第三章 信、干扰与目标特性

第三章 信、干扰与目标特性
第三章 信、干扰与目标特性

第三章 信道、干扰与目标特性

3.1 水声信道特性

3.1.1 稳定单途信道-自由空间的传播

在理想介质自由空间中,信号传输过程如果用一网络来表示,则其脉冲响应为

()()0τ-τδ=τh (3.1.1)

而传输函数为

()0ωτ-=ωe H (3.1.2)

式中0τ为发射点至接收点的传播时间。

在实际海洋中,由于各个频率的吸收系数不同,高频衰减比低频衰减要大的多,传输函数的模()ωH 不在等于1,而是随着频率的增高而衰减,这时脉冲响应也不在是δ脉冲,而是有一定宽度的,其展宽程度与距离等因素有关。

3.1.2 稳定多途信道-海底、海面反射以及声速梯度引起折射产生的影响

实际海洋不可能是一个自由空间,它存在着海面和海底两个界面。由于温度、盐度和静压力的影响,海洋中不同深度声速是不同的,存在着声速垂直分布,这就会使声波产生折射。上下边界的反射和在水中的折射使得实际海洋信道不是单途径信道而是多途径信道。如果我们把海洋看成是一个具有平滑的上下边界的分层不均匀介质,声波在其中传播将产生稳定的多途信号。在已知声速-深度分布曲线时,可用射线理论或简正波理论来预测多途结构。

图3.1.1分别给出相应的多途信号的理论预测图和实际图。

图3.1.1 多途信号的理论预测图和实际图

图3.1.2 a 给出存在跃层时浅海传播的多途结构;b 给出相应的多途信号。图中给出了声源和接收点同在跃层上和分别在跃层上下的两种情况。

图3.1.2 ( a) 存在跃层时浅海传播的多途结构

(b) 相应的多途信号

稳定多途信号用网络来表示时,其脉冲响应可用如下形式来表示:

()()∑=

τ-τδ=τh i (3.1.3)

式中i τ为各个途径信号的时延值。

传输函数为

()e A H ωτ-=

∑=ω (3.1.4)

由于多途信号间的干涉,()ωH 随频率变化有起伏。

3.1.3 时空变信道

(1) 随机时变信道-随机起伏海面、粗糙海底、不均匀介质产生的影响

由于海面是随机起伏,海底是粗糙不平的,海水存在着宏观的分层不均匀,微观的随温度起伏、湍流、涡流、内波等因素的影响,使得多途信道不是稳定的而是随机时变的,这时脉冲响应函数应该是时间的随机函数。一个实际信道的脉冲响应可表示为

)(())(t h h t h ,~,0τττ+= (3.1.5)

相应的传输函数为

)(())(t H H t H ,~

,0ωωω+= (3.1.6) 式中()ω0H 为传输函数的稳定部分;)(t H ,~

ω为传输函数的随机时变部分,其均值为零。它的特性可用其协方差函数来表征,即 ())(()t t H t H t t ?+?+?=??Γ*,~,~,,,ωωωωω (3.1.7)

式中Γ称为时频相干函数。

若信道满足广义平稳非相关散射条件,即把信道传播过程看作散射过程时,不同时延和不同频移的散射信号间不相关时,Γ仅与ω?,t ?有关,则时频相干函数可写成(t ,?ω?)形式。如将?ω?,t 仍用ω,t 表示,并对作傅立叶变换可得:

()()dt d e e t ,,R ωωΓ=?τ?-ωτ-?? (3.1.8)

式中称为R s 散射函数。

散射函数在τ轴上投影)(τs R (也称时间弥散函数)表征了信号随机起伏部分能量沿τ轴弥散分布的情况。散射函数在?轴(多普勒频移)上的投影)(?s R 表征了由于信道的随机时变性而产生的多普勒频移在频率轴上的分布情况。

(2) 随机时空变信道-广义散射函数

在讨论传感器阵信号的时空最佳处理时,还需要考虑到随机信道引起的入射角度的弥散,这就要求把随机时变信道讨论推广到空间维得到广义散射函数。

水声信道(z 轴代表深度,信号沿x 方向传播)的传输函数可表示为

()()()z y x t H H z y x t H ,,,,~,,,,0ωωω+= (3.1.9)

()()z y x t H H ,,,,ω=ω (3.1.10)

()

22020~/H H H +=γ (3.1.11)

其中γ称为相干度。

相干度与观察时间的长度和观察空间的大小有关,时间愈长,空间愈大,相干度

就愈低。这是因为随着时间增长,空间范围扩大,影响传输函数H 变化的因素将愈多。

随机部分H ~的增长将导致相干度下降。

可定义时频空间相干函数()z y x t ,,,,ωΓ的傅立叶变换为广义散射函数

()jvy jux t j j s e e e e z y x t w v u R ----?????

Γ=?ωτω?τ,,,,),,,,(dtdxdydz d e jwz ω-? (3.1.12)

式中τ表示时延;?表示频移;u ,v ,w 为空间频率。

广义散射函数的物理意义可作如下解释:设信道的输入为来自一点源的信号,其模糊度函数具有极高的时频分辨率,而接收机由一尖锐指向性的基阵后接高分辨率的时-频处理器构成。接收机可测量τ,?,y x θθ,(入射波与X 、Y 轴的夹角)四个参数,其输出构成一个四维显示空间。对理想单途径信号,在四维显示空间中得到一个点。在稳定多途信道中将显示多个点,每个点对应一个途径。这部分用平均扩展函数来表示。而信道的随机时变部分会在显示器中产生一些“云”。广义散射函数用来表示这些“云”在四维显示空间中的分布。

3.2 噪声干扰特性

3.2.1 海洋环境噪声

3.2.1.1 概述

粗略的讲,环境噪声就是海洋本身的噪声。它是用指向性水听器测量到的海洋总噪声背景中的一部分。它既不是由于水听器及其固有安装方式引起的自噪声,也不是某些局部的可辨别的噪声源产生的噪声,它是除去所有可分辨的噪声源后所剩下的那一部分。就我们所讨论的来说,环境噪声(ambient noise )是指那些由周围所有方向传到水听器处的噪声,尽管来自各个方向的噪声各有差异,是各向异性的。

环境噪声级,是指无指向性水听器测得的环境噪声的声强(以分贝表示),参考级是具有均方根声压等于一微帕的平面波声强。虽然它们实际上是在不同带宽中测得的,但常常把所测得的噪声级折算成1赫带宽的值,并称为环境噪声谱级。

3.2.1.2 深海环境噪声

深海环境噪声在不同频率上有不同的特性,随着环境条件例如风速等的变化,在谱的不同部分具有不同的频谱斜率和不同的特征。因此,噪声必然是由于各种源的组合产

生的。在谱的任何一个区域,这些源中的一个或几个超过其他源而占主要地位。我们已了解的主要噪声源有:潮汐以及波浪的水静压力效应、地震扰动、海洋湍流、波浪非线性互作用、行船、海面波浪、热噪声等。图3.2.1是可能观测到的深海环境噪声谱的一个例子。谱由不同斜率的几部分组成,这几部分在不同的条件下有不同的特征。如上所述,由于整个频带内噪声源是多重性的,谱也是复杂的。谱的各频段或区间是可辨的,并与上述的主要噪声源相对应。

图3.2.1 深海噪声谱举例,有五个斜率不同的频段,斜率以分贝/倍频程表示

3.2.1.3 浅海环境噪声

与比较确定的深海环境噪声情形相反,在近海、海湾和港口,环境噪声的变化很大。在浅海中,某一频率下的背景噪声系由三类不同形式的噪声混合而成:(1)行船及工业噪声;(2)风成噪声;(3)生物噪声。在一个特定的时间和地点,噪声级取决于这些源的混合情况。因这种混合情况随时间、地点而变,所以噪声级也就表现时时处处有显著的变化性。相对于深海环境噪声级的一定的准确度,海湾、港口和沿海等浅海处的环境噪声级的数据很离散,几乎无法预报。

