井下供电三大保护

井下供电三大保护
井下供电三大保护

井下三大保护

井下过电流保护、保护接地和漏电保护是保证煤矿井下安全供电的三大保护。它们相辅相成,缺一不可。

第一节漏电保护

煤矿井下供电电网发生漏电,不仅会引起人身触电,而且还可能导致瓦斯,煤尘爆炸,甚至使电气雷管提前引爆。此外,大量的漏电电流,还可能使绝缘材料发热着火,造成火灾及其它更为严重的事故。因此,研究漏电的发生,掌握人身触电电流的计算方法,采取切实可行的漏电保护措施,对于井下安全供电具有重要意义。

一、漏电与触电的机理

1.漏电故障的发生原因、种类和危害

1)漏电故障的基本概念

在供电系统中,当带电体对大地的绝缘阻抗降低到一定程度,使经该阻抗流入大地的电流增大到一定程度,该供电系统就发生了漏电故障.流入大地的电流,叫做漏电电流。室外架空线路由于其离地面很高,线路是通过空气与大地绝缘的,其绝缘电阻较高,但沿线对地存在分布电容,所以正常时带电的架空导线上也有微小的泄漏电流经空气入地,只是其值很小,一般可以忽略不计,这种现象不能称做漏电故障。电缆线路和各种电气设备与架空线路一样,正常运行时也有微小的泄漏电流入地,同样不算是发生了漏电故障。当入地电流由于某种原因增大至数十毫安、数安培甚至数十安培时,线路或电气设备就已发生了漏电故障。当入地电流增大至数百安培及以上时,它又超出了漏电故障的范围,进入了短路故障的范围。

漏电电流与正常的泄漏电流之间没有严格的界限,这种界限还与电网的结构、电压等级、电网中性点接地方式等因素有关。漏电保护装置的动作值是这种界限的标志;同样,漏电电流与短路电流之间也没有严格的界限,而

过流保护装置的动作值是这种界限的标志.

对于目前国内井下广泛采用的变压器中性点绝缘(不接地)的低压供电系统,漏电故障的明确定义为;在中性点绝缘的低压供电系统中,发生单相接地(包括直接接地和经过过渡阻抗接地)或两相、三相对地的总绝缘阻抗下降到危险值的电气故障就叫做漏电故障,简称漏电.显然,在这种供电系统中,人身触及一相带电导体的情况,属于单相经过渡阻抗接地,对人来说是发生了触电,对整个供电系统来说就是发生了漏电。

2)漏电故障的种类

根据煤矿井下电网的实际情况,漏电故障可分为集中性漏电和分散性漏电两类。集中性漏电,是指发生在电网中某一处或某一点,而其余部分的对地绝缘水平仍然正常的漏电。分散性漏电,是指整条线路或整个电网的对地绝水平均匀下降到低于允许水平的漏电。

集中性漏电又分为长期集中性漏电、间歇集中性漏电和瞬间性漏电三种类型,长期集中性漏电,是指电网中的某一设备或电缆,由于某种原因使绝缘击穿或带电导体碰壳而造成的漏电故障。如果没有相应的保护装置,或者保护装置拒动,这种漏电故障将长期存在。间歇性漏电,一般指电网中某台控制设备的负荷端.如磁力起动器负荷侧的电缆和末端的电动机,由于某种原因使绝缘击穿,带电导体碰壳而发生的漏电故障。这种漏电故障的存在与磁力起动器的停、送电状态有关,如果磁力起动器合闸,这部分线路就发生漏电,如果磁力起动器分闸,其漏电故障就消失,瞬间集中性漏电,主要指人员或其它接地的导体偶尔触及设备的带电部分后,立刻又摆脱或分开的情况。

3)漏电故障发生的原因

井下供电系统常见的漏电故障,大多数是由于下列原因造成的:

(1)运行中的电气设备因绝缘受潮或进水,造成相与地之间的绝缘下降到危险值。例如铠装电缆或矿用橡套电缆长期浸泡在水中;隔爆型开关的母线盒进水;磁力起动器元件的安装绝缘底板受潮等,都可能造成这种漏电故障。

(2)铠装电缆在运行中受机械或其他外力的挤压,砍砸、过度弯曲等而产生裂口或缝隙,长期受潮气的侵蚀造成绝缘损坏,从而发生漏电故障;矿用橡套电缆因受砍砸、挤压,铁器的划伤或刺伤,造成相线与地线直接接通或通过潮气组成漏电通路,有时甚至会造成导电芯线裸露接地。

(3)电缆与设备连接时,由于芯线接头不牢、封堵不严,接线嘴压板不紧.在运行或移动时造成接头脱落,或接头松动,使相线与金属外壳直接搭接,或者是接头发热过度,使绝缘损坏而接地漏电。

(4)电气设备内部的相线绝缘老化损坏或接头脱落,使一相火线接金属外壳。这种漏电故障在电动机内部常见.

(5)因维护或操作不当引起漏电故障。

(6)井下电缆因短路故障造成局部对地绝缘损坏.当处理短路故障后未经对地绝缘电阻测定而恢复送电时,就会发生漏电。

(7)大气过电压沿下井电缆入侵,击穿其对地绝缘而发生漏电。

(8)由于管理不严格而引起漏电故障。

4)漏电可能造成的危害

煤矿井下低压电网大部分在采区,环境条件恶劣,又是工作人员和生产机械比较集中的地方,井下电网若发生漏电,将导致以下危险:

(1)造成人身触电。当电气设备因绝缘损坏而使外壳带电,而工作人员又接触此外壳时,就会导致人身触电事故。此时入地电流的一部分将要从人身流过,其数值大到一定程度,如表1所示,将会造成工作人员的伤亡,工作人员触及刺破橡套电缆外护套而暴露在空气中的芯线是一种更加严重的人身触电,此时,入地电流绝大部分流过人身,因而对工作人员的危险性更大。

(2)漏电可能引起瓦斯及煤尘爆炸。我国大部分煤矿都有瓦斯和煤尘爆炸的危险,当井下空气中瓦斯或煤尘达到爆炸浓度且有能量达到0.28mJ的点火源时,就会发生瓦斯或煤尘爆炸,井下的点火源绝大部分是电火花,而漏电所产生的电火花则占有相当大的比例,当电网发生单相接地或设备发生单相碰壳时,在接地点就会产生电火花,若此电火花具有足够的能量,就可能点

燃瓦斯和煤尘。

(3)漏电使电气雷管意外引爆.漏电电流在其通过的路径上会产生电位差,漏电电流的数值越大,所产生的电位差就越大。如果电气雷管引线不慎与漏电回路上具有一定电位差的两点相接触,就可能发生电气雷管的意外爆炸事故.我国煤矿井下所使用的电气雷管,其引爆电流为150—200mA.

(4)漏电易烧损电气设备,造成火灾.长期存在的漏电电流,尤其是两相经过渡电阻接地的漏电电流,在通过设备绝缘损坏处时,将散发出大量的热,使绝缘进一步损坏,甚至使可燃材料(如非阻燃性橡套电缆)着火燃烧.

(5)漏电可进一步恶化为短路故障.据统计,约有30%的单相接地故障发展为短路故障,从而造成更大的电气故障,对矿井安全造成严重威胁.漏电故障发展为短路的原因是很简单的,长期存在的漏电电流及电火花使漏电处的绝缘进一步损坏,最终危及相间绝缘而造成短路。

2.触电及影响触电程度的因素

人体触及带电导体或因绝缘损坏而带电的电气设备金属外壳,或者接近高压带电体,都可能造成触电事故.煤矿井下由于空间狭窄、照明不足、空气潮湿以及电气设备和电缆易受砸压而使绝缘损坏,所以比地面更容易发生人身触电事故.

触电对人体组织的破坏过程是很复杂的.一般地,电流对人体的伤害,大致分为两种类型。一是电击,二是电伤。电击是指触电后的人体成为电路的一部分,电流流经人体引起热化学作用,电解血液和影响人的呼吸、心脏和神经系统;造成人体内部组织的损伤和破坏,导致残废或死亡.电击又称为内伤。在触电死亡的事故统计中,多数是由电击造成的,所以,电击是最危险的触电事故。关于电击致死的原因,目前世界上公认的有两种观点:一种是强电流引起心室颤动,收缩紊乱,失去“泵血”机能,造成血液循环中断而使人致死的观点,另一种是电流破坏神经系统使人呼吸停止而致死的观点.电伤往往是人体触及高电压时强烈的电弧对人体表面的烧伤。当烧伤面积不大时,不致于有生命危险.在高压电网的触电事故中,这两种触电类型

都可能发生,对于低压电网来说,则大部分是电击事故。人身触电是一个极为复杂的生理过程,至今还没有建立起一个完整的触电理论学说,其原因除了其机理的复杂性外,还在于进行大量触电试验所遇到的困难.近几十年来,国内外已有不少根据人体及动物试验所得出的大量数据和分析结果,就影响触电程度的因素来说,人们已积累了丰富的经验和教训。

