺点在于亮度、画面均匀度、可视角度和反应

液晶显示器常用“通用驱动板”介绍

液晶显示器常用“通用驱动板”介绍1.常用“通用驱动板”介绍 广告插播信息 维库最新热卖芯片: AT89C2051-24SU RHRG30120Z84C0006VEC MX7575JN EPF6016ATC100-2CEM9956A SN 74AHC74DBR MAX799ESE C8051F120STS4DNFS30L 目前,市场上常见的驱动板主要有乐华、鼎科、凯旋、华升等品牌。驱动板配上不同的程序,就驱动不同的液晶面板,维修代换十分方便。常见的驱动板主要有以下几种类型: (1)2023 B-L驱动板 2023B-L驱动板的主控芯片为RTD2023B,主要针对LVDS接口设计,实物如图1所示。 图1 2023B-L驱动板实物 该驱动板的主要特点是:支持LVDS接口液晶面板,体积较小,价格便宜。主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:LVDS; 显示模式:640×350/70Hz~1600×1200/75Hz; 即插即用:符合VESA DDC1/2B规范;

工作电压:DC 12V±1.0V,2~3A; 适用范围:适用于维修代换19in以下液晶显示器驱动板。 2023B-L驱动板上的VGA输入接口各引脚功能见表2,TXD、RXD脚一般不用。 表2 VGA插座引脚功能 2023B-L驱动板上的按键接口可以接五个按键、两个LED指示灯,各引脚功能见表3。 表3 2023B-L驱动板上的按键接口引脚功能 2023B-L驱动板上的LVDS输出接口(30脚)引脚功能见表4。

表4 2023B-L驱动板LVDS输出接口各引脚功能 2023B-L驱动板上的高压板接口引脚功能见表5。 表5 2023B-L驱动板上的高压板接口引脚功能 (2)203B-L驱动板 2023B-L主要针对TTL接口设计,其上的LVDS接口为插孔,需要重新接上插针后才能插LVDS插头。2023B-T驱动板实物如图6所示。 图6 2023B-T驱动板实物图 2023B-T驱动板体积比2023B-L稍大,价格也相对高一些,其主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:TTL; 显示模式:640×350/70Hz~1280×1024/75 Hz: 即插即用:符合VESA DDC1/2B规范; 工作电压:DC 12V±1.0V,2~3A; 适用范围:适用于维修代换20in以下液晶显示器的驱动板。

段码LCD参数说明及驱动原理

段码LCD参数说明及驱动原理 一.参数说明 1.Duty:占空比 该项参数一般也称为Duty数或COM数。由于STN/TN的LCD一般是采用时分动态扫描的驱动模式,在此模式下,每个COM的有效选通时间与整个扫描周期的比值即占空比(Duty)是固定的,等于1/COM数。 2.Bias:偏置 LCD的SEG/COM的驱动波形为模拟信号,而各档模拟电压相对于LCD输出的最高电压的比例称为偏置,而一般来讲,Bias是以最低一档与输出最高电压的比值来表示。一般而言,Bias和Duty 之间是有一定关系的,Duty数越多,每根COM对应的扫描时间变短,而要达到同样的显示亮度和显示对比度,VON的电压就要提高,选电平和非选电平的差异需要加大,即Bias需要加大,Duty 和Bias间有一经验公式,即。 3.VDD:工作电压 液晶分子是需要交流信号来驱动的,长时间的直流电压加在液晶分子两端,会影响液晶分子的电气化学特性,引起显示模糊,寿命的减少,其破坏性为不可恢复。 液晶分子是一种电压积分型材料,它的扭曲程度(透光性)仅仅和极板间电压的有效值有关,和充电波形无关。电压的有效值用COM/SEG之间的电压差值的均方根VRMS表示。 4.Frame:扫描帧频 扫描频率,直接驱动液晶分子的交流电压的频率一般在60~100Hz之间,具体是依据LCDPanel 的面积和设计而定,频率过高,会导致驱动功耗的增加,频率过低,会导致显示闪烁,同时如果扫描频率同光源的频率之间有整倍数关系,则显示也会有闪烁现象出现。 二.驱动原理 方式一 根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。由于LCD工作的最佳帖频率通常在25Hz~250Hz,一般设置刷新频率在60Hz左右即可。 现在考虑如何模拟出COM的波形。1/2Bias下COM0~COM3的LCD驱动波形如下:

TFT_LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理 TFT LCD液晶显示器的驱动原理(一) 我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因. 至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显

液晶显示器常用通用驱动板介绍方案

液晶显示器常用通用驱动 板介绍

液晶显示器常用“通用驱动板”介绍 1.常用“通用驱动板”介绍 目前,市场上常见的驱动板主要有乐华、鼎科、凯旋、华升等品牌。驱动板配上不同的程序,就驱动不同的液晶面板,维修代换十分方便。常见的驱动板主要有以下几种类型: (1)2023B-L驱动板 2023B-L驱动板的主控芯片为RTD2023B,主要针对LVDS接口设计,实物如图1所示。 图12023B-L驱动板实物 该驱动板的主要特点是:支持LVDS接口液晶面板,体积较小,价格便宜。主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:LVDS; 显示模式:640×350/70Hz~1600×1200/75Hz; 即插即用:符合VESADDC1/2B规范; 工作电压:DC12V±1.0V,2~3A; 适用范围:适用于维修代换19in以下液晶显示器驱动板。 2023B-L驱动板上的VGA输入接口各引脚功能见表2,TXD、RXD脚壹般不用。 表2VGA插座引脚功能 2023B-L驱动板上的按键接口能够接五个按键、俩个LED指示灯,各引脚功能见表3。 表32023B-L驱动板上的按键接口引脚功能 2023B-L驱动板上的LVDS输出接口(30脚)引脚功能见表4。

表42023B-L驱动板LVDS输出接口各引脚功能 2023B-L驱动板上的高压板接口引脚功能见表5。 表52023B-L驱动板上的高压板接口引脚功能 (2)203B-L驱动板 2023B-L主要针对TTL接口设计,其上的LVDS接口为插孔,需要重新接上插针后才能插LVDS插头。2023B-T驱动板实物如图6所示。 图62023B-T驱动板实物图 2023B-T驱动板体积比2023B-L稍大,价格也相对高壹些,其主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:TTL; 显示模式:640×350/70Hz~1280×1024/75Hz: 即插即用:符合VESADDC1/2B规范; 工作电压:DC12V±1.0V,2~3A; 适用范围:适用于维修代换20in以下液晶显示器的驱动板。 2023B-T驱动板的VCA输入接口、按键接口、LVDS输出接口、高压板接口引脚功能和前面介绍的2023B-L 驱动板基本壹致。 2023B-T驱动板的TTL插针CN1(40脚)、CN2(30脚)用于驱动40+30屏线接口的液晶面板,CN1(40脚)、CN2(30脚)的引脚排列顺序如图7所示,引脚功能分别见表8、表9。 图7CN1(40脚)、CN2(30脚) 表8TTL接口CN1(40脚)引脚功能 表9TTL接口CN2(30脚)引脚功能 2023B-T驱动板的TTL插口CN3(45脚)、CN4(30脚)用于驱动45+30屏线接口的液晶面板,CN3(45脚)、 CN2(30脚)的引脚排列顺序如图12所示,引脚功能分别见表10、表11。 图12CN3(45脚)、CN4(30脚)的引脚排列顺序示意图 表10TTL接口CN3(45脚)引脚功能

相关文档
最新文档