3.2.1.4环境噪声的间歇源

所谓间歇源指的不是持续数小时或数天,而仅是暂时存在的噪声源。它包括生物发声、20周脉冲(鲸)、雨、爆炸、地震和火山活动等。

3.2.2 混响

3.2.2.1 概述

海洋本身和其界面包含着许多不同类型的不均匀性,这些不均匀性形成介质物理上的不连续性,因而就阻挡照射到它们上面的一部分声能,并把这部分声能再辐射回去,这种声的再辐射称为散射,而来自所有散射体的散射成分的总和称为混响。海中产生混响的散射体有三种根本不同的类别。一种散射体存在于海水本身或体积之中,它引起体积混响。海面混响是由位于海面上或海面附近的散射体产生的,而海底混响是由位于海底上或海底附近的散射体所引起的。后面两种混响,由于散射体的分布是二维的,在分析上可以一起作为界面混响来考虑。

散射强度表征混响的一个基本比值。它等于在参考距离1米处被单位面积或体积所散射的声强度与入射平面波强度的比值,这个比值以分贝为单位。以I scat表示单位面积或单位体积所散射的声强度,这一强度是在远场测得后折算到单位距离处的,以I inc表示入射平面波的强度,则散射强度的定义为

S s,v=10log(I scat/I inc)

对体积混响和界面混响而言,散射强度这个参数的概念可分别以图3.2.1来说明。散射的方向是指向声源。对S来讲,它的参考点在相反方向上离单位体积或面积1米处的P 点。

图3.2.1 体积散射和界面散射时,散射强度的定义

3.2.2.2体积混响理论

我们用RL表示等效平面波的混响级。这个级是轴向入射平面波在水听器输出端产生的电压,这个电压应与该水听器接收混响时产生的电压相同。现将等效平面波的混响级RL定义为轴向平面波的入射强度(以分贝为单位),此平面波引起的水听器输出与所研究的混响相同,有:

RL=10log( (I0/r4) s v ∫bb’ dV ) (3.2.1)

其中I0为单位距离处的轴向强度,b表示发射器的指向性图,dV为在此方向上离开r 处的散射体的体积,s v是距产生散射的单位体积1米处的反向散射强度与入射声波强度的比值。

3.2.2.3界面混响理论

界面混响系指散射体不分布在体积中,而分布在几乎很平的界面上时所产生的混响,最显著的散射界面是海面和海底。界面混响的等效平面波的表达式为:

RL s=10log( (I0/r4) s s ∫bb’ dA ) (3.2.2)式中dA是散射界面的面元,其他各项的含义与(3.2.1)式中相同。

3.3 目标特性

3.3.1目标辐射噪声特性

3.3.1.1 目标辐射噪声的平均功率谱

舰船辐射噪声的平均功率谱是由连续分布的宽带噪声谱和在若干个离散频率上的窄带分量—线状谱构成。

舰船噪声的宽带连续噪声谱分量主要由螺旋桨噪声和机械噪声两部分构成。

螺旋桨噪声是由于螺旋桨旋转产生空化造成的。螺旋桨叶片在水中转动时在叶尖和叶片面上会产生低压和负压区。随着转速的增加,负压增大到一定限度时,水就会自然破裂产生小气泡形式的空穴,稍后这些气泡破裂产生宽带声脉冲,大量这种气泡破裂声就形成螺旋桨噪声。这是舰艇噪声宽带连续谱的高频端的主要成份。螺旋桨空化可分为叶尖涡流空化和叶片表面空化两类。前者时螺旋桨空化噪声的主要噪声源。螺旋桨空化噪声的功率谱在高频以6分贝/倍频程斜率下降,在低频功率谱曲线有正斜率,因此存在一个峰值。

在低速度时,螺旋桨并未空化,主要的噪声源是机械噪声,能产生宽带连续谱的噪声源有:泵、管道、阀门中流体的空化,湍流和凝气器排气产生的噪声。这些噪声通过很多点于艇壳联结辐射出来。

舰艇噪声中的窄带分量—线谱主要集中在1000Hz以下的低频段。产生线谱的噪声源有三类:往复运动的机械噪声、螺旋桨叶片共振线谱和叶片速率线谱、水动力引起的共振。

对于一定深度和航速,舰艇噪声谱存在一个临界频率,低于此频率主要是机械噪声和螺旋桨噪声线谱,高于此频率主要是螺旋桨空化产生的宽带连续谱。一般临界频率在100Hz至1000Hz范围内。

3.3.1.2目标噪声的动态谱

()()()()()()f G f m t m f G f G f t G x x L 2,++= (3.3.1) 式中()f G L 为线谱成分;()f G x 为宽带平稳高斯噪声;(3.3.1)式中第三项是局部过程的时变谱,它反映了辐射噪声中动态特性与时间t 的关系。 ()t m 称为调制函数,()f m 称为调制深度谱,而()()()f G f m t m x 称为时变调制功率谱。

将()f t G ,对t 做傅立叶变换,得到双重频率功率谱:

()()dt e f t G f F Q t j π2,,-∝

∝-?= (3.3.2) ()()()()()()()()F M f G f m F f G F f G f F Q x x L 2,++=δδ (3.3.3)

其中()F M 为

()()()()F j Ft j e F M dt e t m F M θπ==-∝

∝-?2 (3.3.4) 在实际使用中,第一次测()F G 用较宽的带宽,经检波低通滤波取下包络()t m 后,再用FFT 进行第二次谱分析得到()F M 等。

3.3.1.3舰艇目标辐射噪声的方向性

对螺旋桨噪声而言,尽管螺旋桨空化噪声源本身可视为点源是无方向的,但是由于艇体以及尾流的屏蔽作用,在舰首及舰尾方向辐射噪声将显著低于两舷方向。舰艇辐射噪声场的等强分布线在舰首、舰尾方向有明显的凹进。

线谱机械噪声是周期机械振动,耦合到艇壳某点,通过艇体振动辐射出来,其方向性很复杂,耦合点不同有着不同的方向性分布。同样,连续机械噪声谱也是通过某些点耦合到艇壳上的,辐射指向性也很复杂。

3.3.1.4舰艇目标辐射噪声的概率分布

简单的模型假设目标辐射噪声是高斯分布的,实际测量的辐射噪声的概率分布有时距离高斯分布有一定的偏离。随着现代信号处理技术的发展与研究发现,舰船辐射噪声是非平稳、非髙斯的信号,信号传输是非线性的。

3.3.2目标反射和散射

目标强度的定义是将某一方向上距离目标的“声学中心”1米处由目标返回的声强与远处声源的入射声强之比,取以10为底的对数后再乘以10,其式为

|I /I log 10TS == (3.3.5)

式中 I 表示1米处的回声强度; I 为入射声强。

实际舰船目标不能被简化成一个有一定速度的点目标,而是一个体分布目标,除按一定速度平移运动外还有可能有转动。这种目标的反射波除有多普勒频移外,还会产生长度及多普勒频移的弥散,使匹配滤波器的性能下降。

下面以网络的形式来讨论目标反射特性的表达形式。对同一族信号经集平均可分解为相干和非相干部分,相干部分可用信道平均脉冲响应()τh 来表示,而非相干部分可用散射函数()τR 来表示。

目标回波脉冲响应可看成几个时延不同的脉冲之和,即存在几个亮点:

)()(10i n

i i A h ττδτ-=∑=

反射过程可以用一个横向滤波器所产生的上脉冲响应来表示,其结构如图 3.3.1 所示。但当目标形状较复杂时,“亮点”很多,横向滤波器抽头很密,这种模型称为多点密分布目标模型。

图3.3.1 反射过程的一种模型

也可用另一种模型来表征,如图 3.3.2 所示。每个抽头输出信号与其本身N 次微分和N 次积分加权相加,再与类似处理的其他输出求和得到总输出。

)()()(1m n M

m i N N n mn A f h ττδτ-=∑∑=-=

图3.3.2 反射过程的一种模型

为了将这两种模型与目标反射过程的机理联系起来,下面进一步研究目标回波的反射过程。目标回波的反射主要分为两类:一是镜反射,另一是反向散射。镜反射产生于曲率半径大于波长的物体,可用菲涅尔(Fresnel)带的方法来研究。光滑物体的回波等于第一菲涅尔带贡献的一半。对潜艇和水雷而言,在正横方位上镜反射是主要过程,回波很短,短脉冲的回波几乎与入射波形相同。反向散射产生于目标上曲率半径小于波长的那些棱角等处。图3.3.3给出有限长空心圆柱壳体的回波结构,旁边的图表示四个角的位置,可清楚的看到回波发生的位置与四角位置相对应。