1)触电电流I ma

发生人身触电时流过人身的电流叫做触电电流,它是直接影响人身安全的重要因素。流过人身的电流越大,对人体组织的破坏作用也越大,因而也就越危险。多数试验证明,对于工频,lmA左右的电流通过人体,便开始有麻刺和疼痛的感觉。当其达到25mA时,将会使人身感觉麻痹和剧痛,甚至呼吸困难,自己不能摆脱电源.如果电流再大些,而且不能及时切断电源,势必有生命危险。我国煤矿井下长期以来是取30~50mA作为人身触电的长时安全电流值,但从80代初开始采用30mA安全电流和30mA·s安秒值相结合的规定.各种不同电流值对人体的伤害情况如表1所示。

表中数据指的是一般情况,具体对于每个人来讲,可能有较大差别。有的人比较敏感,即使比上述电流小很多,也会有危险;有的人则相反,伤害较小。不仅如此,女性对电流的敏感性往往比男性强,危害也比较大。

2)人身电阻R ma

对于低压电网来讲,人身电阻是决定人身触电电流大小、人对电流的反应程度和伤害的重要因素。一般地,当电压一定时,人身电阻越大,通过人身的屯流也就越小;反之,则越大。

所谓人身电阻,是指电流所经过人身组织的电阻之和。它包括两个部分,即体内电阻和皮肤电阻。体内电阻电由肌肉组织、血液和神经等组成,电阻较小,并且基本上不受外界的影响,一般不低于500Ω。皮肤电阻是指皮肤表面角质层的电阻,它是人身电阻的重要组成部分。因为皮肤表面角质层是一不完善的电介质,厚度约为0.005~0.2mm,电阻较大,而且并不固定,常受外界条件的影响。如果皮肤表面角质层完好,而且皮肤干燥,并在低电压

作用下,其电阻值可高达10kΩ以上。当条件变坏时,如角质层损伤,皮肤受渐、多汗或有导电性的粉尘等,电阻便会极剧降低。

一般情况下,人身电阻主要是由皮肤电阻决定的。由于煤矿井下潮湿多尘,而且工人劳动繁重,流汗较多,所以,把在井下工作的人身电阻定为800~1500Ω,通常取1000Ω进行计算。

3)接触电压U co

人站在地上,身体某一部分碰到带电的导体或金属外壳时,人体接触部分与站立点的电位差称接触电压。接触电压的最大值可达电气设备的相对地电压。

流经人身的触电电流与接触电压的高低有直接的关系。一般电压越高,触电电流越大,但并非线性关系,如图1所示。接触电压、触电电流与人身电阻之间的关系符合欧姆定律;但是人身电阻是非线性的,故接触电压与触电电流的关系为一曲线。随着电压的增高,人体皮肤表面的角质层有类似介质击穿的现象,使人体电阻急剧下降,造成严重的触电事故。

4)触电的持续时间

触电持续时间,是指从触电瞬间开始到人体脱离电源或电源被切断的时间。它与触电电流一样是影响触电程度的重要因素。在短暂(指持续时间小于1~3s)电流的作用下触电持续时间越长,对人越危险。随着电流在人体内持续时间的增加,人体发热出扦,人体电阻会逐渐减小.因而触电电流增大。所以即使是比较小的电流,若流经人体的肘间过长,也会造成伤亡事故,反之,即使触电电流较大,若能在很短的时间内脱离接触,也不致于造成生命危险。我国现行的30mA·s安全值规定,就是根据这一理论提出的。

除了以上四个主要因素外,影响触电程度的还有电流的类型及频率,电流的途径、人的体质状态等因素.一般直流的危险性比交流小,在交流电中,50—60H Z是对人体伤害最严重的频率.当电流的频率超过2000H Z时,对心脏的影响就很小了。因此,医生常用高频电流给人治病,但是,也必须指出,在高频高压的电击过程中,也有可能发生人身触电死亡事故。在触电电流途

径方面,普遍认为电流通过心脏、肺部和中枢神经系统的途径更危险,因它易使心室颤动停止工作或呼吸中止,直接威胁着人的生命安全。

3.人身安全电流

影响触电程度最主要的因素是触电电流的大小和触电时间的长短相应的接触电压,则可由触电电流与人体电阻的乘积算出.为了确保人身安全和正确地设计触电保护装置,需要制订相应的安全电气参数。

安全电流是发生触电时不会使人致死,致伤的通过人体的最大触电电流。安全电流的数值由大量韵动物实验得出,我国现行规定是30mA(过去是50mA).该规定的含义是:对于任何供电系统,必须保证当发生人身触电时,触电电流不得大于30mA,否则,就必须设置触电保护装置。

4.预防漏电,触电的措施

实践证明,采取下列措施是预防漏电,防止人身触电的有效方法:

(1)将带电导体、电器元件、电缆接头等都封闭在坚固的外壳内,并且在电气设备的外壳与盖之间,设置可靠的机械闭锁装置,保证不合上外盖,不能接通电源,或者在给上电源之后,便不能打开外盖。

(2)对于那些不能封闭在外壳内的裸露导体,如电机车用的架空线的悬挂高度应符合《煤矿安全规程》中的规定:自轨面算起,在行人的巷道内,车场,内以及人行道同运辖巷道交叉的地方不应低于2m,在不行人的巷道内不应低于1.9m,在井底车场内,从井底到乘车场不应低于2.2m。

(3)加强手持式电动工具操作手柄的绝缘,以防漏电时手柄带电,引起触电事故。

(4)对于人身接触机会较多的电气设备,应采用低压供电,以减少触电的危险性。例如手持式电钻、照明设备和信号装置等的额定电压,都不应超过127V,而控制回路的电压不得超过42V。

(5)井下变压器中性点严禁接地,但专供架线电机车变流设备的变压器不在此限.禁止由地面上中性点接地的变压器或发电机直接向井下供电。

(6)采用灵敏可靠的漏电保护装置,当电网发生严重滑电或人身触电时,

它便立即动作,使电源开关跳闸.为了保证电缆损坏时,漏电保护装置能够及时动作,最好能与屏蔽电缆配合使用.

(7)采用保护接地措施,以防电气设备的绝缘损坏而使外壳带电,造成触电故事.

第二节保护接地与接零

漏电保护的侧重点是故障发生后的跳闸时间,一旦发生漏电或人身触电,应尽快切断电源,将故障存在的时间减少到最短。井下保护接地的侧重点,在于限制棵露漏电电流和人身触电电流的大小,最大限度地降低故障的严重程度.漏电保护与保护接地在井下电网中相辅相成,缺一不可,殉于井下电网的安全运行有重要作用。保护接零主要用于地面低压三相四线制中性点直接接地的供电系统中,对防止人身触电有重要作用.

一、保护接地的作用原理

1.保护接地

井下巷道狭窄,操作空间拥挤,人身接触电气设备外壳的机会较多.运行中的井下电气设备可能由于内部绝缘损坏,而使它的金属外壳(如电动机、开关,变压器、电器等)以及与电气设备所接触的其它金属物上出现危险的对地电压,人身接触后就有可能发生触电危险.这种情况下,避免触电最安全最可靠的办法就是装设保护接地。

所谓保护接地,就是用导体把电气设备中所有正常不带电的外露金属部分(电动机、变压器、电器及测量仪表的外壳,配电装置的金属构件,电缆终端盒与接线盒外壳等)和埋在地下的接地极连接起来。由于有了保护接地,就可将由于绝缘损坏而使电气设备金属外壳所带的对地电压降到安全数值,这样一且人体接触这些外壳,就不致发生触电危险,从而保证了人身的安全。2.保护接地的作用原理

1)没有装设保护接地的电网

在井下电网中性点绝缘的系统中,如果不采用保护接地的措施,当人触及因绝缘损坏而带电的设备外壳时,其电路原理图如图2所示.这时通过人身的电流I ma进行计算,如果井下电网电压为660V,电网每相对地的电容C为0.5μF,电网每相对地绝缘电阻为35000Ω;人身电阻R为1000Ω,那么流经人身的触电电流I ma=154mA。

显然,这个电流值远大于人身触电时的极限安全电流值(30mA).由此可见,在没有保护接地的情况下触电非常危险,同时,碰壳处出现的的漏电电流还可能引起瓦斯、煤尘爆炸。

2)设有保护接地的电网

在井下电网中性点绝缘的系统中,如果将电气设备正常不带电的外壳与接地极连接起来,形成保护接地,如图3所示.此时,如果电气设备的绝缘被损坏,使一相带电体碰壳时,装备外壳带电,形成单相接地故障.单相接地电流,从电源绝缘损坏的相到外壳,然后又从外壳经接地极入地,最后又从地经线路对地的电容和绝缘电阻回到电源的另一相。当人还未触及带电的外壳之前,单相接地电流h全部流经接地极入大地.