图3.3.3 有限长空心圆柱壳体的回波结构及其四个角的位置

目标传输函数的非相干部分用另一种模型来表示,把目标视为大量独立散射体构成,它们的回波是非相干能量叠加。

★【美】R.J.尤立克?水声原理?,哈船,1990 ★刘伯胜,雷家煜,?水声学原理?,哈船,1993

天线辐射的方向特性

天线辐射的方向特性 一实验目的 1、理解天线辐射的相关原理知识,对天线的方向图及其相关参数有 一定的认识。 2、测定右手螺旋天线的方向特性。 二实验仪器 ①旋转天线盘;②喇叭形天线;③微波吸收器;④右手螺旋天线;⑤波导式天线;⑥计算机及测试软件。 三实验原理 辐射方向图: 任何实用天线的辐射都具有方向性,通常将天线远区辐射场的振幅与方向间的关系用曲线表示出来,这种曲线图被称之为天线的辐射方向图; 方向图函数: 将离开天线一定距离R 处的天线远区的辐射场量与角度坐标间的关系式称为天线的方向图函数,记为|F(θ,φ)|。电流元的远区辐射场量在相同距离R的球面上不同方向的各点,场强是不同的,它与|sinθ|成正比,因此,电流元的方向图函数,记为|F(θ, φ)| =| F(θ)| = |sinθ|。 为了画出电流元的辐射方向图,将电流元中心置于坐标原点,向各个方向作射线,并取其长度与场强的大小成正比,即得到一个立体图形,也就是得到电流元的立体方向图,它的形状像

汽车轮胎。如图1(a)所示。天线的立体方向图一般较难画出,通常只画出相互垂直的两个平面内的方向图,即E面和H面方向图。电流元E面的方向图处于子午面,即电场分量Eθ所处的平面内的方向图,故称为E面方向图,H面方向图处于赤道面内,即与磁场分量Hφ平行的平面内的方向图,故称为H面方向图。 (a) 立体方向图;(b) E面方向图;(c) H 面方向图 图1 电流元的方向图 二维平面方向图可以在极坐标系中绘制,也可以在直角坐标系中绘制,但在极坐标系中绘制的方向图较为直观,因此较为常用。在极坐标系中绘制的电流元的E面和H面方向图如图1(b)T和(c)所示。显然,E面方向图关于电流元的轴线呈轴对称分布,在θ=90?方向出现最大值“1”,其他方向上按矢径作出,而在轴线(θ=0?和θ=90?)上其值为零。在H面(θ=90?)上,各方向场强均相同,故其方向图是一个单位圆,这样,将E面方向图绕电流元的轴线旋转一周,即可得到电流元的立体方向图。 而天线设计是用来有效辐射电磁能的一种装置,实际中没

材料发射率是表征材料表面辐射特性的物理量

材料光谱发射率的测量方法的研究总结 摘要: 本文主要系统介绍了目前材料光谱发射率的测量方法(黑体法,红外傅里叶光谱法,多波长法),在社会上的应用,展望了发射率测量技术的目前存在的问题及发展趋势。 关键字:发射率测量方法傅里叶光谱多波长 1,引言: 光谱发射率是衡量热辐射体辐射本领的重要依据之一,研究和测量材料发射率对于揭示材料的热辐射特性、提高辐射加热效率、寻找节能新途径都有重要的现实意义。材料表面发射率与材料组分和结构、表面温度、表面粗糙度等许多因素有关。发射率的测量依赖于表面温度的精确测定,由于接触法测温一方面会改变物体表面温度场的分布从而带来一定的测量误差,另一方面温度传感器和待测表面接触的紧密程度也会影响测量结果的精度1,所以要提高发射率的测量精度必须首先解决好表面温度的精确测定问题。[1] 为了能够清楚地看出发射率与波长的关系,高温状态下的光谱发射率的测试,对研究光谱选择性辐射表面的材料和涂层尤为重要。因此连续光谱发射率的准确测量.一直是世界各国普遍关注的焦点。 2,测量方法 [2] 2.1谱辐射线性度分析双温黑体法[3-5]

光谱辐射测量系统线性度反映出测量装置对单色辐射能量的响应情况。材料光谱发射率的测量建 立在线性度良好的前提上。本文提出双温黑体法,即采用另一个同样的黑体辐射源替代测量装置中样品加热器的位置,模拟发射率测量状况进行测量来验证测量系统的线性度。采用两个黑体和统计测量的方法消除黑体本身漂移带来的影响,而且可以在不同信号大小情况下验证线性度。两个黑体采用ISOTECH 976黑体炉,其空腔尺寸为Φ65mm×200mm,工作温度范围为30(室温为20℃时)~550℃,控温稳定性<0.2℃,空腔有效发射率>O.995。黑体测温用标准铂电阻温度计在中国计量科学研究院标定。两个黑体的温度分别设置为Tb1,和Tb2,以产生不同大小的黑体辐射。黑体辐射信号比为Rb,环境温度为Tam。,且假设黑体炉发射率为1。当不同大小的两个黑体辐射信号,根据测量原理式(3)以及普朗克定律,得到测量系统的线性度为: (4) 假设两个黑体在各波段的有效辐射随温度的变化一样,则当黑体温度相同时,测量电压比信号R6应为1;当黑体温度不同时,根据式(4)则M也应为1。M越接近1,测量系统的线性度就越好。本文分别设置两个黑体温度,在不同的温度点,即不同的辐射信号比条件下验证了测量系统的线性度,见表1。

乙肝的干扰素种类及其用法

干扰素:干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制乙肝病毒的复制;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。人体内的干扰素由于氨基酸组成的不同,可分为α、β、γ三种,分别由白细胞、成纤维细胞和免疫淋巴细胞产生。α干扰素是目前国内外公认有效的抗乙型肝炎病毒药物。α干扰素有20多个亚型,α1、α2、α3等;每一亚型又因个别氨基酸不同,可分为α1a、α1b、α2a、α2b等。目前用于乙肝治疗的α干扰素主要是基因工程技术产生的,单一亚型的α干扰素。常用的有α1b、α2a、α2b。目前看,各亚型的α干扰素,在疗效上并没有十分显著的差别,有研究认为,中国人在受到病毒攻击所产生的干扰素多为α1b型,所以通常认为α1b 效果更好、副作用更小,但是在实际应用中,差别并不大。 市场主要干扰素品牌: 干扰素α2a:罗荛愫(罗扰素)因特芬贝尔芬万复洛迪恩安 干扰素α1b:赛若金运德素 干扰素α2b:甘乐能(干扰能)安达芬英特龙隆化诺远策素万复因利芬能来福隆安福隆 长效干扰素:即聚乙二醇干扰素,商品名,派罗欣。 普通干扰素的缺点是显而易见的,由于吸收快,注射几个小时后,血药浓度达到最高,这时副作用的反应强烈,抑制病毒的作用也达到最高,但是由于排泄比较快,造成在下次注射前,血药浓度的偏低,病毒可能会恢复复制,造成峰谷差。而聚乙二醇干扰素,由于大分子的化合,很好的解决了这个问题,血药浓度基本可以保持恒定,不会存在病毒重新复制的机会,作用时间延长,降低了在体内的清除率、抗原性下降不易产生干扰抗体等等。因此,相对普通干扰素,长效干扰素的优点是避免了频繁的注射,效果也较普通干扰素为好,但是价格相当昂贵,性价比不高。

差模辐射辐射抑制辐射干扰和辐射抗扰性环路面积电流大小在信号线PCB设计中的分析

差模辐射辐射抑制辐射干扰和辐射抗扰性环路面积电流大 小在信号线PCB设计中的分析 标签: 环路面积辐射抑制信号线辐射干扰电流大小谐波测量电磁特性 反射 (浏览 12次 ID:1340805) 差模辐射和辐射抗扰性在PCB设计中的分析 在印制电路板设计阶段进行电磁兼容性(EMC)设计非常重要。分析了引起数字差模辐射干扰的原因,提出了印制电路板设计中相关问题的解决方法,介绍了较好的元器件布置及地线、电源线和信号线的设计。 关键词:差模辐射;电磁干扰;印制电路板 引言 随着现代电子科技的发展,芯片的高速化和集成化,促使各种电子设备系统内外的电磁环境愈加复杂,对电路板设计中的电磁兼容技术要求更高。。电磁兼容辐射干扰问题主要来自电路中的电流突变产生的磁场变化或电压突变产生的电场变化。差模辐射作为辐射干扰源的一种,是由电路中传送电流的导线所形成的环路产生的,。这些环路相当于可产生磁场辐射的小型天线。尽管电流环路是电路正常工作所必需的,但为了限制辐射发射,必须在设计过程中对环路的尺寸与面积进行控制。印制电路板是构成数字电子设备的基础,。为保证它的电磁兼容性,布线和设计应使得板上各部分电路相互间无干扰,。对外的辐射发射尽可能降低达到有关标准的要求。 差模辐射 差模辐射的情况可以用一个小型环状天线来模拟,如图1所示。对于一个环路面积为A,电流为I的小型天线,在自由空间中距离r处(远场区)测量到的电场E 的大小表示为: 上式中电场强度E的单位是V?m,频率f的单位是Hz,面积A的单位是m2,电流I的单位是A,距离r的单位是m。式(1)中的第一项是个常量,代表传输介质的特性,第二项定义了辐射源的特性,也就是环状天线的特性;第三项则描述了从辐射源向远处传播时的衰减特性;最后一项表示的是测量天线以辐射平面为参考的角度方向。式(1)适用于自由空间中的小型环状天线,但大多数电子产品的辐射测量都在地平面上的开阔场地进行,过多的地面反射可能使辐射发射的测量结果变大,最大可达6dB。因此,计算时公式(1)必须乘以修正系数2。假设所有反射的方向相同,对地面反射进行校正,可将式(1)重写为: 式(2)表明,辐射发射大小与电流I、信号频率f的平方以及环路面积A成正比。

PAR辐射仪的功能特点及技术参数

PAR辐射仪的功能特点及技术参数 太阳辐射中能被绿色植物用来进行光合作用的那部分能量成为光合有效辐射,简称PAR。该有效辐射波长范围大致为300-800纳米范围内。它是植物最重要的能量来源,是形成生物量的基本能源,直接影响着植物的生长、发育、产量和产品质量。由此,光合有效辐射计的研发也就成了发展所需,光量子计的生产,提高了农业、林业等研究和生产部门进行光合有效辐射的测量的效率,使得光量子测定变得非常方便。 托普云农PAR辐射仪/光合有效辐射/光合有效辐射记录仪具有GPS定位功能,小巧美观便于携带,一键式切换,可以手动记录也可脱离电脑随时设置采样间隔,自动记录数据并存储。 PAR辐射仪|光合有效辐射计|光合有效辐射记录仪技术参数: 量程范围:0~2,700μmol m-2 s-1 (400~700nm) 线性度:全量程±1% 分辨率:1μmol m-2 s-1 记录容量:主机可存3万条,标配4G内存卡可无限存储 记录时间间隔:5分到99小时 工作电源:3.7V锂电池供电 光谱响应:带宽:400~700nm 稳定性:变化小于±2%/年 电源:5号电池5节、9V/2A电源适配器

重量:140 g 紫外红外响应:0.5% PAR辐射仪|光合有效辐射计|光合有效辐射记录仪功能特点: 光合有效辐射计手持机功能: 1、小巧美观便于携带,轻触式按键,大屏幕点阵式液晶显示,全中文菜单操作。 2、采集设置:在无人看守的情况下使用,可设置定时采集,也可手动采集。自动记录数据并存储。 3、交直流两用,内置锂电池供电:3.7v4Ah锂电池,具有充电保护、电压过低提示功能。也可长时间放置记录地点。 4、带GPS定位功能,可实时显示采集点经纬度并保存。(选配) 5、带语音播报功能,可对超限值进行语音报警设置,对超标的参数实时普通话语音播报,亦可直接播报出实时的环境参数值。 6、数据保存功能强大,设备内部Flash可存储最近3万条数据,标配4G 内存卡可无限存储,亦可与Flash中数据同时存储。 7、既可在主机上查看数据,也可导入计算机进行查看。 8、意外断电后,已保存在主机里的数据不丢失。 9、探头具有一致性,主机可通过集线器接入不同类型的传感器,互不影响精度。 10、将传感器插入主机后便可手动搜索到多种不同类别的传感器(类似于U 盘和电脑相联接能自动感应)。 11、仪器具有32通道同时检测的扩展功能,可以实现多点同步检测,可按需要自行组合。 12、有线RS485通讯,传感器通讯电缆最远可以达到100米 13、低功耗设计,增加系统监控和保护措施,防止电源短路或外部干扰而损坏,避免系统死机。

干扰素基础知识

干扰素基础知识

干扰素 干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制乙肝病毒的复制;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性。 目录: 一、干扰素 二、干扰素简介 三、干扰素多少钱 四、发现 五、什么叫干扰素(IFN) 六、品种及价位 七、作用机制 ①间接性 ②广谱性 ③种属特异性 ④发挥作用迅速 八、分类 九、干扰素制剂如何分类 十、临床上常用的干扰素有哪些制剂

1自然干扰素 2人体白细胞重组干扰素 3复合干扰素 十一、干扰素适应症 十二、干扰素有哪些不良反应 十三、如何应对干扰素的不良反应 十四、干扰素研究、应用历程 十五、病毒的克星——干扰素 十六、哪些人不宜使用干扰素治疗 十七、什么是长效干扰素 十八、普通干扰素和长效干扰素的区别 十九、干扰素治疗的禁忌证 二十、用途及用法 二十一、干扰素治疗乙肝效果 一、干扰素 药物类别:抗肿瘤药,抗病毒药;所属类别:生物反应调节剂药物名称:干扰素英文名称:Interferon 药物别名:序号中文别名英文别名 一.α干扰素 制剂/规格:序号制剂规格 1.注射剂5×10。单位(1 ml);1×106。单位(1 ml); 2.冻干剂l×10。单位

成份/化学结构:序号成份化学结构 药理作用:1.抗病毒作用:其抗病毒活性不是杀灭而是抑制病毒,它一般为广谱病毒抑制剂,对RNA和DNA病毒都有抑制作用。当病毒感染的恢复期可见干扰素的存在,另一方面用外源性干扰素亦可缓解感染。 2.抑制细胞增殖干扰素抑制细胞分裂的活性有明显的选择性,对肿瘤细胞的活性比正常细胞大500~1000倍。干扰素抗肿瘤效果可以是直接抑制肿瘤细胞增殖,或通过宿主机体的免疫防御机制限制肿瘤的生长。 3.诱导细胞凋亡:干扰素可以诱导肿瘤细胞凋亡,从而杀灭肿瘤细胞。 4.干扰素对体液免疫、细胞免疫均有免疫调节作用,对巨噬细胞及NK细胞也有一定的免疫增强作用。 药动学:干扰素在肌内注射或皮下注射后入血的速度较慢,需较长时间才能在血中测到。肌内注射后Tmax为5~8小时。一次肌注:106单位,血清浓度为100单位/ml,这比在病毒感染时自然产生的干扰素量为高。循环中的干扰素半衰期为2~4小时。只有少量干扰素能进入血脑屏障,脑脊液内的浓度约为血内浓度的l/30,只有在兔身上研究过排泄,排出量只有0.2%~2.0%。 适应症:1.用于多种恶性肿瘤,包括毛细胞白血病、慢性白血病、非何淋巴瘤、骨髓瘤、膀胱癌、卵巢癌、晚期转移性肾癌及胰腺恶性内分泌肿瘤、黑色素瘤和Kaposi 肉瘤等。 2.与其他抗肿瘤药物并用。 3.作为放疗、化疗及手术的辅助治疗剂。 4.病毒性疾病的防治。 用法用量:

(完整版)太阳辐射的特性

太阳辐射的特性 昼夜是由于地球自转而产生的,而季节是由于地球的自转轴与地球围绕太阳公转的轨道的转轴呈23°27′的夹角而产生的。地球每天绕着通过它本身南极和北极的“地轴” 自西向东自转一周。每转一周为一昼夜,所以地球每小时自转15°。地球除自转外还循偏心率很小的椭圆轨道每年绕太阳运行一周。地球自转轴与公转轨道面的法线始终成23.5°。地球公转时自转轴的方向不变,总是指向地球的北极。因此地球处于运行轨道的不同位置时,太阳光投射到地球上的方向也就不同,于是形成了地球上的四季变化(见下图)。每天中午时分,太阳的高度总是最高。在热带低纬度地区(即在赤道南北纬度23°27′之间的地区),一年中太阳有两次垂直入射,在较高纬度地区,太阳总是靠近赤道方向。在北极和南极地区(在南北半球大于90°~23°27′),冬季太阳低于地平线的时间长,而夏季则高于地平线的时间 长。 由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距辐射源的距离的平方成反比,这意味着地球大气上方的太阳辐射强度会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球大气层外的太阳辐射强度几乎是一个常数。因此人们就采用所谓“太阳常数”来描述地球大气层上方的太阳辐射强度。它是指平均日地距离时,在地球大气层上界垂直于太阳辐射的单位表面积上所接受的太阳辐射能。近年来通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于日地距离的变化所引起太阳辐射强度的变化不超过上3.4%。 2.2 到达地面的太阳辐射 太阳照射到地平面上的辐射或称“日射”由两部分组成——直达日射和漫射日射。太阳辐射穿过大气层而到达地面时,由于大气中空气分子、水蒸气和尘埃等对太阳辐射的吸收、反射和散射,不仅使辐射强度减弱,还会改变辐射的方向和辐射的光谱分布。因此实际到达地面的太阳辐射通常是由直射和漫射两部分组成。直射是指直接来自太阳其辐射方向不发生改变的辐射;漫射则是被大气反射和散射后方向发生了改变的太阳辐射,它由三部分组成:太阳周围的散射(太阳表面周围的天空亮光),地平圈散射(地平圈周围的天空亮光或暗光),及其他的天空散射辐射。另外,非水平面也接收来自地面的反射辐射。直达日射、漫射日射和反射日射的总和即为总日射或环球日射。可以依靠透镜或反射器来聚焦直达日射。如果聚光率很高,就可获得高能量密度,但却损耗了漫射日射。如果聚光率较低,也可以对部分太阳周围的漫射日射进行聚光。漫射日射的变化范围很大,当天空晴朗无云时,漫射日射为总日射的10%。但当天空乌云密布见不到太阳时,总日射则等于漫射日射。因此聚式收集器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但当地面有冰雪覆盖时,垂直面上的反射日射可达总日射的40%。 到达地面的太阳辐射主要受大气层厚度的影响。大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。显然太阳辐射穿过大气层的路径长短与太阳辐射的方向有关。参看下图,A为地球海平面上的一点,当太阳在天顶位置S时,太阳辐射穿过大气层到达A点的路径为OA。城阳位于S点时,其穿过大气层到达A 点的路径则为0A。 O,A与 OA之比就称之为“大气质量”。它表示太阳辐射穿过地球大气的路径与太阳在天顶方向垂直入射时的路径之比,通常以符号m表示,并设定标准大气压和O℃时海平面上太阳垂

辐射换热思考题答案

辐射换热思考题解答 1.什么叫黑体在辐射换热中为什么要引入这一概念 答:吸收比1 α的物体叫做黑体,黑体是一个理想化的物体,黑体辐射的特性反映了物 = 体辐射在波长、温度和方向上的变化规律,这为研究实际物体的辐射提供了理论依据和简化分析基础。 2.温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部的辐射是否也是黑体辐射 答:空间内壁壁面不一定是黑体辐射,之所以小孔呈现出黑体特性,是因为辐射在空腔内经历了很多次吸收和反射过程,使离开小孔的能量微乎其微。 3.试说明,为什么在定义辐射力时要加上“半球空间”和“全波长”的说明 答:因为辐射表面半球空间每一立体角都有来自辐射面的辐射能,而辐射能的形式有各个不同波长。全辐射必须包括表面辐射出去的全部能量,所以要加上“半球空间”和“全部波长”的说明。 E的单位中“m3”代表什么4.黑体的辐射能按波长是怎样分布的光谱辐射力 λ,b 答:黑体辐射能按波长的分布服从普朗克定律,光谱辐射力单位中分母“m3”代表了单位面积m2和单位波长m的意思。 5.黑体的辐射能按空间方向是怎样分布定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的 答:黑体辐射能按空间方向分布服从兰贝特定律。定向辐射强度与空间方向无关并不意味着黑体辐射能在半球空间各方向上是均匀分布的,因为辐射强度是指单位可见面积的辐射能,在不同方向,可见面积是不同的,即定向辐射力是不同的。 6.什么叫光谱吸收比在不同光源的照耀下,物体常呈现不同的颜色,如何解释 答:所谓光谱吸收比,是指物体对某一波长投入辐射的吸收份额,物体的颜色是物体对光源某种波长光波的强烈反射,不同光源的光谱不同,所以物体呈现不同颜色。 7.对于一般物体,吸收比等于发射率在什么条件下成立 答:任何物体在与黑体处于热平衡的条件下,对来自黑体辐射的吸收比等于同温度下该物体的发射率。 8.说明灰体的定义以及引入灰体的简化对工程辐射换热计算的意义。 答:光谱吸收比与波长无关的物体叫做灰体,灰体的吸收比恒等于同温度下的发射率,把实际物体当做灰体如理,可以不必考虑投入辐射的特性,将大大简化辐射换热的计算。 α与波长的关系如图所示,试估计这两种材料的发射9.已知材料A、B的光谱吸收比) (λ 率ε随温度变化的特性,并说明理由。

干扰素的研究进展及应用前景

干扰素的研究进展及应用前景高等生物化学中期答辩 作者:ZJJ 学院:化学化工学院 专业:药物化学 学号:

干扰素的研究进展及应用前景 作者: 摘要:干扰素是人体受到病毒或双股RNA刺激物的刺激产生免疫应答,由细胞合成及分泌的一族蛋白质类,具有调节机体免疫功能、抗病毒、抗肿瘤等多种作用,是机体防御系统的重要组成部分。它通过干扰病毒基因转录或病毒蛋白组分的翻译,从而阻止或限制病毒感染,是目前最主要的抗病毒感染和抗肿瘤生物制品。本文就干扰素的分类、分子结构、作用机理、生物学活性、体外重组技术以及临床应用等方面的研究进展进行了综述,并对其应用前景做出预测展望。 关键词:干扰素研究进展应用前景 Research progress and application prospect of interferon Author: ( Tianjin University of Technology, Tianjin 300072,China) Interferon (IFN) is human body gets virus or double stranded the exciting generation immunity of RNA exciter is respondent, by the cell synthesis reaches excretive gens protein kind ,has the function of regulating the immune function, antiviral and antitumor, is an important part of the body's defense system. It can prevent or limit viral infection by interfering with viral gene transcription or translation of the viral proteins,so it is the main antiviral and antitumor biological products.The research of interferon classification, molecular structure,