3.有关接地的基本概念

1)电气上的“地”和对地电压

当电气设备发生接地短路时,电流通过接地极向大地成半球形流散。由于这个半球形的球面,在距接地极愈近的地方愈小,愈远的地方愈大,所以在距接地极愈近的地方电阻愈大,愈远的地方电阻愈小.试验证明:在距接地极20m以外的地方,半球形的球面已经很大,实际上已没有什么电阻存在,不再有什么电压降,也就是说该处电位已为零。这个电位等于零的地方,即为通常所说的电气上的“地”。

电气设备的接地部分,如接地外壳、接地线、接地极等,与大地零电位之间的电位差叫做接地时的对地电压,用U tg表示。

2)接触电压和跨步电压

试验表明,接地极附近土壤中的电位分布曲线实际上近似于双曲线,如

图4所示。

有关接触电压U CO的概念前已述及,下面介绍跨步电压的概念。在离接地极20m的圆内,地面上将呈现出不同的电位分布(如图4)。当人的两脚站在这种带有不同电位的地面时,两脚间的电位差叫做跨步电压U SS。在计算时,一般取步距0.8m,即取0.8m的电位差为跨步电压,由图4可知,距离接地极越近,跨步电压越大,反之越小。

二、井下接地网

井下各种电气设备装设了单独的保护接地装置,并不能完全消除触电的危险。如图5所示,电动机M1和电动机M2均装设了单独的保护接地装置,当M1的一相绝缘击穿(如A相),带电体碰

壳,发生接地故障.如果电网没有绝缘监视或绝缘监视失灵,这一接地故障将长期存在.若M2的另一相(如B相)绝缘也被击穿,带电体碰壳,这时电网就发生了两相对地短路,短路电流如图5箭头所示。如果这一短路电流不足以使过流保护装置动作,则故障将长期存在,电气设备外壳将带有危险的电压.两电动机对地电压的大小,与两电动机的接地电阻成正比。若电动机M1和M2的接地电阻大小相等,则两电动机外壳对地电压相等,为电网电压的一半,即380V电网对地电压为190V,660V'电网对地电压为330V,这对人体触电是非常危险的。

为了进一步提高保护接地的安全性和可靠性,通常利用供电的高、低压铠装电缆的金属外皮和橡套(或塑料)电缆的接地芯线或屏蔽护套,把分布在井底车场,运输大巷、采区变电所以及工作面配电点的电气设备的金属外壳,在电气上连接起来,这样就使各处埋设的接地极(或称局部接地极)也并联起来,形成井下保护接地网(或称保护接地系统).由于井下接成接地网,不仅降低了接地电阻,而且也防止了不同电气设备的不同相同时碰壳接地所带来的危险。因为这时两相短路电流主要通过接地网流通(如图6所示),因而提高了两相短路电流的数值,保证过流保护装置可靠动作,

井下保护接地网示意图如图7所示,由图可知,井下保护接地网是由主接地极、局部接地极、接地母线、辅助接地母线、接地导线和连接导线等组成。

根据《煤矿安全规程》的规定:“主接地极应在主、副水仓中各埋设一块.主接地极应用耐腐蚀的钢板制成,其面积不小于0.75m2、厚度不小于5mm。”如矿井水含酸性时,应视其腐蚀性情况加大厚度,或镀上耐酸的金属,或采用锅炉钢板及其它耐腐蚀的钢板。

主接地极的表面积大,而且矿井水的导电率高,使得接地电阻要比其它接地极的接地电阻小.又因为主接地极位于接地网的中心,因此它在整个保护接地网中起着非常重要的作用。若矿井有几个水平时,各个水平都应设立主接地极.如果该水平没有水仓,不能设立接地极时,则该水平的接地网必须与其他水平的主接地极连接。

矿井内分区从井上独立供电者(包括钻眼供电),可以单独在井下或井上设置分区的主接地极,但其总接地网的接地电阻也应符合不超过2Ω的要求.为了加强接地系统的可靠性,在装有电气设备的地点独立埋设的接地板称为局部接地极。根据《煤矿安全规程》规定,下列地点应装设局部接地极:

(1)每个装有电气设备的硐室;

(2)每个(套)单独装设的高压电气设备;

(3)每个低压配电点,如果采煤工作面的机巷,回风巷和掘进巷道内无低压配电点时,

上述巷道内至少应分别设置一个局部接地极;

(4)连接动力铠装电缆的每个接线盒。

局部接地极应用面积不小于0.6m2、厚度不小于3rnm的钢板或具有同等有效面积的钢管制成,并应平放于水沟深处;设置在其它地点的局部接地极,可用直径不小于35mm、长度不小于1.5m的镀锌钢管制成,管上至少钻20个直径不小于5mm的透眼,垂直埋入地下。

连接井底主、副水仓内主接地极的母线称为接地母线,井下各机电硐室、

配电点、采区变电所内与局部接地极、电气设备外壳、电缆的接地部分连接的母线称为辅助接地母线。接地母线及变电所辅助接地母线应采用截面不小于100mm2的镀锌扁钢(或镀锌钢绞线)或截面不小于50mm2裸钢线。采区配电点及其他机电硐室的辅助接地母线应采用截面积不小于50mm2的镀锌扁钢(或镀锌钢绞线),或截面积不小于25mm2的钢线。

从总接地网或辅助接地母线引向电气设备(包括电缆)的接地部分的导线称连接导线。从局部接地极引出的导线称接地导线。连接导线和接地导线均应采用截面不小于50mm2的镀锌扁钢(或镀锌铁线),或断面不小于25mm2的裸钢线。此外与漏电保护装置配合使用的电缆屏蔽层,也应可靠接地。低于或等于127V的电气设备的接地导线和连接导线,可采用截面不小于6mm2的裸钢线。禁止采用铝导体作为接地极、接地母线、辅助接地母线、连接母线;禁止使用无接地芯线(或无其它可供接地的护套,如铅皮、钢皮套等)的橡套电缆和塑料电缆。

对于井下总保护接地的过渡电阻,由主接地极起至最远的局部接地装置止,测量值不得超过2Ω;每一移动式电气设备和总接地网或局部接地极之间的接地电阻不得超过1Ω。

三、保护接零

保护接零的作用原理

与发电机、变压器直接接地的中性点相连的导体,称为零线。保护接零就是把电气设备在正常情况下不带电的金属部分与电网的零线紧密连接,是有效地保护人身和设备安全的措施。它广泛地应用在地面380/220V三相四线制中性点直接接地的TN-C供电系统中,其电气原理如图8所示。

电气设备接零后,当设备发生单相碰壳时,通过设备外壳形成相线对零线的单相短路,因零线电阻很小,相当大的单相短路电流能使过流或失压等保护装置迅速动作,从而使故障部分脱离电源,保障安全。

第三节井下过流保护及整定计算

凡是流过电气设备或电缆线路的电流,如超过其额定值时,都叫做过电流,引起过电流的原因很多,如短路、过负荷以及电动机单相运行等。长期地过电流运行,将导致电气设备迅速损坏,甚至产生严重的事故,因此必须对电气设备和电缆线路加以保护,这种保护称为过流保护.过流保护一般包括短路保护、过载保护(即过负荷保护)和断相保护等几种,但主要是指短路保护。

过电流保护的整定计算

井下高压电网当出现短路故障时,一般都是由井下高压配电装置切除电源。在这些高压配电装置中,由于保护均采用不完全星形接法,其接线系数为l,故在整定计算公式中不再出现接线系数。

在这主要说一下低压过流的整定计算

在DW系列矿用隔爆自动馈电开关和QC系列磁力起动器中装设的短路保护装置均为瞬时动作的过电流继电器,可按以下方法进行整定计算。

I a≥I N?st+∑I N

I N?st——启动电流最大的一台电动机的额定启动电流,A。

∑I N——其余电动机的额定电流之和,A。

(二)、灵敏度校验:

K s=I(2)sc/I a≥1.5

式中I(2)sc——下一级保护范围末端的最小两相短路电流,A;