天线辐射的方向特性

实验报告:天线辐射的方向特性 一、实验题目: 天线辐射的方向特性 二、实验目的: 1 理解天线辐射的相关原理知识,对天线的方向图及其相关参数有一定的认识。 2 测定右手螺旋天线的方向特性。 三、实验仪器: 旋转天线盘、喇叭形天线、微波吸收器、右手螺旋天线、波导式天线、计算机及测试软件。 四、实验原理: 任何实用天线的辐射都具有方向性,通常将天线远区辐射场的振幅与方向间的关系用曲线表示出来,这种曲线图被称之为天线的辐射方向图;而将离开天线一定距离R 处的天线远区的辐射场量与角度坐标间的关系式称为天线的方向图函数,记为|F(θ,φ)|。电流元的远区辐射场量在相同距离R的球面上不同方向的各点,场强是不同的,它与|sinθ|成正比,因此,电流元的方向图函数,记为|F(θ, φ)| =| F(θ)| = |sinθ|。为了画出电流元的辐射方向图,将电流元中心置于坐标原点,向各个方向作射线,并取其长度与场强的大小成正比,即得到一个立体图形,也就是得到电流元的立体方向图,它的形状像汽车轮胎。如图1(a)所示。天线的立体方向图一般较难画出,通常只画出相互垂直的两个平面内的方向图,即E面和H面方向图。电流元E面的方向图处于子午面,即电场分量Eθ所处的平面内的方向图,故称为E面方向图,H面方向图处于赤道面内,即与磁场分量Hφ平行的平面内的方向图,故称为H面方向图。

(a) 立体方向图; (b) E面方向图; (c) H面方向图 图1 电流元的方向图 二维平面方向图可以在极坐标系中绘制,也可以在直角坐标系中绘制,但在极坐标系中绘制的方向图较为直观,因此较为常用。在极坐标系中绘制的电流元的E面和H面方向图如图1(b)T和(c)所示。显然,E面方向图关于电流元的轴线呈轴对称分布,在θ=90?方向出现最大值“1”,其他方向上按矢径作出,而在轴线(θ=0?和θ=90?)上其值为零。在H 面(θ=90?)上,各方向场强均相同,故其方向图是一个单位圆,这样,将E面方向图绕电流元的轴线旋转一周,即可得到电流元的立体方向图。而天线设计是用来有效辐射电磁能的一种装置,实际中没有一种天线能在空间中任何方向辐射,故研究其辐射的方向性可以更好的了解天线特性。 天线的方向图及其有关参数 任何实用天线的远区辐射场都是随空间的位置而变化的,因此在球坐标系中(见图2所示)天线至场点距离r处的远区辐射场量只是角度θ,φ的函数,这个函数就是方向图函数F (θ, φ ) ,通常将方向图函数关于最大值 F max(θ,φ)进行归一化的函数称为归一化方向图函数,记为F(θ, φ) /F max(θ, φ)。按归一化方向图函数绘制的方向图称为天线的归一化方向图。显然,图3中示出的电流元E面和H面方向图也是归一化的方向图(因为其最大辐射方向上的最大值为1)。 图2电流元的电磁场图3 天线方向图的波瓣 1)主瓣宽度 当天线的E面和H面方向图具有如图3所示的多瓣形状时,通常将天线最大辐射方向所在的波瓣称为主瓣,其余瓣称为副瓣(或旁瓣)及后瓣(或尾瓣),在主瓣两侧分别取辐射 1)处的两点,这两点间的夹角功率(场强)等于最大值方向的辐射功率的1/2(场强的 2 称为主瓣半功率点张角,记为(2θ0.5)E,H或(2θ-3dB) E,H,或称半功率波束宽度(或称为主瓣

最新-中学生《普通心理学》知觉的种类 精品

《普通心理学》:知觉的种类 根据不同的标准,可以对知觉进行不同的分类。根据知觉是更正确,可将知觉分为正确的知觉和错误的知觉。根据知觉活动中占主导地位的感受器的不同,可将知觉分为视知觉、听知觉、嗅知觉、味知觉等。根据知觉对象的不同,可将知觉分为物体知觉和社会知觉。 一、物体知觉 物体知觉就是对物的知觉,对自然界中机械、物理、化学、生物种种现象的知觉。任何事物都具有空间、时间和运动的特性,因而物体知觉又分为空间知觉、时间知觉、运动知觉。 1.空间知觉 空间知觉是对客观世界三维特性的知觉,具体指物体大小、距离、形状和方位等在头脑中的反映。空间知觉是一种较复杂的知觉,需要人的视觉、听觉、运动觉等多种分析器的联合活动来实现。在我们的生活、学习中,空间知觉具有重要的作用。例如,学习汉语拼音、汉字时,需要正确辨别上下、左右,否则难以顺利地掌握汉字的结构和识别汉语拼音;下楼梯时,如果我们不知道有几个台阶、每个台阶有多高,就容易摔倒。 空间知觉包括形状知觉、大小知觉、深度与距离知觉、方位知觉等。 形状知觉指对物体的轮廓和边界的整体知觉。形状知觉是人类和动物共同具有的知觉能力,但人类的形状知觉能力比动物的更高级,因为人类能识别文字。形状知觉是靠视觉、触觉、运动觉来实现的。我们可以通过物体在视网膜上的投影、视线沿物体轮廓移动时的眼球运动、手指触摸物体边沿等,产生形状知觉。 大小知觉指对物体长短、面积和体积大小的知觉。依靠视觉获得的大小知觉,决定于物体在视网膜上投影的大小和观察者与物体之间的距离。在距离相等的条件下,投影越大,则物体越大;投影越小,则物体越小。在投影不变的情况下,距离越远,则物体越大;距离越近,则物体越小。大小知觉还受个体对物体的熟悉程度、周围物体的参照的影响。对熟悉物体的大小知觉不随观察距离、视网膜投影的改变而改变。对某个物体的大小知觉也会因该周围参照物的不同而改变。 对物体深度和距离的判断可以依据的线索很多,如小的物体似乎远些,大的物体似乎近些;被遮挡的物体远些;远处的物体看起来模糊,能看到的细节少;远的物体显得灰暗,近的物体色彩鲜明;看近物时,双眼视线向正中聚合,看远物时,双眼视线近似平行等。我们还可以通过立体镜来了解深度知觉。 人依靠视觉、听觉、运动觉等来判断方位,这种能力是后天形成的。依靠视觉进行方位判断必须借助参照物。参照物可以是自己的身体、太阳的位置、地球的磁场、天地等。不同方位辨别由易到难的次序分别是上、下、后、前、左与右。由于人的两只耳朵分别在头部的左右两侧,因此同一声源到达两耳的距离不同,两耳所感知的声音在时间上、强度上存在差别。正因如此,我们也能依靠听觉进行方向定位。 2.时间知觉 时间知觉是对事物发展的延续性、顺序性的知觉,具体表现为对时间的分辨、对时间的确认、对持续时间的估量、对时间的预测。时间,既没有开始也没有结束。生活中,我们

干扰素的作用机理以及干扰素的分类和产生的细胞

干扰素的作用机理以及干扰素的分类和产生的细胞 2014.9.29 详细介绍: 干扰素是人体受到病毒感染时产生的一种多功能蛋白质(生物学上叫细胞因子)。我们都得过流行性感冒,当你发热、全身肌肉、关节酸痛、全身无力时,你就感受到了干扰素的存在。当然也还有其它细胞因子的参与,但干扰素是病毒感染时产生的最主要的细胞因子之一。如果您曾经注射过干扰素,医生会告诉你打干扰素后会出现“流感样症状”,这是因为流感时的症状其实也是干扰素引起的。 干扰素是个多功能的蛋白质,属于人体天然免疫的重要组成部分。总的来说,干扰素具有以下几个重要作用: 1、抗病毒作用。当我们的机体感染病毒时,体内会产生大量的干扰素。 2、抗增生作用。这是干扰素能用于治疗多种肿瘤的原因。 3、免疫调节作用。干扰素是天然免疫的一部分,但干扰素也参与多种特异性的细胞免疫,如增强感染的肝细胞表达被T淋巴细胞识别的蛋白质,帮助T细胞识别病毒感染的细胞等。 4、抗纤维化作用。这是为什么干扰素治疗的病人肝纤维化会明显好转。 此外,干扰素还有抗新血管增生、促进细胞凋亡等多种功能。