I a——过电流脱口器的动作电流实际整定值,A。

煤矿井下供电的三大保护细则

新《煤矿安全规程》知识竞赛试题 1新的《煤矿安全规程》自哪一年哪一月哪一日起施行?答:2 0 0 5年1月1日。 2、煤矿企业必须遵守国家有关安全的什么规定?答:煤矿企业必须遵守国家有关安全生产的法律、法规、规章、规程、标准和技术规范。 3、煤矿企业必须建立、健全各级领导哪些责任制?答:煤矿企业必须建立、健全各级领 导安全生产任制,职能机构安全生产责任制,岗位人员安全生产责任制。 4、煤矿企业应建立、健全哪些制度?答:煤矿企业应建立、健全安全目标管理制度,安 全奖惩制度,安全技术措施审批制度,安全隐患排查制度、安全检查制度,安全办公会议等制度。5、煤矿企业必须设置什么机构,配备什么?答:煤矿企业必须设置安全生产机 构,配备适应工作需要的安全生产人员和装备。 6、煤矿安全工作必须实行什么,煤矿企业必须支持什么?答:煤矿安全工作必须实行群 众监督,煤矿企业必须支持群众安全监督组织的活动,发挥职工群众安全监督作用。 7、对危害安全的行为,矿山企业职工的三大权力是什么?答:有批评、检举、控告的权力。 8、煤矿生产的五大灾害有哪些?答:水、火、瓦斯、煤尘、顶板。 9、煤矿安全生产的方针是什么?答:安全第一,预防为主,综合治理,总体推进。 10、入井人员须知?答:入井人员必须戴安全帽,随身携带自救器和矿灯,严禁携带烟草和点火物品,严禁穿化纤衣服,入井前严禁喝酒,煤矿企业必须建立入井检身制度和出入井人员清点制度。 11、煤矿企业所说的“三大规程”指的是哪“三大规程”?答:煤矿安全规程、作业规程、操作规程。 12、“三违”指的是哪“三违”?答:违章指挥、违章作业、违犯劳动纪律。 13、安全上要做到“四无”指的是哪“四无”?答:个人无违章,班组无轻伤,区队无 重伤,矿无死亡。 14、伤亡事故按事故程度分为几类?答:轻伤、重伤、死亡。 15、每个生产矿井必须至少有几个能行人的通到地面的安全出口?各个安全出口距离不得 小于多少米?答:2个,30米。 16、井下每一个水平到上一个水平和各个采区都必须至少有几个便于行人的安全出口并与 通达地面的安全出口相连接。未建成几个安全出口的水平或采区严禁生产?答:2个,2个。 17、井巷交岔点必须设置什么?答:必须设置路标,标明所在地点,指明通往安全出口 的方向。井下工作人员必须熟悉往安全出口的路线。 18、对于通达地面的安全出口和2个水平之间的安全出口,倾角等于或小于多少度时必须 设置什么?并根据倾角大小和实际需要设置什么?答:倾角等于或小于4 5度时必须设置人 行道,并根据倾角大小和实际需要设置扶手,台阶或梯道,倾角大于45度时必须设置梯道 间或梯子间。斜井梯道间必须分段错开设置,每段斜长不得大于10 m;主井梯子间中的梯 子角度不得大于8 0度,相邻2个平台的垂直距离不得大于8 m。 19、巷道净断面必须满足行人、运输、通风和安全设施及设备安装、检修、施工的需要, 并符合哪些要求?答:(一)主要运输巷和主要回风巷的净高自轨面起不得低于2 m,架线 电机车运输巷的净高必须符合本规程第三百五十六条和第三百五十七条的有关要求。(二)采区(包括盘区,以下各条同)内的上山、下山和平巷的净高不得低于2 m,薄煤层内的不 得低于1 8 m。采煤工作面运输巷,回风巷及采区内的溜煤眼等的净断面或净高,由煤矿企业统一规定。巷道净断面的设计必须按支护最大允许变形后的断面计算。

井下供电管理(完整篇)

编号:SY-AQ-05810 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 井下供电管理(完整篇) Underground power supply management

井下供电管理(完整篇) 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 1、井下供电必须做到: 三无:无鸡爪子,无羊尾巴,无明接头; 四有:有过流和漏电保护装置,有接地保护装置,有密封圈和档板,有螺钉和弹簧垫圈。 二齐:电缆悬挂整齐,设备硐室清洁整齐。 三全:防护装置全,绝缘用具全,图纸资料全。 三坚持:坚持使用检漏继电器,坚持使用照明信号综合保护,坚持使用瓦斯断电仪和风电闭锁。 六不准:三大保护不合格不准送电,电气故障未排除不准送电,擅自安装的电气设备,强行搭火的不准送电,非专职或值班人员不准送电,挂停电牌或已停电闭锁的开关不准送电,瓦斯超限区域不准送电。 2、局扇供电必须做到专用开关,专用线路,专用变压器。专用

线路上不准搭接其他负荷。 3、井下用电单位必须持有供电设计、计算说明书,到机电科提出申请,填写用电申请单时要写清用电地点和停电影响的范围,用电负荷经机电科审批后方可生效。 4、用电单位未经许可,自行拆除、安装电气设备和更改井下供电线路、私自增减负荷容量的行为视为违章,并按井下重大电气责任事故追究责任,对当事人和单位负责人作严肃处理。 5、对于设计不合理,不符合实际要求的,设备负荷容量不明确的,威胁供电安全的不予审批。 6、供电设计,必须由矿总工程师组织采、掘、机电、通风副总及有关单位人员进行会审,设计中必须包含风电闭锁及瓦斯电闭锁装置,并标注清楚。 7、回风巷道未经矿总工程师批准不得安装电气设备。 8、井下停送电审批: ①设备需停电检修时,由维修单位到机电科,提前填写好停送电申请书,内容包括停电原因、申请停送电时间、影响单位及地点、

第七章 矿井电网保护题库

第七章矿井电网保护题库 一、单选题 1.( )应用耐腐蚀的钢板制成,其面积不得小于0.75 m2、厚度不得小于5 mm。 A.辅助接地极 B.局部接地极 C.主接地极 2,设置在水沟中的( )接地极应用面积不小于0.6 m2、厚度不小于3 mm的钢板制成。 A.辅助 B.主 C.局部 3.设置在其他就近潮湿处的局部接地极可用长度不小于( )、直径不小于35 mm的钢管制成。 A.1.0 m B,1,5 m C. 2.O m 4.连接主接地极的接地母线,应采用截面不小于50mm2的( )连接。 A.铁线 B.铝线 C.铜线 5.每( )必须对漏电继电器进行1次详细的检查和修理。 A.月 B,日 C.周 6.每( )必须对漏电继电器进行1次跳闸实验。 A,天 B.周 C.月 7.漏电继电器应每( )上井进行检修。

A.周 B.月 C.年 8.煤矿井下要求( )以上的电气设备必须设有良好的保护接地。 A.24.V B.36 V C.50 V 9.接地网上任一保护接地点的接地电阻值不得超过( )Ω。 A.1 B,2 C.3 10.每一移动式和手持式电气设备至局部,接地极之间保护接地用的电缆芯线和接地连接导线的电阻值,不得超过( )n。 A,1.5 B.1,0 C.2.0 11.井下电网有故障的线路( )强行送电。 A.不准 B.检查后可以 C.联系后可以 12.过电流是指流过电气设备和电缆的电流( )额定值。 A.小于 B.等于 C,超过 13.矿井高压电网,必须采取措施限制单相接地电容电流不超过( )。 A.10 A B.20 A C.30 A 14.低压配电点或装有( )以上电气设备的地点,应装设局部接地极。

井下供电系统“三大保护”定期试验制度

山西沁新能源集团股份有限公司沁新煤矿 井下供电系统各类保护试验制度 为进一步加强我矿机电设备安全质量标准化建设,保障我矿井下供电系统的安全运行,完善机电保护设施,全面提升机电管理水平,确保安全生产。结合我矿实际情况,决定对全矿范围内供电系统“三大保护(”过流、接地、漏电)定期进行全面的检查试验,具体内容如下: 一、试验周期 1、在井下使用超过六个月的开关,必须对设备“三大保护”进行一次检验和调整,确保动作灵敏可靠,当负荷变化较大时,应及时调整;每隔六个月或在设备移动时必须检查一次漏电保护装置,每年至少检验调整一次。 2、每次检查试验应对各种保护电器的动作值检查一次,确保动作正确;同时检查开关保护插件整定值,发现损坏及时更换。 3、每天必须对动力低压供电检漏装置的运行情况进行一次跳闸试验。 4、每月对动力低压检漏装置的运行情况进行一次全面远方漏电试验一次。 5、每季度由机电科组织对井下各个配电点、变电所的主、辅接地极进行一次电阻测试。 6、新工作面安装设备前,由机电一队技术员设计该工作面的供电系统图,并进行整定计算,将结果交机电科审核后方可安装设备。 二、检查试验目的及要求

1、对电气设备保护接地日常检查要求:电气设备接线保护接地外表检查 每天至少一次。 (1)当班跟面电工检查所管辖范围的设备时,必须检查设备 外表接地保护连接的完整性与连续性,发现接头有松动、接地线 断裂、锈蚀或断面减少时及时处理。如果当班电工不能处理,应立即报告当班分队长,立即派人准备工具,材料或备件进行修理。 (2)当班值班电工应检查供电网路接线盒的局部接地情况及接地点的局部接地极和连接导线的完好情况。 2、严格执行各项试验工作,对井下的接地、漏电、过流保护要逐一进行检查,并做好试验记录,检查结束后要如实填表交回机电科存档,保证三大保护动作灵敏可靠。 3、电钳工要严格按规程操作,保证试验期间的人身安全,对机电设备在检查试验时发现异常问题或调整定值时需汇报机电科安排,由队长现场监护整改解决。 4、加强自检自查工作,规范井下供电,完善各类电气保护装置,减少机电事故发生,杜绝井上、下重大机电责任事故。 三、试验后的验收及考核 1、试验期间区域负责人要根据队组实际情况,结合区域设备 运行实际情况,制定各自的试验计划,完成后要将检查结果及时 汇报机电科(以试验记录表为依据),由机电科安排专人进行对照复查,并将

井下三大保护整定细则(井相关)

目录 煤矿井下低压电网短路保护装置的整定细则 (2) 第一章一般规定 (2) 第一节短路电流的计算方法 (2) 第二节短路保护装置 (3) 第二章电缆线路的短路保护 (4) 第一节电磁式过电流继电器的整定 (4) 第二节电子保护器的电流整定 (5) 第三节熔断器熔体额定电流的选择 (5) 第三章变压器的保护 (6) 第四章管理制度 (7) 煤矿井下低压检漏保护装置安装、运行、维护与检修细则 (9) 第一章总则 (9) 第二章下井前的检验 (9) 第三章安装 (10) 第四章运行、维护和检修 (11) 第五章故障的判断与寻找 (12) 煤矿井下保护接地装置的安装、检查、测定工作细则 (14) 煤矿井下保护接地网的组成和作用 (14) 第一章总则 (15) 第二章井下接地装置的安装 (19) 第一节保护接地的接地极 (19) 第二节固定电气设备的接地方法 (20) 第三节移动电气设备的接地方法 (22) 第四节接地线的连接和加固 (23) 第三章接地装置的检查和测定 (24) 第一节保护接地的检查 (24) 第二节接地电阻的测定 (25)

煤矿井下低压电网短路保护装置的整定细则 第一章一般规定 第一节短路电流的计算方法 第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:第一节短路电流的计算方法 煤矿井下低压电网短路保护装置的整定细则 煤矿井下保护接地装置的安装、检查、测定工作细则 第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:

矿井供电系统

矿井供电系统、井下供电安全及矿井供电电网保护 重点: 1、掌握矿井供电系统知识 2、掌握采区供电系统知识 3、掌握井下供电安全知识 4、掌握“三专两闭锁”的作用及使用范围 5、掌握矿井电气保护装置的要求 6、熟练掌握漏电的危害,原因和漏电保护原理及漏电保护装置 7、熟练掌握保护接地的作用及保护接地的要求 8、熟练掌握过电流保护知识 难点: 1、变压器中性点运行方式 2、漏电保护和保护接地 一授课内容 (一)矿井供电系统 1、矿井供电的基本要求: (1)供电安全(2)供电可靠(3)供电经济(4)供电技术合理 2、电力负荷的分类: (1)一级负荷(2)二级负荷(3)三级负

3 、煤矿电压等级: (1)高压不超过10000v ,(2)低压不超过1140v,(3)照明、信号、电话和手持式电气设备的供电电压不超过127v ,(4) 远距离控制线路的额定电压不超过36v,(5)采区电气设备使用3300v供电时,必须制定专门的安全措施。 4.10kv电压直接下井供电:随着井下机械化程度的提高,采掘供电电压在一些矿井已不能满足要求,6kv工作面机组容量的加大, 开始采用10kv电压直接下井。 (1)大型矿井: a、可以提高电网输送电能的能力,扩大合理供电范围。 b、在输送能量一定的情况下,输电所需导线的截面也越小。(2)中小矿井: a、减少因设置35kv/6kv变电所而造成的多余容量初装增容费。 b、减少了年运行费用。 C、简化了供电系统,减少了电网事故,提高了运行的可靠性。(3)供电安全措施: a、必须通过指定检验机构的技术鉴定。 b、10kv系统投入前,必须按有关规定进行验收、检查、实验。 c、10kv系统投入运行后,必须按有关规定进行各项实验鉴定工作。 d、必须设置10kv单相接地保护,保护接地,并按有关规定进

三大保护

三大保护 在煤矿井下供电系统中,由于电气设备的绝缘损坏,操作不当等等原因,造成电器设备短路、漏电、断相等其他原因影响电气设备的正常运行,不仅影响煤矿井下的正常生产,甚至还危及人的生命安全,还会造成煤矿井下的瓦斯、煤尘爆炸事故,因此煤矿井下的三大保护,是煤矿井下电气设备安全运行的重大保证,随着煤矿井下用电的安全性、可靠性、和供电质量要求的不断提高,三大保护的类型不断更新,掌握煤矿井下电气设备的各种保护是保障电气设备安全运的前提。 一、三大保护包括:过电流保护、漏电保护、接低保护。 1.、过电流保护是指流过电气设备和供电线路的电流超过了额定值。 (1)、电流保护包括短路保护、过流(过负荷)保护。 (1.1)短路危害:煤矿井下短路故障有两相和三相. 短路属于最严重的过流故障,短路点电弧中心温度可达2500~4000度,短时间可能会烧毁设备或电缆,引起电气火灾,甚至引起瓦斯、煤尘爆炸。 (1.2)短路原因:绝缘击穿、机械损伤、误操作。 (2.1)过负荷的危害: 过负荷是指电气设备或电缆的实际工作电流超过额定电流值,而且超过了允许时间。长时间过负荷会导致绝缘性能下降,影响电气设备生命,它是造成电动机烧毁的主要原因。 (2.2) 过负荷原因:电源电压过低、机械性堵转、重载启动 (3.1)断相的危害: 断相是指三相供电线路或设备出现一相断线,以电动机断相多见。电动机在运行中断相后,仍会运转。由于机械负

载不变,电动机工作电流会比正常的工作电流大,引起负荷。为同三相对称负荷区别,故称断相或单相断线故障。 (3.2)断相的原因:熔断器一相熔断;电缆与电缆或电缆与设备没有可靠连接;电缆芯线中一相断线。 预防过流的措施:过流保护的措施主要是加强井下电器设备的检修,保护器的整定,线路的维护,终端头的制作工艺及接线盒的制作工艺,处理好电缆的屏蔽层及电气间隙,避免人为砸伤电缆及带电移动电气设备。 二、漏电保护 1 井下低压漏电保护动作分析 根据我国井下低压电网的运行情况,一般认为对低压配电网漏电保护实行三级保护,级数再增加将没有使用意义。实行分级保护的目的是从人身、设备安全和正常用电的角度出发,既要保证能可靠动作,切断电源,又要把这种动作跳闸造成的停电限制在最小范围内。常用的漏电保护装置多为附加直流电源式保护和零序电流保护装置。总保护处安装附加直流电源保护,无论系统发生对称性漏电还是非对称性漏电,保护均能可靠性动作;分支出口处安装零序电流保护作为横向选择性保护的主保护;而漏电闭锁则设置在磁力启动其中,作为最后一级保护,但它在运行中发生漏电情况下却是不动作的,仅仅是作为设备启动前的绝缘检测。

煤矿井下供电三大保护

煤矿井下供电三大保护 据有关资料统计,在煤矿瓦斯、煤尘发生爆炸事故中,由电火花引起的事故约占50% 在煤矿发生的触电事故中,井下触电死亡人数约占64%在井下电器着火事故中,低压橡套电缆着火所占比例最大。 由于煤矿井下环境条件恶劣并且属于易燃易爆场所,故井下的负荷特征、电气设备及供电系统等都与地面有较大的差异,对安全供电与保护也提出了更高的要求。 井下电气设备的工作条件: 1、煤矿井下的空气中含有瓦斯及煤尘,在其含量达到一定量时,如果遇到电气设备或电缆电线产生电火花、电弧和局部高温时,就会燃烧或爆炸。 2、井下硐室、巷道、采掘工作面等需要安装电气设备的地方,空间都比较狭窄,因此,电气设备的体积受到一定的限制,且使人体接触电气设备、电缆的机会比较多,容易发生触电事故。 3、井下由于岩石和煤层都存在着压力,常会发生冒顶和片帮事故,使电气设备(特别是电缆)很容易受到砸、碰、挤、压而损坏。 4、井下空气比较潮湿,湿度一般在95沖上,并且机电硐室和巷道经常有滴水和淋水,使电气很容易受潮。 5、井下有些机电硐室和巷道的温度较高,而井下电气设备的散热条件较差,电气设备容易过热损坏。 &采掘工作面的电气设备移动频繁,且经常起动,使用电设备的负荷变化较大,有时会产生短时过载。 7、由于井下地质条件发生变化或在雨季期间,井下有发生突然出水事故的可能,其出水量往往为正常井下涌水量的几倍或几十倍,要求排水设备迅速开动,以保证矿井安全。 8、井下如发生全部停电事故,超过一定时间后,可能发生采区或全井被淹的重大事故。同时井下停

电停风后,还会造成瓦斯积聚,再次送电使时,可能造成瓦斯或煤尘爆炸的危险井下电气保护的类型: 1)过流保护。包括短路保护、过载(过负荷)保护、断相。 2)漏电保护。包括选择性和非选择性漏电保护、漏电闭锁。 3)接地保护。包括局部接地保护、保护接地系统。 4)电压保护。包括欠电压保护、过电压保护。 5)单相断线(断相)保护。 6)风电闭锁、瓦斯电闭锁。 7)综合保护。电动机综保和照明综保等。 其中短路保护、保护接地和漏电保护是保证煤矿井下安全供电的三大保护,它们是缺一不可的。 为了避免井下电网所造成的各种危害,《煤矿安全规程》、《煤炭工业矿井设计规范》对井下用电气设备、电压等级及管理方面等都做了具体规定,在煤矿井下供电系统中主要采取使用三大保护装置的措施。 一、过电流保护 过电流故障的危害及原因: 过电流是指流过电气设备和电缆的电流超过额定值。其故障有短路、过负荷和断相。 1.短路 短路是指电流不流经负载,而是两根或三根导线直接短接形成回路。这时电流很大,可达额定电流的几倍、几十倍,甚至更大,其危害是能够在极短的时间内烧毁电气设备,引起火灾或引起瓦斯、煤尘爆炸事故。短路电流还会产生很大的电动力,使电气设备遭到机械损坏,也会引起电网电压急剧下降,影响电网中的其他用电设备的正常工作。