但在治疗慢性乙肝方面,抗病毒作用和免疫调节作用,以及抗纤维化作用可能是主要的。 干扰素(IFN)是病毒或其他干扰素诱生剂刺激细胞所产生的一类分泌性蛋白,具有抗病毒、抗肿瘤和免疫调节等多种生物学活性。α干扰素主要由人白细胞产生,β干扰素主要由人成纤维细胞产生,α和β干扰素属于Ⅰ型干扰素,抗病毒作用较强。γ干扰素由T细胞产生,为Ⅱ型干扰素(免疫干扰素),其免疫调节作用较抗病毒作用强。 根据干扰素蛋白质的氨基酸结构、抗原性和细胞来源,可将其分为:IFN-α、IFN-β、IFN-γ。 IFN-ω属于IFN-α家族,其结构和大小与其它IFN-α稍有差异,但抗原性有较大的不同。 现在公认IFN-β和IFN-γ只有一个亚型,而IFN-α有约二十余个亚型。 自80年代以来,许多研究显示,干扰素(尤其是α-干扰素及γ-干扰素)除具有抗病毒、免疫调节的作用外,还具有明显的抗细胞增殖作用。因此,目前干扰素已被用于治疗多种白血病

第三章 信、干扰与目标特性

第三章 信道、干扰与目标特性 3.1 水声信道特性 3.1.1 稳定单途信道-自由空间的传播 在理想介质自由空间中,信号传输过程如果用一网络来表示,则其脉冲响应为 ()()0τ-τδ=τh (3.1.1) 而传输函数为 ()0ωτ-=ωe H (3.1.2) 式中0τ为发射点至接收点的传播时间。 在实际海洋中,由于各个频率的吸收系数不同,高频衰减比低频衰减要大的多,传输函数的模()ωH 不在等于1,而是随着频率的增高而衰减,这时脉冲响应也不在是δ脉冲,而是有一定宽度的,其展宽程度与距离等因素有关。 3.1.2 稳定多途信道-海底、海面反射以及声速梯度引起折射产生的影响 实际海洋不可能是一个自由空间,它存在着海面和海底两个界面。由于温度、盐度和静压力的影响,海洋中不同深度声速是不同的,存在着声速垂直分布,这就会使声波产生折射。上下边界的反射和在水中的折射使得实际海洋信道不是单途径信道而是多途径信道。如果我们把海洋看成是一个具有平滑的上下边界的分层不均匀介质,声波在其中传播将产生稳定的多途信号。在已知声速-深度分布曲线时,可用射线理论或简正波理论来预测多途结构。 图3.1.1分别给出相应的多途信号的理论预测图和实际图。 图3.1.1 多途信号的理论预测图和实际图

图3.1.2 a 给出存在跃层时浅海传播的多途结构;b 给出相应的多途信号。图中给出了声源和接收点同在跃层上和分别在跃层上下的两种情况。 图3.1.2 ( a) 存在跃层时浅海传播的多途结构 (b) 相应的多途信号 稳定多途信号用网络来表示时,其脉冲响应可用如下形式来表示: ()()∑= τ-τδ=τh i (3.1.3) 式中i τ为各个途径信号的时延值。 传输函数为 ()e A H ωτ-= ∑=ω (3.1.4) 由于多途信号间的干涉,()ωH 随频率变化有起伏。 3.1.3 时空变信道 (1) 随机时变信道-随机起伏海面、粗糙海底、不均匀介质产生的影响 由于海面是随机起伏,海底是粗糙不平的,海水存在着宏观的分层不均匀,微观的随温度起伏、湍流、涡流、内波等因素的影响,使得多途信道不是稳定的而是随机时变的,这时脉冲响应函数应该是时间的随机函数。一个实际信道的脉冲响应可表示为

知觉

一、知觉概念 1.知觉的定义 (1)知觉是客观事物直接作用于感官而在头脑中产生的对事物整体的认识。知觉是在感觉的基础上产生的,是对感觉信息整合的反应。 (2)知觉与感觉的关系: ①两者都是事物直接作用于感观产生的。同属于对现实的感性认知形式。离开了事物对感官的直接作用,即没有感觉,也没有知觉。 ②知觉以感觉作为基础,但它不是个别感觉信息的简单总和,知觉比感觉复杂。知觉是按一定方式来整合个别的感觉信息,形成一定的结构,并根据个体的经验来解释由感觉提供的信息。 (3)知觉受人的主观因素的影响,包括:需要和动机、价值与态度、情绪。 2.知觉过程的作用 知觉作为一种活动、过程,包含了相互联系的几种作用:觉察、分辨和确认。 觉察是指发现事物的存在,而不知道它是什么。分辨是把一个事物或其属性与另一个事物或属性区别开来。确认是指人们利用已有的知识经验和当前获得的信息,确定知觉的对象是什么,给它命名,并把他纳入一定的范畴。

3.知觉的分类 (1)根据知觉时起主导作用的感官的特性,可以把知觉分成视知觉、听知觉、触知觉、嗅知觉、味知觉等等。 (2)根据人脑所认识的事物特性,可以把知觉分成空间知觉、时间知觉和运动知觉。 4.几个概念 (1)自下而上的加工:知觉依赖于直接作用于感官的刺激物的特性,对这些特性的加工叫自下而上的加工或数据驱动加工。如:颜色和明度知觉依赖于光的波长与振幅。 (2)自上而下的加工:知觉依赖于感知的主体。人的知觉系统要加工在头脑中已经存储的信息。叫自上而下的加工或概念驱动加工。例如:在阅读课文时,由于个人的知识经验不同,我们从课文中提取的信息也是不一样的。 二、知觉的特性 知觉具有选择性、整体性、恒常性。 1.知觉的选择性 人的知觉选择性是在实践中产生并为人的实践活动所需要的。 (1)知觉的选择性是指对外来的刺激进行有选择的加工的过程。被选择的是对象,未被选择的其他刺激成为背景。人对知觉对象与背景的反映效果是有所区别的。知觉对象的形象较为鲜明,轮廓较为清楚,结构也较为完整;作为知觉背

辐射换热思考题答案

辐射换热思考题解答 1.什么叫黑体?在辐射换热中为什么要引入这一概念? 答:吸收比1 α的物体叫做黑体,黑体是一个理想化的物体,黑体辐射的特性反映了物 = 体辐射在波长、温度和方向上的变化规律,这为研究实际物体的辐射提供了理论依据和简化分析基础。 2.温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部的辐射是否也是黑体辐射? 答:空间内壁壁面不一定是黑体辐射,之所以小孔呈现出黑体特性,是因为辐射在空腔内经历了很多次吸收和反射过程,使离开小孔的能量微乎其微。 3.试说明,为什么在定义辐射力时要加上“半球空间”和“全波长”的说明? 答:因为辐射表面半球空间每一立体角都有来自辐射面的辐射能,而辐射能的形式有各个不同波长。全辐射必须包括表面辐射出去的全部能量,所以要加上“半球空间”和“全部波长”的说明。 E的单位中“m3”代表什么? 4.黑体的辐射能按波长是怎样分布的?光谱辐射力 λ,b 答:黑体辐射能按波长的分布服从普朗克定律,光谱辐射力单位中分母“m3”代表了单位面积m2和单位波长m的意思。 5.黑体的辐射能按空间方向是怎样分布?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的? 答:黑体辐射能按空间方向分布服从兰贝特定律。定向辐射强度与空间方向无关并不意味着黑体辐射能在半球空间各方向上是均匀分布的,因为辐射强度是指单位可见面积的辐射能,在不同方向,可见面积是不同的,即定向辐射力是不同的。 6.什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释? 答:所谓光谱吸收比,是指物体对某一波长投入辐射的吸收份额,物体的颜色是物体对光源某种波长光波的强烈反射,不同光源的光谱不同,所以物体呈现不同颜色。 7.对于一般物体,吸收比等于发射率在什么条件下成立? 答:任何物体在与黑体处于热平衡的条件下,对来自黑体辐射的吸收比等于同温度下该物体的发射率。 8.说明灰体的定义以及引入灰体的简化对工程辐射换热计算的意义。 答:光谱吸收比与波长无关的物体叫做灰体,灰体的吸收比恒等于同温度下的发射率,把实际物体当做灰体如理,可以不必考虑投入辐射的特性,将大大简化辐射换热的计算。 α与波长的关系如图所示,试估计这两种材料的发射9.已知材料A、B的光谱吸收比) (λ 率ε随温度变化的特性,并说明理由。