浅谈煤矿供电“三大保护”管理

浅谈煤矿供电“三大保护”管理 摘要煤矿“三大保护”是煤矿供电系统保护人员和设备安全的主要保护措施。保护接地,是指用导体将电气设备中所有不带电的外露金属部分与埋在地下的接地极连接起来,这样可以降低电气设备因漏电产生的对地电压。降低程度与保护装置的质量有关,只有达到要求才能起到良好的保护作用。漏电保护,是指在供电系统中装接漏电继电器。其作用:一是当供电系统漏电时,能迅速切断电源,也就是进行绝缘监视;二是当人体触电时,在人体未感知时切断电源。短路保护,是指在电路中接入熔断器、限流继电器、过流继电器等。其作用:是当线路和电气设备的工作电流超过规定允许值时,自动切断电源,保护线路和电气设备。 关键词“三大保护”煤矿供电制度 一、概述 “三大保护”,是指煤矿供电系统中的接地保护、过流保护、漏电保护。为保证供电系统各种保护装置灵敏可靠,供电系统运行的安全可靠,依据《煤矿安全规程》等规章制度进行编制本管理办法。

矿机电科负责全矿“三大保护”的日常技术管理工作,严格按照《煤矿安全规程》规定,加强“三大保护”使用状况的指导和检查,定期开展技术培训工作。 各使用单位应按照规程规定地检查、试验,周期对漏电保护、过流保护、接地保护进行检查和试验,并把检查和试验结果报机电科供电管理人员,对存在的问题及不安全的隐患要制定整改措施,进行整改。矿机电科供电管理人员限期进行复查。 二、过流保护使用管理 第一,在井下低压电网中,过电流继电器的整定和熔断器熔体的选择应按《煤矿低压电网短路保护装置整定细则》进行。 第二,管辖区队使用的开关要按机电科下达的接电通知单进行整定,不得随意调整整定值,擅自改变电气继电保护整定值。 第三,各种开关甩掉或短接过流继电保护的,过负荷保护超过电机额定电流1.6倍及以上的,短路保护超过总电流8倍以上的或整定不合理的要追究相关人员的责任。 第四,严禁使用铁丝、铜丝代替保险丝,或将不同额定电流熔体并联使用。

煤矿供电三大保护

煤矿井下供电三大保护 (一)矿井低压电的电流保护 一、常见过电流故障的类型 低压电网运行中,常见的过电流故障有短路、过负荷(过载)和单相断线三种 情况。什么是短路电流? 我们首先通过一个简单的实例来说明这一问题: 在正常情况下流过导线、灯的电流为: I=V/R=220/(R1+R2+R3) =220/50.48=4.36A 如果在灯头处两根导线相互碰头等于灯泡电阻没有接入,此时流过导线的电流则为: I=V/R=220/(R2+R3) =220/2.08=105.5A 1、短路是指供电线路的相与相之间经导线直接逢接成回路。 短路时,流过供电线路的电流称为短路电流。在井下中性点不接地的供电系统中,短路分为三相、两相两种,而单相接地不属于短路,但可发展为短路。 ⑴短路故障发生的原因 ①线路与电气设备绝缘破坏。例如,绝缘老化、绝缘受潮,接线(头)工艺不合格,设备内部的电气缺陷和电缆质量低及大气过电压等。 ②受机械性破坏。例如,受到运输机械的撞击,片帮、冒顶物的砸伤,炮崩,电缆敷设半径过小等。 ③误接线、误码操作。例如,相序不同线路的并联,带电进行封装接地线与带封装接地线送电,局部检修送电等。 ④严重隐患点。例如,“鸡爪子”、“羊尾巴”处。 ⑤带电检修电气设备。 ⑥带电移挪电气设备。 ⑵短路故障的危害 短路事故是煤矿常见的恶性事故之一,它产生的电流很大,在短路点电弧的中

心温度一般在2500℃~4000℃,可在极短的时间内烧毁线路或电气设备,甚至引起火灾。在遇瓦斯、煤尘时,可以引起燃烧或爆炸.短路可使电网电压急剧下降,影响电气设备的正常工作。 2、过负荷 过负荷也称为过载,是指实际流过电气设备的电流超过其额电流,又超过了允许的过流时间。从过流和时间两个量来说,都是相对量,必须具备过流和超时这两个条件,才称为过负荷。 过负荷常烧坏井下电气设备,造成过负荷的原因有:电源电压过低;重载起动;机械性堵转和单相断相。其共同表现是:电气设备超允许时间的过电流,设备的温升超过其允许温升,有时会引起线路着火,甚至扩大为火灾或重大事故。 3、断相 供电线路或用电设备一相断开时称为断相。电动机的此种运转状态叫单相运行。 断相时产生于供电线路,有时产生于设备内部,其断相的原因有:电缆与电缆的连接、电缆与用电设备的连接不牢,松动脱落或一相虚接而烧断;熔断器有一相熔断;电缆芯线受外力作用而断开。其危害主要表同为过负荷,即电动机电流增加,转矩下降,温度升高,甚至烧毁电动机。 二、低压电网短路电流的计算 低压电网短路电流计算的目的,其一是接最大短路电流选择开关设备,使开关的遮断电流大于所保护电网发生的最大三相短路电流;其二是接保护线路最末端的两相短路电流校验其保护装置的灵敏度,从而达到保护装置的要求。 短路电流的计算,应根据井下低压电网的实际情况,力求计算过程简单,并设定一些条件。 ㈠计算低压电网短路电流的设定条件 ⑴低压共电系统的容量为无穷大时,变压器二次空载电压维持不变。 ⑵计算线路阻抗时,电缆的电阻值若小于其电抗值的三分之一,可忽略电缆的电阻。 ⑶计算低压电网短路电流可不计算高压电网阻抗。忽略开关的接触电阻和弧光电阻。 ㈡低压电网短路电流的计算 短路电流的计算,有公式法和图表法两种。图表法使用简单,但不如公式法准确。 1、公式计算法 1)利用公式计算短路电流 (1)两相短路电流的计算公式:∑∑+=2 2)2(d )()(2X R U I P

音西煤业井下三大保护考试卷(含答案)

音西煤业井下三大保护考试卷(含答案) 单位:姓名:成绩: 一、填空题(每空1分,共30分) 1、煤矿井下供电系统的“三大保护”是过流保护、漏电保护、接地保护。 2、井下供电要实行“三无”,“三无”指鸡爪子、羊尾巴、明接头。 3、漏电可以分为集中漏电和分散性漏电。 4、《煤矿安全规程》:第四百五十五条规定,井下高压电动机、动力变压器的高压控制设备,应具有短路、过负荷、接地和欠压释放的保护。 5、检漏保护装置安装完毕后,应做跳闸试验,如不跳闸,则应立即切断电源作全面检查,合格后方可投入使用。 6、井下保护接地系统由主接地极、局部接地极、接地母线、接地线和连接线等组成的。 7、按照人体触及带电体的方式和电流通过人体的途径,触电可分为单相触电、 两相触电和跨步电压触电触电。 8、井下不得带电检修、移动电器设备、电缆和电线。 9、井下局部通风机必须采用“三专两闭锁”,其中“三专”指专用变压器、专用电缆、专用开关供电;“两闭锁”指瓦斯电闭锁和风电闭锁。 10、煤矿企业对供电的要求是供电可靠、供电安全、技术经济合理、和供电质量。 二、判断题(每题2分,共20分) 1、在井下可用铁丝、铜丝代替保险丝。(×) 2、煤矿井下远距离控制线路的额定电压不超过24V。(×) 3、电器设备不应超过额定值运行。(√) 4、井下低压配电系统同时存在2种及2种以上电压时,低压电气设备上应 明显标出电压额定值。(√) 5、井下配电变压器中性点直接接地对人身和矿井安全都极为不利。(√) 6、在变压器中性点不接地的放射式电网中,可以安装选择性漏电继电器。

(√) 7、局部通风机供风的地点,无需安设风电闭锁装置。(×) 8、安全电压取决于人体电阻和安全电流的大小。(√) 9、短路电流的大小与电缆的长度、电缆的截面、电压和变压器的容量有关。 (√) 10、供电系统中短路电流不流经负载。(√) 三、选择题(每题3分,共30分) 1、( A )井下配电变压器中性点直接接地。 A、严禁 B、可以 C、不能 2、煤矿井下供电系统“三大保护”是指(BCD ) A、过电流保护 B、短路保护 C、接地保护 D、漏电保护 3、井下电网可能出现的短路故障有(ABCD ) A、单相短路B、二相短路C、三相短路D、异相两点接地短路 4、熔断器( A )在被保护的电气电路中。 A、串联 B、并联 C、串或并 5、新安装的电气设备的接地电阻,( C )要进行测量。 A、每月 B、每天 C、投入使用前 6、煤矿井下电气设备电压在36V以上就必须有( B ) A、接地极 B、接地保护 C、接地网 7、漏电继电器应每(B)上井进行检修。 A.月B.季度C.半年D、年 8、煤矿井下常见的过电流故障和异常状态有(ABC)。 A、短路 B、过负荷 C、断相 D、以上三项都不是 9、供电网路中,(ABCD)均可能引起漏电故障。 A、电缆绝缘老化 B、电气设备受潮或进水 C、橡套电缆护套损坏 D、带点作业 10、连接主接地极的接地母线,应采用截面不小于50mm2(C)连接。

煤矿供电安全检查

供电安全检查 1、对井下防爆电气设备管理的具体要求 (1)严格按《规程》选用。 (2)井下防爆电气设备管理由电气防爆检查组全面负责,集中统一管理。 (3)严把入井关。入井前必须检查“一证一标志”(产品合格证、煤矿矿用产品安全标志)及其安全性能,检查合格并签发合格证后,方可入井。 (4)加强检查、维护。井下防爆电气设备的运行、维护和修理,必须符合防爆性能的各项技术要求。失爆电气设备,必须立即处理或更换,严禁继续使用。 2.安全检查重点 (1)是否按《规程》规定使用。 (2)隔爆外壳是否完整无损,是否有裂纹和变形。 (3)隔爆外壳的紧固件、密封件、接地件是否齐全完好。 (4)隔爆面的间隙和有效宽度是否符合规定,隔爆面的粗糙度、螺纹隔爆结构的拧入深度和合扣数是否符合规定。 (5)电缆接线盒和电缆引入装置是否完好,零部件是否齐全,有无缺损,电缆连接是否牢固、可靠。电缆与密封圈之间是否包扎他物;闲置喇叭口是否用挡板封堵。 (6)连锁装置功能完整,内部电气元件、保护装置是否完好无动作可靠。

(7)隔爆型电气设备安装地点有无滴水、淋水,周围围岩是否坚固;设备放置是否与地面垂直,最大倾角是否符合规定。 三、井下低压电网保护及其安全检查重点 (一)矿井供电系统 为保证矿井供电的可靠性由2个独立的电源向矿井变电所供电。矿区供电电压等级主要由35kv专用线路供电,采用双回路供电。通常情况下,经过经济技术比较,当两种电压的技术经济指标比较结果相差不多时,宜采用电压较高的方案。 井下供电系统一般由输电电缆、中央变电所、分区变电所、采区变电所、移动变电站、采区配电点及各类电缆组成。 三、井下低压电网保护及其安全检查点 1.矿井供电必须符合的要求 (1)矿井供电应有两回路电源线路。当任一回路发生故障停止供电时,另一回路应能担负矿井负荷。年产6万吨以下的矿井采用单回路供电时,必须有备用电源;备用电源的容量必须满足通风、排水、提升等的要求。 (2)矿井两回路电源线路上都不得分接任何负荷。正常情况下,矿井电源应采用分列运行方式,一回路运行时另一回路必须带电备用。(3)10kV及其以下的矿井架空电源线路不得共杆架设。 (4)矿井电源线路上严禁装设负荷定量器。 (5)对井下各水平中央变(配)电所、主排水泵房供电的线路,不得少于两回路。当任一回路停止供电时,其余回路应能担负全部负荷。

煤矿井下供电系统的三大保护

煤矿井下三大保护

煤矿井下供电系统的过流保护、漏电保护、接地保护统称为煤矿井下的三大保护。 第一节过电流保护 一、过电流故障的危害及原因 过电流是指流过电气设备和电缆的电流超过额定值。其故障有短路、过负荷和断相。

1.短路 短路是指电流不流经负载,而是两根或三根导线直接短接形成回路。这时电流很大,可达额定电流的几倍、几十倍,甚至更大,其危害是能够在极短的时间内烧毁电气设备,引起火灾或引起瓦斯、煤尘爆炸事故。短路电流还会产生很大的电动力,使电气设备遭到机械损坏,也会引起电网电压急剧下降,影响电网中的其他用电设备的正常工作。造成短路的主要原因是绝缘受到破坏,因而应加强对电气设备和电缆绝缘的维护和检查,并设置短路保护装置。

2.过负荷 过负荷是指流过电气设备和电路的实际电流超过其额定电流和允许过负荷时间。其危害是电气设备和电缆出现过负荷后,温度将超过所用绝缘材料的最高允许温度,损坏绝缘,如不及时切断电源,将会发展成漏电和短路事故。过负荷是井下烧毁中、小型电动机的主要原因之一。 引起电气设备和电缆过负荷的原因主要有以下几方面:一是电气设备和电缆容量选择过小,致使正常工作时负荷电流超过了额定电流;二是对生产机械的误操作,例如在刮板输送机机尾压煤的情况下,连续点动起动,就

会在起动电流的连续冲击下引起电动机过热,甚至烧毁此外,电源电压过低或电动机机械性堵转都会引起电动机过负荷。

3.断相 断相是指三相交流电动机的一相供电线路或一相绕组断线。 造成断相原因有:熔断器有一相熔断;电缆与电动机或开关的接线端子连接不牢而松动脱落;电缆芯线一相断线;电动机定子绕组与接线端子连接不牢而脱落等。

井下三大保护整定细则

目录

煤矿井下低压电网短路保护装置的整定细则 第一章一般规定 第一节短路电流的计算方法 第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:第一节短路电流的计算方法 煤矿井下低压电网短路保护装置的整定细则 煤矿井下保护接地装置的安装、检查、测定工作细则 第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:利用公式(1)计算两相短路电流时,不考虑短路电流周期分量的衰减,短路回路的接触电阻和电弧电阻也忽略不计。 若需计算三相短路电流值,可按公式(2)计算: 第2条两相短路电流还可以利用计算图(表)查出。此时可根据变压器的容量、短路点至变压器的电缆换算长度及系统电抗、高压电缆的折算长度,从表中查出。 电缆的换算长度可根据电缆的截面、实际长度,可以用公式(3)计算得出。 电缆的换算长度,是根据阻抗相等的原则将不同截面和长度的高、低压电缆换算到标准截面的长度,在380 V、660 v、1 140 V系统中,以50 mm2为标准截面;在l27 V系统中,以4mm2为标准截面。 电缆的芯线电阻值选用芯线允许温度65℃时的电阻值;电缆芯线的电抗值按0.081Ω/km计算;线路的接触电阻和电弧电阻均忽略不计。 第二节短路保护装置 第3条馈出线的电源端均需加装短路保护装置。低压电动机应具备短路、过负荷、单相断线的保护装置。 第4条当干线上的开关不能同时保护分支线路时,则应在靠近分支点处另行加装短路

保护装置。 第5条各类短路保护装置均应按本细则进行计算、整定、校验,保证灵敏可靠,不准甩掉不用,并禁止使用不合格的短路保护装置。 第二章电缆线路的短路保护 第一节电磁式过电流继电器的整定 第6条 1 200V及以下馈电开关过电流继电器的电流整定值,按下列规定选择。 1.对保护电缆干线的装置按公式(4)选择: 2.对保护电缆支线的装置按公式(5)选择: 目前某些爆磁力起动器装有限流热继电器,其电磁元件按上述原则整定,其热元件按公式(7)整定。 煤矿井下常用电动机的额定起动电流和额定电流可以从电动机的铭牌或技术资料中查出,并计算出电动机的额定起动电流近似值。对鼠笼式电动机,其近似值可用额定电流值乘以6;对于绕线型电动机,其近似值可用额定电流值乘以1.5;当选择起动电阻不精确时,起动电流可能大于计算值,在此情况下,整定值也要相应增大,但不能超过额定电流的2.5倍。在起动电动机时,如继电器动作,则应变更起动电阻,以降低起动电流值。 对于某些大容量采掘机械设备,由于位处低压电网末端,且功率较大,起动时电压损失较大,其实际起动电流要大大低于额定起动电流,若能测出其实际起动电流时,则公式(4)和公式(5)中I QN应以实际起动电流计算。 第7条按第6条规定选择出来的整定值,还应用两相短路电流值进行校验,应符合公式(6)的要求: 若线路上串联两台及以上开关时(其间无分支线路),则上一级开关的整定值,也应按下一级开关保护范围最远点的两相短路电流来校验,校验的灵敏度应满足1.2~1.5的要求,以保证双重保护的可靠性。 若经校验,两相短路电流不能游足公式(6)时,可采取以下措施: 1.加大干线或支线电缆截面。 2.设法减少低压电缆线路的长度。 3.采用相敏保护器或软起动等新技术提高灵敏度。 4.换用大容量变压器或采取变压器并联。 5.增设分段保护开关。 6.采用移动变电站或移动变压器。 第二节电子保护器的电流整定 第8条馈电开关中电子保护器的短路保护整定原则,按第6条的有关要求进行整定,按第7条原则校验,其整定范围为(3~10)I N;其过载长延时保护电流整定值按实际负载电流值整定,其整定范围为(0.4~1)I N。I N为馈电开关额定电流。 第9条电磁起动器中电子保护器的过流整定值,按公式(7)选择: 当运行中电流超过I Z值时,即视为过载,电子保护器延时动作;当运行中电流达到I Z 值的8倍及以上时即视为短路,电子保护器瞬时动作。 第10条按第9条规定选择出来的整定值,也应以两相短路电流值进行校验,应符合公式(8)的要求: 第三节熔断器熔体额定电流的选择 第11条 1 200 V及以上的电网中,熔体额定电流可按下列规定选择。 1.对保护电缆干线的装置,按公式(9)选择: 如果电动起动时电压损失较大,则起动电流比额定起动电流小得多,其所取的不熔化系