干扰素基础知识

干扰素 干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制乙肝病毒的复制;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性。 目录: 一、干扰素 二、干扰素简介 三、干扰素多少钱 四、发现 五、什么叫干扰素(IFN) 六、品种及价位 七、作用机制 ①间接性 ②广谱性 ③种属特异性 ④发挥作用迅速 八、分类 九、干扰素制剂如何分类 十、临床上常用的干扰素有哪些制剂

1自然干扰素 2人体白细胞重组干扰素 3复合干扰素 十一、干扰素适应症 十二、干扰素有哪些不良反应 十三、如何应对干扰素的不良反应 十四、干扰素研究、应用历程 十五、病毒的克星——干扰素 十六、哪些人不宜使用干扰素治疗 十七、什么是长效干扰素 十八、普通干扰素和长效干扰素的区别 十九、干扰素治疗的禁忌证 二十、用途及用法 二十一、干扰素治疗乙肝效果 一、干扰素 药物类别:抗肿瘤药,抗病毒药;所属类别:生物反应调节剂药物名称:干扰素英文名称:Interferon 药物别名:序号中文别名英文别名 一.α干扰素 制剂/规格:序号制剂规格 1.注射剂5×10。单位(1 ml);1×106。单位(1 ml); 2.冻干剂l×10。单位

成份/化学结构:序号成份化学结构 药理作用:1.抗病毒作用:其抗病毒活性不是杀灭而是抑制病毒,它一般为广谱病毒抑制剂,对RNA和DNA病毒都有抑制作用。当病毒感染的恢复期可见干扰素的存在,另一方面用外源性干扰素亦可缓解感染。 2.抑制细胞增殖干扰素抑制细胞分裂的活性有明显的选择性,对肿瘤细胞的活性比正常细胞大500~1000倍。干扰素抗肿瘤效果可以是直接抑制肿瘤细胞增殖,或通过宿主机体的免疫防御机制限制肿瘤的生长。 3.诱导细胞凋亡:干扰素可以诱导肿瘤细胞凋亡,从而杀灭肿瘤细胞。 4.干扰素对体液免疫、细胞免疫均有免疫调节作用,对巨噬细胞及NK细胞也有一定的免疫增强作用。 药动学:干扰素在肌内注射或皮下注射后入血的速度较慢,需较长时间才能在血中测到。肌内注射后Tmax为5~8小时。一次肌注:106单位,血清浓度为100单位/ml,这比在病毒感染时自然产生的干扰素量为高。循环中的干扰素半衰期为2~4小时。只有少量干扰素能进入血脑屏障,脑脊液内的浓度约为血内浓度的l/30,只有在兔身上研究过排泄,排出量只有0.2%~2.0%。 适应症:1.用于多种恶性肿瘤,包括毛细胞白血病、慢性白血病、非何淋巴瘤、骨髓瘤、膀胱癌、卵巢癌、晚期转移性肾癌及胰腺恶性内分泌肿瘤、黑色素瘤和Kaposi 肉瘤等。 2.与其他抗肿瘤药物并用。 3.作为放疗、化疗及手术的辅助治疗剂。 4.病毒性疾病的防治。 用法用量:

干扰素常识

一、什么是干扰素 1、是通过基因工程技术生产的高科技、绿色抗病毒生物兽药。 2、是一类蛋白多肽,具有多功能的细胞因子、具有广泛的抗病毒、抗肿瘤和免疫调 节作用的可溶性糖蛋白。 3、能诱导动物细胞产生多种广谱抗病毒蛋白。 4、抑制病毒增殖,增强机体免疫应答。 5、在动物抵抗病毒感染过程中起着重要作用。 6、是目前所知发挥作用最快的病毒防御体系,几分钟内使机体处于病毒状态。 7、使机体在1-3周时间内对病毒的重复感染有抵抗作用。 二、干扰素的分类 根据产生干扰素细胞种类不同分为︱型和‖型 ︱型干扰素包括α、β 、δ、τ、ω 等亚型,最具有典型代表的是a亚型,具有强烈的抗病毒功能,因此又称抗病毒干扰素(IFN-α) ‖型干扰素目前只发现y亚型,具有强烈的免疫调节功能,因此又称免疫干扰素(IFN-y) ︱型和‖型均具有抗病毒、调节免疫、抗肿瘤的作用 区别:抗病毒方面IFN-a﹥IFN-y 免疫调节方面IFN-y﹥IFN-a 三、干扰素的药理 GTPase 阻断病毒穿入 2?,5?-Aase 阻断病毒脱壳 抗病毒蛋白表达———Pkas ——细胞呈现抗病毒状态——阻断病毒复制 2?-PDEas 阻断病毒合成 活化NK细胞 MO吞噬功能亢进 激活免疫细胞——加强KT细胞功能——杀伤病毒感染细胞 ADCC活性增强 四、干扰素作用 1、抗病毒、抗肿瘤作用 干扰素进入机体后产生多种广谱抗病毒蛋白分解病毒RNA阻断病毒蛋白合成导致tRNA与氨基酸不能结合消除病毒感染。 2、免疫调理、免疫增强作用:激活T淋巴细胞,活化巨噬细胞,吸引淋巴细胞向 炎性组织移动。 五、吉莱德系列干扰素具有的显著特点和优势: 1、高浓缩型 ①每毫升的活性单位高达100多万,无须加量使用。

干扰素药理及分类

干扰素药理及分类 干扰素是一种细胞因子,它是机体感染病毒时,宿主细胞通过抗病毒应答反应,而产生的一组结构类似、功能相近的低分子糖蛋白。英文名称为Interferon,简称IFN。 干扰素是1957年英国科学家发现的。他们把灭活的流感病毒作用于小鸡细胞,结果发现这些细胞产生了一种可溶性物质,这种物质能抑制流感病毒,并且能干扰其它病毒的繁殖,因此,他们将这种物质称为“干扰素”。以后科学家们进一步发现,机体对入侵的异种核酸(包括病毒)都产生干扰素以进行防御。当机体细胞受到病毒感染时,机体细胞产生干扰素,干扰病毒复制,它是机体抗病毒感染的防御系统。 根据干扰素蛋白质的氨基酸结构、抗原性和细胞来源,可将其分为:IFN-α、IFN-β、IFN-γ三大类(IFN-ω属于IFN-α家族,其结构和大小与其它IFN-α稍有差异,但抗原性有较大的不同)。现在公认IFN-β和IFN-γ只有一个亚型,而IFN-α有约二十余个亚型。 由人体白细胞产生的干扰素为IFN-α,又称人白细胞干扰素。由于其蛋白分子的变异和肽类氨基酸序列第23位和第34位的不同,又可分为:α-2a(23位为赖氨酸,34位为组氨酸)、α-2b(23位为精氨酸,34位为组氨酸)、α-2c(23位和34位都为精氨酸)三种。α-干扰素作用最强。其作用机理在于阻断病毒繁殖和复制,但不能进入宿主细胞直接杀灭病毒,而是与细胞膜接触并在细胞内产生一种特殊蛋白质即抗病毒蛋白(AVP),后者可抑制病毒mRNA信息的传递,从而阻止病毒在宿主细胞内繁殖。干扰素在病毒感染的细胞中还能诱导蛋白激酶及2'5'寡腺苷合成酶(2'5'AS)的产生,然后2'5'AS激活一个内源性核酸内切酶降解病毒RNA,同时蛋白激酶能灭活核糖体合成2所必需的酶,从而使蛋白合成减少,病毒生长受到阻抑。干扰素对β细胞的功能,在一定条件下起抑制或增进作用,如干扰素浓度高时有明显抑制抗体反应,临床应用大剂量IFN-α治疗慢性病毒性肝炎,可使血清IgG、IgM异常升高者得到改善或恢复,其作用亦系干扰素抑制β细胞的作用,使浆细胞制造免疫球蛋白抗体过多现象得到缓解所致。干扰素对效应细胞

相关文档
最新文档