煤矿供电安全措施

煤矿供电安全措施 2006年12月,按照《关于加强煤矿企业供用电安全管理工作的紧急通知》要求,电监会、安全监管总局、煤矿安全监察局联合对山西、内蒙古、、、河南、贵州、河北等省区16个电力公司及所属企业的煤矿供电情况进行了安全专项检查,实地检查了、临汾、、峰峰、邯郸等矿区27座煤矿的用电情况。 检查发现,煤矿供用电安全方面存在的问题主要有:农村电网向煤矿供电的安全问题突出;电力企业供电管理、煤矿企 业用电管理、供用电应急管理及电力设施保护工作等有待加强;已公告关闭矿井的停供电程序需进一步规范。 国务院领导同志对专项检查反映出的问题高度重视,作出重要批示,提出明确要求:对非法煤矿和公告关闭煤矿要严令禁止供电;重点研究解决农村电网建设标准低,不具备对一级负荷连续可靠供电的问题;加强供用电安全管理,煤矿一旦停电,必须迅速撤离工作人员,瓦斯浓度合格方可恢复供电。 《意见》就进一步加强煤矿供用电安全工作提出七项具体措施: 一是加快煤矿供用电电网规划与建设。各级政府应积极组织电力企业加快煤矿供用电电网的统一规划和建设,积极推进煤矿双电源、双回路供电的建设和改造工作;重视解决农村电网向煤矿供电的安全问题,使向合法煤矿供电的相关农村电网逐步具备对一级负荷供电的能力。二是严禁向非法煤矿供电。各电力企业应在各级政府的统一部署和领

导下,及时对政府部门公告关闭矿井停止供电;地方政府应当组织煤炭行业管理、电力监管和煤矿安全监管等部门,加大对非法转供电的整治和打击力度。 三是加强供电企业安全管理。各级供电企业应规范供用电合同,把合法煤矿企业列为一级负荷,不将煤矿用户列入计划限电拉闸序位表;严格执行煤矿用户停送电管理制度,定期检查煤矿供电状况;允许用户自由选择基本电价按变压器容量或按最大需量计费。 四是强化煤矿企业用电安全管理。煤矿企业要落实安全生产责任制和矿井停送电制度;应双回路向井下供电,主变压器采用一台运行一台热备用方式;按照有关规定,配置满足保安负荷容量的应急备用电源;对自供区电网和矿区用电系统进行全面的技术改造。 五是严格落实煤矿供用电应急措施。各级政府有关部门、电力企业和煤矿企业应制定和完善供用电应急预案,建立应急联动的协调机制,开展应急预案联合演练工作;煤矿企业严格落实停电时的应急措施,一旦停电必须迅速撤出人员,按规定检查、排放瓦斯合格后,方可恢复供电。 六加强供用电设施保护。各级政府有关部门应进一步加强供用电设施的保护工作,及时协调解决线路走廊的安全隐患问题,加大对盗窃破坏电力设施的打击力度;各级电网企业和煤矿企业应加强电力设施的巡查,积极推广应用电力设施安全防护的新技术和新成果。 七是加大煤矿供用电安全监管监察力度。地方各级安全监管、电力监

煤矿井下三大保护知识讲座 煤矿井下低压电网三大保护是

煤矿井下三大保护 知识讲座 煤矿井下低压电网三大保护是:过流、漏电、接地保护。第一章、低压检漏保护装置(P2) 第二章、过流(P20) 第三章、接地(P33)

第一章低压检漏保护装置前提、作用第一节一般规定第二节安装、运行、维护和检修第三节故障的判断与寻找

漏电:分集中漏电和分散性漏电。集中漏电指在漏电:分集中漏电和分散性漏电。集中漏电指在变压器中性点不接地的电网中,由于电网某处的绝缘损伤而发生的漏电。分散性漏电指由于整条绝缘损伤而发生的漏电。分散性漏电指由于整条线路或整个电网的绝缘水平低,而沿整条线路或整个电网发生的漏电。我们知道任何一个供电系统都有漏泄电流,其大小由系统的绝缘电阻及对地电容决定。在中性点绝缘系统中,当人触及一相导线时,通过人身的电流为当时系统的漏泄电流。当系统的绝缘电阻降低时,系统的漏泄电流增大,不但增大了触电的危险性,同时还可能造成外露电火花引起瓦斯爆炸。

目前使用的漏电保护装置,由漏电继电器(漏电板)和自动开关中的分励脱扣器(小漏电板)和自动开关中的分励脱扣器( 继电器) 继电器)构成。井下低压电网漏电保护装置的作用:①时刻监视电网的绝缘水平;②与馈电开关配合,及时切断人身触电或单相接地的故障线路;③补偿人身触电时,电容电流的危害,减轻触电危险性。

第一节一般规定1、井下各变电所的低压馈电线上,应装设带漏电、井下各变电所的低压馈电线上,应装设带漏电闭锁的检漏保护装置或有选择性的检漏保护装置。闭锁的检漏保护装置或有选择性的检漏保护装置。如无此种装置,必须装设自动切断漏电馈电线的检漏保护装置。低压电磁启动器应具备漏电闭锁功能《煤矿安全规程》:第四百五十五条井下高压电煤矿安全规程》动机、动力变压器的高压控制设备,应具有短路、过负荷、接地和欠压释放保护。井下由采区变电过负荷、接地和欠压释放保护。井下由采区变电所、移动变电站或配电点引出的馈电线上,应装设短路、过负荷和漏电保护装置。低压电动机的控制设备,应具备短路、过负荷、单相断线、漏电闭锁保护装置及远程控制装置。2、运行中的检漏保护装置性能必须可靠,严禁任意拆除或停用。

井下供电三大保护

井下三大保护 井下过电流保护、保护接地和漏电保护是保证煤矿井下安全供电的三大保护。它们相辅相成,缺一不可。 第一节漏电保护 煤矿井下供电电网发生漏电,不仅会引起人身触电,而且还可能导致瓦斯,煤尘爆炸,甚至使电气雷管提前引爆。此外,大量的漏电电流,还可能使绝缘材料发热着火,造成火灾及其它更为严重的事故。因此,研究漏电的发生,掌握人身触电电流的计算方法,采取切实可行的漏电保护措施,对于井下安全供电具有重要意义。 一、漏电与触电的机理 1.漏电故障的发生原因、种类和危害 1)漏电故障的基本概念 在供电系统中,当带电体对大地的绝缘阻抗降低到一定程度,使经该阻抗流入大地的电流增大到一定程度,该供电系统就发生了漏电故障.流入大地的电流,叫做漏电电流。室外架空线路由于其离地面很高,线路是通过空气与大地绝缘的,其绝缘电阻较高,但沿线对地存在分布电容,所以正常时带电的架空导线上也有微小的泄漏电流经空气入地,只是其值很小,一般可以忽略不计,这种现象不能称做漏电故障。电缆线路和各种电气设备与架空线路一样,正常运行时也有微小的泄漏电流入地,同样不算是发生了漏电故障。当入地电流由于某种原因增大至数十毫安、数安培甚至数十安培时,线路或电气设备就已发生了漏电故障。当入地电流增大至数百安培及以上时,它又超出了漏电故障的范围,进入了短路故障的范围。 漏电电流与正常的泄漏电流之间没有严格的界限,这种界限还与电网的结构、电压等级、电网中性点接地方式等因素有关。漏电保护装置的动作值是这种界限的标志;同样,漏电电流与短路电流之间也没有严格的界限,而

过流保护装置的动作值是这种界限的标志. 对于目前国内井下广泛采用的变压器中性点绝缘(不接地)的低压供电系统,漏电故障的明确定义为;在中性点绝缘的低压供电系统中,发生单相接地(包括直接接地和经过过渡阻抗接地)或两相、三相对地的总绝缘阻抗下降到危险值的电气故障就叫做漏电故障,简称漏电.显然,在这种供电系统中,人身触及一相带电导体的情况,属于单相经过渡阻抗接地,对人来说是发生了触电,对整个供电系统来说就是发生了漏电。 2)漏电故障的种类 根据煤矿井下电网的实际情况,漏电故障可分为集中性漏电和分散性漏电两类。集中性漏电,是指发生在电网中某一处或某一点,而其余部分的对地绝缘水平仍然正常的漏电。分散性漏电,是指整条线路或整个电网的对地绝水平均匀下降到低于允许水平的漏电。 集中性漏电又分为长期集中性漏电、间歇集中性漏电和瞬间性漏电三种类型,长期集中性漏电,是指电网中的某一设备或电缆,由于某种原因使绝缘击穿或带电导体碰壳而造成的漏电故障。如果没有相应的保护装置,或者保护装置拒动,这种漏电故障将长期存在。间歇性漏电,一般指电网中某台控制设备的负荷端.如磁力起动器负荷侧的电缆和末端的电动机,由于某种原因使绝缘击穿,带电导体碰壳而发生的漏电故障。这种漏电故障的存在与磁力起动器的停、送电状态有关,如果磁力起动器合闸,这部分线路就发生漏电,如果磁力起动器分闸,其漏电故障就消失,瞬间集中性漏电,主要指人员或其它接地的导体偶尔触及设备的带电部分后,立刻又摆脱或分开的情况。 3)漏电故障发生的原因 井下供电系统常见的漏电故障,大多数是由于下列原因造成的: (1)运行中的电气设备因绝缘受潮或进水,造成相与地之间的绝缘下降到危险值。例如铠装电缆或矿用橡套电缆长期浸泡在水中;隔爆型开关的母线盒进水;磁力起动器元件的安装绝缘底板受潮等,都可能造成这种漏电故障。

相关文档
最新文档